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SUMMARY
A file format for documents containing both the logical and layout structures is presented. Unlike
CONCUR of SGML, this format can represent a large class of WYSIWYG documents, such
as documents containing footnotes. The key idea is to untangle the logical-layout relationship
by introducing embedding nodes and mold nodes. Embedding nodes are nodes representing
logical-layout correspondences; mold nodes are temporary dummy nodes, which will later be
replaced by layout nodes. Once the logical-layout relationship is untangled, it becomes possible
to represent a document by a sequential data stream which can be readily stored in a file. This
file format has the following advantages: First, it is compact. No leaf nodes are duplicated;
tags for embedding nodes and mold nodes do not require much space; the text formatting
output can be omitted. Second, the depth-first traversal of logical structures and that of layout
structures are efficient and easy to implement. Files are sequentially read only once, and neither
logical structures nor layout structures need to be copied into the main memory. Third, the
logical-layout correspondences are explicitly represented by tags for embedding nodes.
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1 INTRODUCTION

This paper shows a file format for documents containing both the logical and layout struc-
tures (hereafter formatted-processable documents). Such a file format is highly important
for at least two reasons.

First, in the area of information retrieval, queries based on both logical and layout char-
acteristics (e.g., ‘retrieve technical articles that have mathematical expressions in the first
page’) have been studied [1,2]. To provide such search capabilities, an information retrieval
system [2] reconstructs layout structures from Postscript files and further reconstructs some
logical ionformation from these layout structures. Search is then performed with respect
to the reconstructed logical information and layout structures. However, if a file format
for formatted-processable documents is established, documents containing both the logical
and layout structures become readily available and thus information retrieval systems can
take full advantage of the logical and layout characteristics.

Second, researchers in humanities are often concerned with both the logical and layout
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characteristics of manuscripts 1. For example, a chronicle is logically divided into entries
for years. Scholars compare different manuscripts of the same chronicle with respect to
these logical entries (rather than pages), since different manuscripts have the same entry
on different pages. Thus, electronic representation of chronicles must capture their logical
structures. On the other hand, a manuscript is also divided into pages and lines. Linguists
cite examples of grammatical structures with respect to pages and lines (rather than logical
entries), since they provide precise reference points. Thus, layout structures of chronicles
must also be captured. Furthermore, to interpret the text properly, textologists need to know
where lines and pages end, since the copying process often introduces mistakes at the end
of lines and pages. Thus, the relationship of logical and layout structures of chronicles
must be captured as well. Therefore, a file format for formatted-processable documents is
strongly required. The TEI project [3] has been pursuing such a format.

SGML [4] provides a mechanism called CONCUR for representing formatted-processable
documents 2. However, CONCUR can handle very simple documents only. It cannot handle
documents having footnotes, for example. On the other hand, our file format can handle a
large class of WYSIWYG documents. Nevertheless, our file format is similar to CONCUR
when applied to very simple documents. In this sense, our file format is an extension of
CONCUR. However, since the present work is based on document formatting models and
provides useful access algorithms, it should not be considered as merely an extension but
rather as a theory behind CONCUR.

The rest of this paper is organized as follows. Section 2 describes the common char-
acteristics of many document models and clarifies the relationship of the logical structure
and the layout structure. Section 3 introduces embedding nodes and mold nodes, which
are key concepts of this work. Section 4 shows our file format as well as an example
document representation. Section 5 shows access algorithms. Section 6 further introduces
the omission of text formatting output so as to compact files. Section 7 shows a comparison
to related work and suggests some extensions. Section 8 shows the conclusion.

2 DOCUMENT MODEL

Although there are a variety of structured document models [5], basic concepts are similar.
The logical characteristics of a document is represented by a tree whose nodes have
attributes. This tree is called a logical structure. A leaf node in a logical structure is a visible
object such as a character, bitmap, graphics frame, etc. Given a logical structure and some
associated layout control parameters, document formatters create a layout structure. This
process is called formatting. The layout structure is an attributed tree, which represents the
layout characteristics of the document. A node of a layout structure represents a rectangular
area. Again, a leaf node in a layout structure is a visible object such as a character, bitmap,
graphics frame, etc.

A node A in a logical (layout) structure is subordinate to another node B and B is
superior to A if we can reach from B to A by descending the structure. Node A precedes B
if A occurs earlier than B in the preorder and B is not subordinate to A.

For our purpose we further study the relationship of the logical structure and the layout

1 Private communications with David Birnbaum.
2 CONCUR was originally introduced into SGML as a mechanism for representing formatted-processable doc-

uments, since a competing standard, namely ODA, already had a mechanism called FPDA (see Section 7).
People later started to use CONCUR for other purposes such as representing multiple logical structures.
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Figure 1. Leaf nodes are shared by logical structure (upper half) and layout structure (lower half)

structure of a document. Although different document formatting models (Interscript[6],
DSSSL[7], ODA[8], and others[9,10,11]) differ on many points, after formatting is done,
the relationship between the input logical structure and the output layout structure is similar
in any formatting model.

2.1 Sharing of leaf nodes

The logical structure and layout structures share leaf nodes; that is, every leaf node belongs
to a logical node and a layout node (Figure 1). For example, a character in a document
belongs to a logical node such as a paragraph node and also belongs to a layout node such
as a line node. A bitmap in a document belongs to a logical node such as a logical artwork
node and also belongs to a layout such as a layout artwork node.

Exceptions are duplication, removal, and addition. Duplication: what occurs once in
the logical structure occurs more than once in the layout structure (e.g., running headers).
Removal: what occurs in the logical structure does not occur in the layout structure (e.g.,
omitted annotations). Addition: what does not occur in the logical structure occurs in the
layout structure (e.g., page numbers). We will discuss these exceptions in Section 7.

2.2 Correspondences

A layout template can be specified for a logical node. A document formatter generates
a sequence of layout subtrees from this layout template, and lays out the logical subtree
rooted by that logical node into the layout subtrees. The logical node is said to correspond
to the root layout nodes of these layout subtrees, and vice versa. The sequence of these
layout nodes is called the counterpart of the logical node.

Here are some examples of correspondences. A logical structure is (often implicitly)
constrained to be laid out into a layout structure. The logical root corresponds to the layout
root; the counterpart of the logical root is the layout root. A paragraph is constrained to
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Figure 2. The logical root corresponds to the layout root; paragraphs, to text boxes

be laid out into a sequence of text boxes. The paragraph node corresponds to text boxes;
the counterpart of the paragraph node is the sequence of these text boxes. (Figure 2 shows
a document containing paragraphs.) A chapter may be constrained to be laid out into a
sequence of page nodes; then, this chapter node corresponds to page nodes. A logical table
may be constrained to be laid out into a sequence of layout tables (in case that the page
break occurs); then, the table logical node corresponds to table layout nodes. A chapter
header may be constrained to be laid out into a chapter header area; then, the chapter header
logical node corresponds to a chapter header layout node. (Figure 3 shows a document
containing chapters, chapter headers, sections, tables, and paragraphs.)

Observe that some logical nodes do not correspond to any layout nodes. For example,
a section node does not correspond to any layout nodes, unless this section node has an
associated layout template.

Assume that logical nodes G1 and G2 corresponds to layout nodes and that G1 is
subordinate to G2. Then, the counterpart of G1 is subordinate to that of G2; to be precise,
any of the layout nodes corresponding to G1 is subordinate to one of those corresponding
to G2. (We later consider an exception called break-out.) In the above example, a paragraph
node, a chapter header logical node, and a table logical node are subordinate to a chapter
node; the corresponding text boxes, chapter header layout nodes, and table layout nodes
are subordinate to the corresponding pages. The chapter node in turn is subordinate to the
logical root; the corresponding pages are subordinate to the layout root.

2.3 Lowest-level correspondences and leaf nodes

Correspondences without subordinate correspondences are said to be at the lowest-level.
To be precise, the correspondence between a logical node and layout nodes is at the lowest-
level if none of the subordinate logical nodes correspond to layout nodes. For example, the
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Figure 3. The logical root, chapters, chapter headers, sections, tables, and paragraphs correspond
to layout nodes. Subordinates of these logical nodes and layout nodes are omitted

correspondence between a paragraph and text boxes is at the lowest-level, since subordinates
of paragraphs (e.g., sentence logical nodes) do not corresond to layout nodes.

If we ascend a logical tree from a leaf node, we first encounter a lowest-level correspon-
dence and then encounter higher-level correspondences: we never encounter a higher-level
correspondence first. In other words, if a logical node G corresponds to layout nodes
and this correspondence is not at the lowest-level, leaf nodes can be subordinate to G only
through logical nodes having counterparts. In the above example, correspondences between
paragraphs and text boxes are at the lowest-level; leaf nodes can be directly subordinate
to paragraph nodes. The correspondences between chapter nodes and pages are not at the
lowest-level; leaf nodes can be subordinate to chapter nodes only through paragraph nodes,
chapter header logical nodes, or table logical nodes.

2.4 Reordering

Formatting often causes reordering. That is, the order in which logical nodes occur in the
logical structure may be different from the order in which the corresponding layout nodes
occur in the layout structure.

For example, consider a document whose logical structure consists of a logical root
with paragraph nodes and footnote nodes as subordinates. Paragraph nodes are laid out in
the body area of the page, and footnote nodes are laid out in the footnote area. To be precise,
text boxes corresponding to paragraph nodes are subordinate to body area (layout) nodes.
Those corresponding to footnote nodes are subordinate to footnote area (layout) nodes. If
a paragraph G1 precedes another paragraph G2 in the logical structure, the counterpart of
G1 also precedes that of G2. Otherwise, the text appears out of order. In other words, as
long as only paragraph nodes are concerned, there is no reordering. The same thing also
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Figure 4. Reordering example

applies to footnotes: if a footnote GF1 precedes another footnote GF2, the counterpart of
GF1 also precedes that of GF2.

However, reordering may arise when both paragraph nodes and footnote nodes are used
with each other. Consider a paragraph G1, a footnote GF1, a paragraph G2, and a footnote
GF2, which occur in the logical structure in this order (Figure 4). Assume that G1 and G2
are laid out in the body area of the first page, and that GF1 and GF2 are laid out in the
footnote area of the same page. In the layout structure, the counterpart of G1 precedes that
of G2, and the counterpart of GF1 precedes that of GF2. Since the body area layout node
precedes the footnote area node, the occurrence order in the layout structure is G1 G2 GF1
GF2, and is thus different from the original occurrence order in the logical structure (G1
GF1 G2 GF2).

Similar reordering also arises in synchronized bilingual documents. Paragraphs in one
language are laid out into right columns and those in the second language are laid out into
left columns. Assume that a paragraph G1 precedes another paragraph G2 in the logical
structure. If G1 and G2 are in the same language, the counterpart of G1 precedes that of
G2. If G1 and G2 are not in the same language, this is not necessarily the case.

Let us generalize this observation. If a logical node G corresponds to layout nodes and
this correspondence is not at the lowest-level, there is more than one stream below G. Each
stream is a sequence of logical nodes that correspond to layout nodes. Which stream a
logical node pertains to is specified by the type or an attribute of that node. There is no
reordering as far as logical nodes of the same stream are concerned. That is, if two logical
nodes G1 and G2 pertain to the same stream and G1 precedes G2 in the logical structure,
the counterpart of G1 precedes that of G2. Reordering arises when logical nodes pertaining
to different streams are involved. That is, provided that G1 and G2 pertain to different
streams, even if G1 precedes G2 in the logical structure, the counterpart of G1 does not
necessarily precede that of G2.

Exceptions are bibliographies, indexes, and glossaries, where their entries are sorted in
an alphabetical order, for example, and thus the order in which they apppear in the logical
structure is irrelevant. We will discuss these exceptions in Section 7.
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2.5 Break-out

Footnotes and their variations (marginal notes, etc.) cause break-out 3 [11]. Assume that a
table logical node has a subordinate footnote node, which is laid out into the footnote area
(Figure 5). The table logical node corresponds to a table layout node, and the footnote node
corresponds to a footnote text box. The footnote text box is not subordinate to the table
layout node but is subordinate to the footnote area node. The footnote node is said to break
out from the table logical node. The footnote node does not pertain to streams within the
table logical node. Rather, it pertains to a stream of a further superior logical node (e.g.,
a chapter node), and is laid out in conjunction with other footnotes. A footnote within a
paragraph also breaks out: the footnote text boxes corresponding to the footnote node are
not subordinate to the text boxes corresponding to the paragraph node. Figure 6 shows a
document that has two paragraphs G1 and G2, which in turn have footnotes GF1 and GF2,
respectively. Note that these footnotes cause both break-out and reordering.

We assume that no footnote notes (including variations) exist under other footnote
nodes, because no accepted writing styles permit footnotes references within footnotes.
This assumption simplifies the procedure for the depth-first traversal of layout structures
(see 5.2).

Having introduced break-out, we have to revise the definition of lowest-level. The
correspondence between a logical node and layout nodes is said to be at the lowest-level
if none of the subordinate logical nodes pertain to streams under that logical node. In
the above example, the correspondence between G1 and its counterpart are at the lowest-
level, because GF1 does not pertain to a stream under G1. Therefore, characters can be
subordinate to G1 without intervening logical nodes.

3 EMBEDDING NODES AND MOLD NODES

In preparation, we untangle the logical and layout structures by introducing embedding
nodes and mold nodes. For each correspondence between a logical node and a sequence of
layout nodes, we introduce an embedding node and a sequence of mold nodes.

An embedding node (named after embedding [10]) represents a correspondence, and
references a logical node and a sequence of layout nodes. An embedding node has attributes

3 In Interscript [6] break-out is called left-over.
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Figure 6. Footnotes within paragraphs cause break-out and reordering

‘stream’ and ‘subordinate streams’. The ‘stream’ attribute specifies the name of the stream
of the referenced logical node. The attribute ‘subordinate streams’ specifies the names of
the streams under the referenced logical node. Embedding nodes intervene between logical
nodes: the logical nodes referenced by embedding nodes are no longer referenced by their
original superior logical nodes; instead, these superior nodes now reference the embedding
nodes.

A mold node [6] is a temporary dummy node, which will later be replaced by a layout
node. The layout node that will replace a mold node is called its prime node. A mold node
is introduced for each of the layout nodes (except the layout root) that correspond to logical
nodes. Each mold node has an attribute ‘stream’. This attribute specifies the name of the
stream of the logical node that corresponds to the prime node of the mold node. With the
introduction of mold nodes, the layout structure is fragmented: the layout nodes that are
prime nodes of mold nodes are no longer referenced by their original superior layout nodes;
instead, these superior nodes now reference the mold nodes.

Having introduced embedding nodes and mold nodes, a document can be considered as
a hierarchy of embedding nodes. Each embedding node references a logical subtree and a
sequence of layout subtrees. This logical subtree in turn references subordinate embedding
nodes.

Observe that mold nodes and embedding nodes temporarily dissolve reordering and
break-out. They are implicitly represented by pairs of mold nodes and layout nodes.

Figure 7 shows embedding nodes and mold nodes introduced into the document shown
in Figure 6. The logical root, paragraph G1, paragraph G2, footnote GF1, and footnote GF2
correspond to layout nodes. Embedding nodes E0, E1, E2, EF1, and EF2 are introduced
for these correspondences. E0 references the logical root and the layout root. E1 references
G1 and the corresponding text box. And so forth. Note that the logical root references G1
and G2 through E1 and E2, respectively. G1 references GF1 through EF1; G2 references
GF2 through EF2. The prime nodes of mold nodes M1, M2, MF1, and MF2 are the layout
nodes referenced by E1, E2, EF1, and EF2, respectively. These layout nodes are no longer
referenced by their original superior layout nodes.
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Figure 7. Embedding and mold nodes introduced into the document shown in Figure 6

4 FILE FORMAT

Now, we are ready to introduce our file format. In other words, we provide a data stream
representing a document augmented with embedding nodes and mold nodes. Although
this data stream is in character encoding, we can easily provide a data stream in binary
encoding. Hereafter examples are based on the document shown in Figure 7 and are put in
brackets.

First, we introduce tokens, which are constituents of the data stream. A token is either
an embedding start tag, embedding end tag, logical start tag, logical end tag, layout start
tag, layout end tag, mold tag, or a leaf descriptor. These tags are similar to those in SGML
[4]. A embedding start tag/embedding end tag pair represents an embedding node. An
embedding start tag specifies the ‘stream’ attribute and the ‘subordinate streams’ attribute
of this embedding node. A logical start tag/logical end tag pair represents a logical node. A
layout start tag/layout end tag pair represents a layout node. A mold tag represents a mold
node and specifies the ‘stream’ attribute of the mold node. A leaf descriptor is a sequence
of characters or bytes representing a leaf node. Any method can be used to obtain leaf
descriptors from leaf nodes. Typically, the leaf descriptor for a character leaf node is the
character itself. A place holder is a temporary dummy token representing an embedding
node. A place holder will later be replaced by a fragment representation (defined below) of
the embedding node.

A fragment representation of an embedding node E is a sequence of tokens such that
the following four conditions are satisfied.

Condition 1 The first in the token sequence is an embedding start tag, and the last
in the sequence is an embedding end tag. This embedding start and end tag
pair represents E. No other embedding start or end tags occur in the token se-
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quence. (In a fragment representation of embedding node E0, the first and the
last tokens are <embedding stream="" subordinate streams="body
footnote"> and </embedding>, respectively. No other embedding start or end
tags occur.)

Condition 2 The logical start tags, logical end tags, place holders, and leaf descriptors in
the token sequence collectively represent the logical subtree referenced by E. (In a
fragment representation of E0, tokens:
<(log)root>
?E1?
?E2?

</(log)root>
occur in this order, where 1) <(log)root> and </(log)root> are a start
and an end tag for the logical root, respectively, and 2) ?E1? and ?E2? are place
holders temporarily representing E1 and E2, respectively.)

Condition 3 The layout start tags, layout end tags, mold tags, and leaf descriptors in the
token sequence collectively represent the layout subtrees referenced by E. (In a
fragment representation of E0, tokens:
<(lay)root>
<(lay)page>
<(lay)body_area>
<(lay)mold stream="body">
<(lay)mold stream="body">

</(lay)body_area>
<(lay)footnote_area>
<(lay)mold stream="footnote">
<(lay)mold stream="footnote">

</(lay)footnote_area>
</(lay)page>

</(lay)root>
occur in this order, where 1) <(lay)root>, and </(lay)root>, are a
start tag and an end tag for the logical root, and so forth, and 2) <(lay)mold
stream="body"> is a mold tag representing M1 (and M2), and <(lay)mold
stream="footnote"> is a mold tag representing MF1 (and MF2). Layout nodes
have attributes such as ‘dimensions’ and ‘position’, but we have omitted them from
layout start tags for the space limitation.)

Condition 4 Consider any mold tag m in the token sequence. The mold node represented
by m has a prime (layout) node. This prime node is under some embedding node F
such that the logical subtree referenced by E references F. (In the break-out case other
embedding nodes may intervene between F and the prime node.) Condition4 requires
that the place holder temporarily representing F precede m in the token sequence.
(In a fragment representation of E0, the place holders ?E1? and ?E2? precede
the mold tags (<(lay)mold stream="body"> ) temporarily representing M1
and M2, respectively, because the prime nodes of M1 and M2 are subordinate to
E1 and E2, respectively. The place holders ?E1? and ?E2? precede the mold
tags (<(lay)mold stream="footnote">) temporarily representing MF1 and
MF2, respectively, because the prime node of MF1 is subordinate to E1 through EF1
and the prime node of MF2 is subordinate to E2 through EF2.)
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Condition 1 provides representations of correspondences. Conditions 2 and 3 pro-
vide representations of logical subtrees and layout subtrees, respectively. (Observe that
paragraphs with subordinate logical structures can readily be represented.) Conditions
2 and 3 further ensure that no leaf descriptor is duplicated although a leaf node be-
longs to both structures. Condition 4 makes the depth-first traversal of layout struc-
tures tractable (see Section 5). Appendix A shows a proof that token sequences sat-
isfying these conditions always exist. (For E0, one such sequence is shown below:
<embedding stream="" subordinate_streams="body footnote">
<(log)root>
?E1?
?E2?

</(log)root>
<(lay)root>
<(lay)page>
<(lay)body_area>
<(lay)mold stream="body">
<(lay)mold stream="body">

</(lay)body_area>
<(lay)footnote_area>
<(lay)mold stream="footnote">
<(lay)mold stream="footnote">

</(lay)footnote_area>
</(lay)page>

</(lay)root>
</embedding>.)
If a fragment representation is provided for each embedding node, we can create a

data stream representing the entire document. We begin with the fragment representation
of the top-level embedding node. We then recursively replace place holders with fragment
representations: for each embedding node E, the place holder temporarily representing E
is replaced with the fragment representation of E.

As an example, we show a data stream representing the document shown in Figure 7.
To save space, we omit the output of text formatting; that is, no tags for line nodes and word
nodes occur. (We will more precisely introduce such omission in Section 6.) A sequence
of leaf descriptors is denoted by leaf ... leaf.

Tokens shown in lines 10�16 and those shown in lines 26�32 originally occurred
in fragment representations of EF1 and EF2, respectively. Those shown in lines 06�08
and 17�20 and those shown in lines 22�25 and 33�36 originally occurred in fragment
representations of E1 and E2, respectively. Those shown in lines 01�05, 21, and 37�46
originally occurred in a fragment representation of E0.

01 <embedding stream="" subordinate_streams="body footnote">
02 <(log)root>
03 <(lay)root>
04 <(lay)page>
05 <(lay)body_area>
06 <ebedding stream="body" subordinate_streams="">
07 <(log)para>
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08 <(lay)text_box>
09 leaf ... leaf
10 <embedding stream="footnote"

subordinate_streams="">
11 <(log)footnote>
12 <(lay)foonote_text_box>
13 leaf ... leaf
14 </(lay)footnote_text_box>
15 </(log)footnote>
16 </embedding>
17 leaf ... leaf
18 </(lay)text_box>
19 </(log)para>
20 </embedding>
21 <(lay)mold stream="body">
22 <embedding stream="body" subordinate_streams="">
23 <(log)para>
24 <(lay)text_box>
25 leaf ... leaf
26 <embedding stream="footnote"

subordinate_streams="">
27 <(log)footnote>
28 <(lay)foonote_text_box>
29 leaf ... leaf
30 </(lay)foonote_text_box>
31 </(log)footnote>
32 </embedding>
33 leaf ... leaf
34 </(lay)text_box>
35 </(log)para>
36 </embedding>
37 <(lay)mold stream="body">
38 </(lay)body_area>
39 <(lay)footnote_area>
40 <(lay)mold stream="footnote">
41 <(lay)mold stream="footnote">
42 </(lay)footnote_area>
43 </(lay)page>
44 </(lay)root>
45 </(log)root>
46 </embedding>

5 ACCESS ALGORITHMS

In this section we sketch three algorithms to access documents stored in files. These
algorithms are for traversing logical structures, traversing layout structures, and storing
documents in files, respectively.
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5.1 Traversing logical structures

As an example of traversing logical structures, we show a procedure for the conversion
from our file format to an SGML-like logical-structure-only file format. This procedure
does not make a copy of the entire logical structure in the main memory.

Basically, we only have to sequentially read tokens from a file, and write them in
the output file if they are either logical start tags, logical end tags, or leaf descriptors.
Other tokens are simply discarded. For symmetry between this procedure and the next one,
however, we introduce a recursive procedure. This procedure sequentially reads tokens
from a file, invokes itself when an embedding start tag is encountered, and returns when an
embedding end tag is encountered. Logical start tags, logical end tags, and leaf descriptors
are stored in the output file. Mold tags, layout start tags, and layout end tags are discarded.
Condition 2 in Section 4 ensures that the tokens stored in the output file collectively
represent the logical structure.

5.2 Traversing layout structures

We also show a procedure for the conversion from our format to an SGML-like layout-
structure-only file format. Again, this procedure does not make a copy of the entire layout
structure in the main memory.

In an augmented document, the layout structure is fragmented by mold nodes. Each
fragment is a layout subtree, in which mold nodes occur as leaf nodes. The prime (layout)
node of each mold node is the root of another layout subtree. To reconstruct the original
layout structure, we have to replace each mold node with its prime node. Consequently,
our procedure has to replace each mold tag m with a sequence of tokens, which represents
the layout subtree rooted by the prime node of M, where M is the mold node represented
by m. Hereafter we call this sequence a ‘layout subtree’.

We use queues to temporarily hold ‘layout subtrees’. A queue is introduced for each
stream. Mold tags are replaced with ‘layout subtrees’ held in the queues. (The suitability
of this approach is shown in Appendix B.) We use a stack to manage queues. Elements
stored in this stack are tuples of the form < stream name, pointer to queue>. When an
embedding start tag is encountered, queues for subordinate streams are created and tuples
are pushed into the stack. When an embedding end tag is encountered, queues are destroyed
and tuples are popped from the stack.

Now, we are ready to introduce our procedure. Like the previous one, this procedure is
recursive. It sequentially reads tokens from a file, invokes itself when an embedding start
tag is encountered, and returns when an embedding end tag is encountered.

� When invoked for an embedding start tag, this procedure performs two initialization
actions:

— Finding an output queue to store ‘layout subtrees’. The procedure obtains the
stream name by examining the ‘stream’ attribute of the current embedding start
tag. Then, from the stack top, the procedure searches for a tuple whose first
element is equal to the obtained stream name. Note that a tuple can be found
even in the break out case. Having found a tuple, the procedure examines its
second element and identifies the queue it references as an output queue.
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— Creating queues and pushing tuples into the stack. The procedure obtains
the names of the subordinate streams by examining the ‘subordinate streams’
attribute of the current embedding start tag. Then, for each of the subordinate
stream names, the procedure creates a queue and pushes a tuple into the stack.
The first element of this tuple is the stream name and the second element is a
pointer to the created queue.

� Having performed the initialization actions, this procedure sequentially reads tokens
from a file. Layout start tags, layout end tags, and leaf descriptors are stored in
the output queue. Condition 3 in Section 4 ensures that these tokens collectively
represent layout subtrees. Logical start tags, logical end tags, and leaf descriptors are
discarded.

� When a mold tag is encountered, the procedure first obtains the stream name by
examining the ‘stream’ attribute of this mold tag. Then, from the stack top, the
procedure searches for a tuple whose first element is equal to the obtained stream
name. Having found a tuple, the procedure examines its second element and identifies
the queue it references. Then, the procedure moves a ‘layout subtree’ from this
identified queue to the output queue. In other words, the procedure repeatedly reads
a token from the identified queue and stores this token in the output queue until one
layout subtree is moved.

� When an embedding start tag is encountered, the procedure recursively invokes
itself. (The assumption that no footnote nodes exist under other footnote nodes is
used here. It ensures that the recursively invoked procedure does not interfere with
‘layout subtrees’ being constructed.)

� When an embedding end tag is encountered, the procedure returns. Before doing so,
the procedure disposes of the queues and tuples created during the initialization.That
is, the queues are destroyed and the tuples are popped from the stack.

We need a main procedure, which invokes this recursive procedure. This main procedure
creates a stack, creates a queue for the anonymous top-level stream, pushes a tuple into the
stack, and invokes the recursive procedure. After it finishes constructing the entire ‘layout
tree’ in the queue, the main procedure copies tokens from the queue to the output file.

5.3 Storing documents in files

To store a document in a file, we have to create a data stream representing this document and
then store this data stream. Section 4 shows how to construct data streams from fragment
representations. Now, we only have to consider how to construct fragment representations.

A fragment representation of an embedding node E is constructed by the following
steps.

� First, we create a sequence of logical start tags, logical end tags, leaf descriptors,
and place holders, which represents the logical subtree referenced by E. This is
done by traversing the logical subtree in the depth-first manner. When we encounter
subordinate embedding nodes during this traversal, we skip their subordinates.

� Second, we create a sequence of layout start tags, layout end tags, leaf descrip-
tors, and mold tags, which represents the layout subtrees referenced by E. This is
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done by traversing each of the layout subtrees in the depth-first manner, and then
concatenating the results.

� Third, we merge the two sequences and eliminate duplication of leaf descriptors so
that Condition 4 is satisfied.

� Last, we create an embedding start and end tag pair for the embedding node. Then,
we insert, in the merged sequence, the embedding start tag as the first element and
the embedding end tag as the last element.

6 OMISSION OF TEXT FORMATTING OUTPUT

The data stream shown in Section 4 contains a layout start and end tag pair for each of the
layout nodes. If a page has 50 lines, the data stream contains a minimum of 100 tags per
page. Furthermore, if text formatting is elaborated, a layout node is introduced for each
word and this node has a position in the line node. Layout tags for these layout nodes take
an unacceptably large amount of space.

However, these layout nodes are often unnecessary. For example, queries based on
both the logical and layout structures do not usually impose any conditions on line nodes
and word nodes. Conditions on layout nodes concern only the layout nodes above text
boxes (e.g., pages and columns). If we omit line nodes and word nodes while retaining the
other layout nodes, the data stream becomes much more compact but remains useful for
intormation retrieval systems, for example.

The tags for line nodes and word nodes is omitted by modifying Condition 3 as below:

Condition 3’ The layout start tags, layout end tags, and place holders in the token se-
quence collectively represent the layout subtrees referenced by the embedding node;
however, the layout nodes under text boxes, namely line nodes, word nodes, and
character leaf nodes, are not represented. Note that character leaf descriptors still
occur in fragment representations because of Condition 2. (Assume that the text of
G1 is ‘This is an example of omission’ and that the text box corresponding to G1
has two line nodes, each of which in turn has three word nodes. The original Con-
dition 3 requires tokens <(lay)text box> <(lay)line> <(lay)word>
This </(lay)word> <(lay)word> is </(lay)word>
<(lay)word> an </(lay)word> </(lay)line> <(lay)line>
<(lay)word> example </(lay)word> <(lay)word> of
</(lay)word> <(lay)word> omission </(lay)word>
</(lay)line> </(lay)text box>. However, under the modified Condition
3, we can eliminate all of the <(lay)line>, </(lay)line>, <(lay)word>,
and </(lay)word>.)

Omitted layout nodes can be reconstructed by reformatting text; it is possible to format
the text of one logical node rather than the entire document (reduced reformatting [9]). Such
reduced reformatting of text requires a much smaller program, less time, and less memory
than does reformatting of an entire document. Text boxes, which are not omitted from the
data stream, provide information (such as dimensions) required for text reformatting. In
the case of captions, we only have to reformat each caption with respect to the line length
specified by the text box corresponding to that caption.
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7 DISCUSSIONS

Two standards, namely CONCUR of SGML [4] and FPDA of ODA [8], provide file formats
for formatted-processable documents. Neither fulfills our requirements, however.

CONCUR allows the mixture of logical tags and layout tags in one document entity. Data
contents (sequences of leaf descriptors) are shared by these two sets of tags. By considering
only logical tags and data contents, we have the logical structure of the document. By
considering only layout tags and data contents, we have the layout structure. It is of course
possible to have both structures by considering both logical tags and layout tags. However,
CONCUR can not handle reordering and break-out. The reason is that the order in which
data contents occur in the logical structure and the order in which data contents occur
in the layout structure are both forced to be identical to the textual occurrence order.
Correspondences are only vaguely represented by those tags which are both logical and
layout. The omission of text formatting output is not possible.

Applied to documents without reordering, break-out, and/or elaborated text formatting,
CONCUR and our file format provide very similar results. In this sense, our format can be
considered as an extension of CONCUR, where 1) the introductionof mold tags, embedding
start tags, and embedding end tags allows reordering and break-out, and 2) the omission of
text formatting output becomes possible.

In the FPDA format, all logical nodes except leaf nodes occur first, all layout nodes
except leaf nodes occur next, and all content portions (sequences of leaf nodes) occur last.
The physical ordering of nodes and content portions does not represent their hierarchical
relationship. That is, even if a node G1 is a child of a node G2, G1 does not have to follow
G2 in the file; G1 may appear first and G2 may follow. The hierarchical relationship is
represented by node identifiers in (a minor variation of) the Dewey decimal notation. For
example, if G1 has an identifier ‘3 0 0 ’ and G2 has an identifier ‘3 0 0 0’, G2 is the first
child of G1.

FPDA can handle reordering and break-out. It is also possible to omit the result of text
formatting by storing processable contents rather than formattted processsable contents.
However, since content portions and their superior logical (layout) nodes are separated,
the depth-first traversal of the logical (respectively, layout) structure is possible only after
copying the entire logical (respectively, layout) structure into the main memory. As a
result, to do a simple task by the depth-first traversal of the logical or layout structure,
the programmer is forced to use a tree management library called an ODA toolkit. The
reference manual of such an ODA toolkit is lengthy and somewhat daunting. Furthermore,
FPDA provides no information about correspondences.

SGML and ODA significantly differ on their approaches to semantics. ODA standard-
izes the semantics 4 as well as the syntax. Meanwhile, SGML provides a machanism (DTD)
for defining the syntax, and does not concern the semantics. HyTime, a standard based on
SGML, introduces architectural forms and standardizes their semantics. A DTD in HyTime
references to such architectural forms, thereby borrowing their standardized smenatics. Any
of the ODA, SGML, and HyTime approaches to the semantics can be combined with our
file format. That is, 1) we can standardize the syntax and semantics, 2) we can provide a
mechanism for defining the syntax only, or 3) we can introduce architectural forms as well
as a syntax-definition mechanism.

The TEI (Text Encoding Initiatives) project [3] is an attempt to provide guidelines

4 To be precise, ODA standardizes the semantics regarding formatting and imaging only.
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for representing textual documents in electronic form. Technically, the TEI guidelines are
given as DTD’s of SGML. The representation of multiple hierarchies, such as both the
logical and layout structures, has been an important issue in TEI, and a chapter of the TEI
guidelines is devoted to it. TEI uses CONCUR and also introduces milestone elements,
fragmentation of an item, virtual joins, and redundant encoding. Nevertheless, as the editor
of the TEI guidelines writes [12], “the TEI was never able to devise a fully satisfactory
general solution”. After an early version of this paper was presented at SGML’94, the TEI
project started to consider incorporating ideas of this work.

We have to extend our file format to handle duplication (e.g., running headers), removal
(e.g., omitted annotations), and addition (e.g., page numbers), which we mentioned in
Section 2. Duplication can be handled by introducing a special stream comprising only one
logical node, which is repeatedly laid out. Removal can be handled by introducing another
special stream, the logical nodes of which are not laid out. Addition can be handled by
introducing yet another special ‘stream’, which does not exist in the logical structure 5.

Bibliographies, indexes, and glossaries require further extension. The main problem
here is that the ordering of items (such as indexes) is not controlled by the order in which
they appear in the logical structure, but is rather controlled by alphabetical sorting of items,
for example. One solution is to introduce a ‘stream’ for each item. Such ‘streams’ uniquely
identify items, and thus can control any reordering. Though such ‘streams’ deviate from
the original scope of streams, our file format and algorithms have no problems in handling
such ‘streams’.

Last, we discuss the expressive power of our file format. Syntactcially, it can handle
coexisting multiple hierarchies such that 1) most of the leaf nodes are shared by these
hierarchies, and 2) the difference of the leaf node ordering in different hierarchies can
be handled by the stream mechanism. To the best of the present author’s knowledge, any
WYSISYG document can be represented by such multiple hierarchies, and is thus repre-
sentable in our file format. Furthermore, the multiple logical structures addressed in TEI
might also be representable in our file format. Examining this possibility by investigating
the requirements for multiple logical structures is an interesting direction for this research
to take.

8 CONCLUSION

We have introduced a file format for documents containing both logical structures and
layout structures. It is possible to consider this file format as an extension of CONCUR.

To store a document in a file, we create a data stream representing this document
as follows: First, we augment the document with embedding nodes and mold nodes. By
doing so, we can temporarily dissolve reordering and break-out; the document becomes a
hierarchy of embedding nodes. We then construct a fragment representation (a sequence of
tokens) for each embedding node. In this step, we can compact fragment representations
by eliminating tokens for line nodes and word nodes, if we like. Finally, we create a data
stream by recursively replacing each place holder with a fragment representation.

To conclude, we summarize advantages of this file format as below:
Less spatial overhead. No leaf descriptors are duplicated, although leaf nodes belong

to both the logical and layout structures. Additional tags for simultaneously representing

5 We also have to introduce a mechanism for representing leaf nodes that belong to layout structures only.
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both structures, namely embedding start tags, embedding end tags, and mold tags, do not
take much space since mold nodes and embedding nodes are introduced for only some of
the logical and layout nodes.

Omission of text formatting output. The text formatting output can be omitted from
the data stream. The omitted information, when needed, can be reconstructed by text
reformatting. Such text reformatting requires a smaller program, less time, and less memory
than does reformatting of an entire document.

Ease of handling logical structures. The depth-first traversal of logical structures is
highly important, as a variety of processing is possible with such a traversal. Our traversal
algorithm introduced in 5.1 is efficient and easy to implement. The file is sequentially read
only once, and the logical structure is not duplicated in the main memory.

Ease of handling layout structures. The depth-first traversal of layout structures is
important for the same reason. Our traversal algorithm introduced in 5.2 is also efficient
and quite easy to implement. Likewise, the file is only sequentially read once and the entire
layout structure is not duplicated in the main memory.

Explicit representation of correspondences. An embedding start and end tag pair ex-
plicitly represents the correspondence between a logical node and a sequence of layout
nodes. Thus, application programs can exploit the correspondences. For example, a query
engine can use the correspondences between table logical and layout nodes to to retrieve a
table occurring in the second page of section 3.

Handling of reordering. Since reordering is temporarily dissolved by embedding nodes
and mold nodes, documents having reordering can be represented. In particular, documents
containing footnotes or marginal nodes, and synchronized bilingual documents can be
represented.

Handling of break-out. Again, since break-out is temporarily dissolved by embedding
nodes and mold nodes, documents having break-out can be represented. In particular,
documents containing footnotes within paragraphs can be represented.

APPENDIX A: FRAGMENT REPRESENTATION EXISTENCE

We claimed that a fragment representation is a token sequence satisfying four conditions.
We have to prove that such a sequence exists for any embedding node E.

If we choose to omit the output of text formatting, we have to use the modified Condition
3. However, if a token sequence satisfying the original condition exists, we can derive a
token sequence satisfying the modified condition by deleting layout tags for line nodes and
word nodes. Thus, we only have to consider the original Condition 3.

Condition 1 claims that an embedding start tag and an embedding end tag, which
collectively represent E, occur as the first token and the last token, respectively, and that
there are no other embedding start or end tags. This condition can be easily satisfied. Thus,
we consider token sequences without embedding start or end tags; that is, we prove that a
token sequence satisfying Conditions 2, 3, and 4 exists.

Consider a sequence of logical start tags, logical end tags, leaf descriptors, and place
holders, which represents the logical subtree referenced by E. Step 1 of the fragment
construction procedure provides this sequence. Let A be the set of tokens in this sequence.
Let R be the order on A in which tokens occur. In other words, x R y if and only if either
token x precedes token y in the sequence or x is equal to y. Obviously, R is a total order.

Likewise, consider a sequence of layout start tags, layout end tags, leaf descriptors, and
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Figure 8. A mold tag m and a place holder denoted by m̂

mold tags, which represents the layout subtrees referenced by E. Step 2 of the fragment
construction procedure provides this sequence. Let B be the set of tokens in this sequence
and let S be the order on B in which tokens occur. Relation S is also a total order.

Now, we are ready to prove the existence of fragment representations. The key idea is
to find a partial order on A[B such that Conditions2, 3, and 4 are satisfied. If such a partial
order exists, a total order satisfying these conditions also exists (topological sorting). This
total order on A [ B provides a token sequence that satisfies the conditions.

We consider two cases. In Case 1, A does not contain leaf descriptors. In Case 2, A
does.

Case 1: A does not contain leaf descriptors.

First we prove that A and B are disjoint. Since A contains no leaf descriptors, A contains
logical start tags, logical end tags, and place holders only. Since B does not contain any of
them, A and B are disjoint.

Let m be an arbitrary mold tag in B. The mold node represented by m, say M, occurs in a
layout subtree referenced by E. Let Y be the prime node of M. Layout node Y is referenced
by another embedding node F1, which is subordinate to E. Furthermore, the logical node
referenced by F1 pertains to a stream below the one referenced by E (Figure 8).

We introduce a notation m̂, which denotes a place holder in A. Assume that no embed-
ding nodes occur between E and F1. In this case m̂ denotes the place holder temporarily
representing F1. Assume not. Then, the logical node referenced by the embedding nodes
between E and F1 break out. Since footnotes in footnotes are not permitted, only one
embedding node, say F2, occurs between E and F1. In this case m̂ denotes the place holder
temporarily representing F2.

We now define a binary relation T on A [ B as

x T y , i) x, y 2 A and x R y;

ii) x, y 2 B and x S y; or

iii) x 2 A, y 2 B, x R n̂, and n S y for some mold tag n.
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It is easy to show that T satisfies Conditions 2, 3, and 4. Conditions 2 and 3 are ensured
by i) and ii), respectively. To show that Condition 4 is satisfied, we have to prove m̂ T m for
any mold tag m. Since R and S are total orders, m̂ R m̂ and m S m. By iii), we have m̂ T m.

It remains to show that T is a partial order; that is, we prove the reflexivity, transitivity,
and antisymmetry of T.

Reflexivity (x T x). Assume that x 2 A. Since R is a total order on A, we have x R x. By
i), x T x holds. The x 2 B case is similarly proved.

Transitivity (if x T y and y T z, then x T z). Since the definition of T has 3 cases, we have
to consider 9 (3 � 3) sub-cases. We prove only 3 sub-cases, but the other sub-cases can be
proved similarly. Sub-case 1: i) x, y 2 A and x R y and i) y, z 2 A and y R z. Since R is a total
order, x R z holds. By i), we have x T z. Sub-case 2: i) x, y 2 A and x R y and ii) y, z 2 B and
y S z. Since A and B are disjoint, this sub-case does not occur. Sub-case 3: i) x, y 2 A and
x R y and iii) y 2 A, z 2 B, y R n̂, and n S z for some mold tag n. Since R is a total order,
x R n̂. By iii), we have x T z.

Antisymmetry (if x T y and y T x, then x = y). We again have to consider 9 sub-cases,
but we prove only 2 sub-cases. Sub-case 1: i) x, y 2 A and x R y and i) y, x 2 A and y R x.
Since R is a total order, x R z holds. By i), we have x T z. Sub-case 2: i) x, y 2 A and x R y
and ii) y, x 2 B and y S x. This sub-case does not occur, since A and B are disjoint.

Case 2: A contains leaf descriptors.

First we prove that B does not contain any mold tags by contradiction. Assume that B has a
mold tag m. Let M, Y, and F1 be the mold node represented by m, the prime node of M, and
the embedding node referencing Y, respectively (Figure 8). The logical node referenced by
F1 pertains to a stream below the one referenced by E. Thus, the correspondence between
the logical node and layout nodes referenced by E is not at the lowest-level. Therefore,
leaf nodes can be subordinate to this logical node only through logical nodes having
counterparts. However, since A contains leaf descriptors, we have a contradiction.

We assume that the occurrence order of leaf descriptors in A is the same as that in B. In
other words,

if x and y are leaf descriptors, then x R y , x S y. (1)

This assumption is natural, because the text appears out of order, otherwise.
We now define a binary relation T on A [ B as

x T y , i) x, y 2 A and x R y;

ii) x, y 2 B and x S y;

iii) x 2 A� B, y 2 B� A, x R c, and c S y for some leaf descriptor c; or

iv) x 2 B� A, y 2 A� B, x S c, and c R y for some leaf descriptor c.

It is easy to show that T satisfies Conditions 2, 3, and 4. Conditions 2 and 3 are ensured
by i) and ii), respectively. Condition 4 does not apply, because B contains no mold tags.

It remains to show that T is a partial order.
Reflexivity (x T x). As in case 1.
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Transitivity (if x T y and y T z, then x T z). Since the definition of T has 4 cases, we have
to consider 16 (4 � 4) sub-cases. We prove 4 sub-cases only. Sub-case 1: i) x, y 2 A and
x R y and i) y, z 2 A and y R z. Since R is a total order, x R z holds. By i), we have x T z.
Sub-case 2: i) x, y 2 A and x R y and ii) y, z 2 B and y S z. Since y 2 A \ B, y is a leaf
descriptor. Assume that x 2 A � B and y 2 B � A. Then, by iii), we have x T z. Assume
not. Then, either x 2 A \ B or y 2 A \ B. If x 2 A \ B, x is a leaf descriptor. By (1) and
x R y, we have x S y. By y S z and i), x T z holds. The case that y 2 A\B is similarly proved.
Sub-case 3: i) x, y 2 A and x R y and iii) y 2 A� B, z 2 B� A, y R c, and c S z for some leaf
descriptor c. By x R y and y R c, we have x R c. Assume that x 2 A� B. Then, by (iii), we
have x T z. Assume not. Then, x 2 A\B and x is thus a leaf descriptor. By (1) and x R c, we
have x S c. Since c S z, we have x S z. By (ii), x T z holds. Sub-case 4: i) x, y 2 A and x R y
and iv) y 2 B � A, z 2 A� B, y S c, and c R z for some leaf descriptor c. Obviously, this
sub-case does not occur.

Antisymmetry (if x T y and y T x, then x = y). We again have to consider 16 sub-cases,
but we prove 3 sub-cases only. Sub-case 1: i) x, y 2 A and x R y and i) y, x 2 A and y R x.
Since R is a total order, x = y holds. Sub-case 2: i) x, y 2 A and x R y and ii) y, x 2 B and
y S x. Since x, y 2 A\B, x and y are leaf descriptors. By (1), we have x S y. Since S is a total
order, x = y holds. Sub-case 3: i) x, y 2 A and x R y and iii) y 2 A� B, x 2 B � A, y R c,
and c S x for some leaf descriptor c. Obviously, this sub-case does not occur.

APPENDIX B: SUITABILITY OF USING QUEUES

The procedure for the conversion from our format to an SGML-like layout-structure-only
file format introduces a queue for each stream. Each queue holds “layout subtrees”, which
will later replace mold tags. In this appendix we show the suitability of this approach.

We show this suitability by proving two lemmas. The first lemma ensures that the
“layout subtree” for an encountered mold tag has already been read from the file. The
second lemma ensures that “layout subtrees” read first are used first (i.e. they are used in
the same order in which they occur in the file) as long as they correspond to logical nodes
of the same stream.

Lemma 1 Let M be a mold node and let Y be its prime node. Then, the tokens representing
the layout subtree rooted by Y precede the mold tag representing M.

Lemma 2 Let M1 and M2 be mold nodes such that (1) an embedding node E0 references
both the layout subtree containing M1 and that containing M2, (2) M1 and M2 specify the
same value for the attribute “stream”, and (3) M1 precedes M2 in the layout structure.

Then, the tokens representing the layout subtree rooted by Y1 precede those representing
the layout subtree rooted by Y2, where Y1 and Y2 are the prime nodes of M1 and M2,
respectively.

Proof of Lemma 1

Let m be the mold tag representing M, let E be the embedding node that references the
layout subtree containing M, and let F1 be the embedding node referencing Y (Figure 8).
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As we have observed in Appendix A, either no embedding nodes occur between E and F1,
or only one embedding node F2 occurs between E and F1.

Assume that no embedding nodes occur between E and F1. Then, m̂ denotes the
place holder temporarily representing F1. By Condition 4, m̂ precedes m in the fragment
representation of E. By Condition 3, the tokens representing the layout subtree rooted
by Y occur in the fragment representation of F1. Since m̂ is replaced with the fragment
representation of F1, these tokens precede m.

Assume that only one embedding node F2 occurs between E and F1. Then, m̂ denotes
the place holder temporarily representing F2. Again, by Condition 4, m̂ precedes m in the
fragment representation of E. Place holder m̂ is replaced by the fragment representation of
F2. This fragment representation contains a place holder, which is in turn replaced by the
fragment representation of F1. Since, by Condition 3, the tokens representing the layout
subtree rooted by Y occur in the fragment representation of F1, these tokens precede m.
Thus, we have completed our proof.

Proof of Lemma 2

Let E1 and E2 be the embedding nodes referencing Y1 and Y2, respectively. Further, let G1
and G2 be the logical nodes corresponding to Y1 and Y2, respectively.

Since M1 and M2 occur in the layout subtrees referenced by E0 and the values of the
attribute “stream” of M1 and M2 are equal, G1 and G2 pertain to the same stream under
E0. Since M1 precedes M2 in the layout structure, either G1 precedes G2 in the logical
structure, or G1 is equal to G2 (Figure 9).

Assume that G1 precedes G2 in the logical structure. Since G1 and G2 are the only
children of E1 and E2, respectively, E1 precedes E2 in the logical structure. It is straight-
forward to show that the tokens occurring in the fragment representation of E1 precede
those occurring in the fragment representation of E2 in the final data stream. By Condition
3, the fragment representation of E1 contains the tokens representing the layout subtree
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rooted by Y1, and the fragment representation of E2 contains those representing the layout
subtree rooted by Y2. Therefore, we have the conclusion.

Assume that G1 and G2 are equal. Logical node G1 (= G2) corresponds to both Y1
and Y2. Since M1 precedes M2 in the layout structure, Y1 precedes Y2. By Condition 3,
in the fragment representation of E1 (= E2), the tokens representing the layout subtree
rooted by Y1 precede those representing the layout subtree rooted by Y2. This ordering is
preserved even after all place holders are replaced with fragment representations. Thus, we
have completed our proof.
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