ELECTRONIC PUBLISHING, VOL. 8(4), 319-341 (DECEMBER 191995)

Transformation of structured documents

E. KUIKKA? M. PENTTONEN

Department of Computer Science and Department of Computer Science
Applied Mathematics University of Joensuu

University of Kuopio P.0O.Box 101, 80101 Joensuu, Finland

P.O.Box 1627, 70211 Kuopio, Finland

SUMMARY

Many documents have a definable structure. Some document formatting systems, like the
LaTeX formatter, use a structural notation. In recent years the general mark-up language
SGML hasgained popularity.

In thiswork we study the transfor mation of a structureto another. For example, technical
journals have their structure definitions, and an article originally written for one journal
must berestructured beforeit can be submitted to another journal. We assumethat structure
definitions are grammatical, and study what kind of transfor mationscan be automatized or at
least semiautomatized.

Wetook a collection of computer sciencejournalsand compared their structuredefinitions.
We classified differences as simple, local and global. As transfor mation techniqueswe studied
syntax directed translation schemata and treetransducer s. Our conclusion wasthat simple and
local transformations can be automatized or semiautomatized, depending whether additional
information is not needed, while global transfor mationsare difficult to automatize.

Transformationsweretested in our prototypesyntax-directed document processing system.
The system hasone modulefor editing a document under one structuredefinition, and another
modulefor changing a document from one structure definition to another.

KEY WORDS Structured document Treetransformation Context-freegrammar Parse tree

INTRODUCTION

Onemotivationfor el ectroni ctext processing isavoiding retyping of documents. If thereuse
of adocument requires only updating the content and modifying the layouts of portions of
the text, the current systems, especialy those that process documents in a structured way,
can manage these aterations very well. If the new representation of a document deviates
significantly from the origina representation and if the required modifications are to be
applied to a set of documents, most systems offer only restricted possibilities, and usually
the author has to use several systems to achieve the desired result.

We consider electronic document processing as transformations between different rep-
resentations of documents. Such representations may be seen on the computer screen for
creating, updating or browsing the content, or on paper representing a specific form for
a document. It can aso be an interna representation in a computer memory. Similarly,
various representations are externa representations for storing documents or exchanging

1 Thiswork was done during the author’s stay in the University of Waterloo in Canada.

CCC 0894-3982/1995/040319-23 Received 4 December 1995
[1191995 by John Wiley & Sons, Ltd. Revised 22 July 1996

320 E. KUIKKA AND M. PENTTONEN

documents between different environments. A document processing system must work be-
tween all the different representations. In thiswork all these representations are considered
as trees and transformations are methods where one can change one tree to another.

Changes which do not modify the hierarchic structure of documents are in the litera
ture often called representation maodifications. In such transformations only the layout of a
document is changed. Changes of hierarchic structures of documents can be of two types
[1]. In dynamic modifications, the structure of a document instance is modified without
any change in its structure definition. Typicaly, dynamic transformations happen when
a structured document is edited in an interactive text processing system [2,3]. In static
modifications, the structure definition of a document has been modified and document
instances according to an old definition should be changed according to a new definition.
Static transformations are needed in situations when the structure definition is no longer
valid or it needsto be devel oped, for some reason. Dynamic transformati ons consider parts
of single documents. Static transformations are usually applied to the whole document.
Representation modifications are typical in both cases. We consider static transformations
and apply them to changes of the structure and representation.

There are many systems and languagesthat carry out transformati ons between different
representations of structured documents to be found in the literature. Some of them use
document structure definitions to define the transformation [1, 4—7] others use actua
document structures [8-11]. There are aso trandators available for representations of
particular formatters and/or text processing systems (some are described in [12]). On the
other hand, before structure transformations have been studied concerning documents, the
same problem has been solved, for exampl e, in syntax-directed programming environments
[13-15] and in databases [16], nowadays especialy in object-oriented databases [17-20].

Trees are very common data structures in many applications and techniques. Tree
transformations are defined in theoriesfor graphs, trees and terms and their languages[21—
26], in theresearch of tree pattern matching and replacement methodsin many application
areas [27-29] aswell asintree editors[30]. The aim of thiswork wasto select or develop
tree transformation methods which have the following features:

1. definitionsfor trand ations can be made either automatically from the structure defi-
nitionsfor trees or at least interactively with the help of the user,

2. trandators can be generated automatically from the definition of atrandation,

3. trandators are applied to parse trees for one grammar and produce parse trees for
another grammar accompanied by its grammar, and

4. trandationsare automatic or at least interactive needing help from the user.

Methodswill be applied to documents represented as trees. Thus, first, instead of trying to
build special software for each framework for transformations we would like to find some
typical differences which occur between tree-structured document representations. And,
second, instead of using ad-hoc implementations for different types of transformations,
we will study the possibility of tree transformation methods to manage various types of
differences.

Therest of the paper is organized as follows. The next section presents a cl assification
for the differences in the structure methodology for trees. After that, the next two sec-
tions briefly describe transformation of documents in each difference class. The following
section presents our model for a transformation system which has facilities for various

TRANSFORMATION OF STRUCTURED DOCUMENTS 321

transformations. Subsequently, some similar works are compared to our model. The last
section of the paper presents our conclusions.

A CLASSIFICATION OF DIFFERENCESBETWEEN TREES

This section presents a set of categories to classify structure differences in a pair of
trees. However, before formally defining different classes, we first briefly describe an
example concerning differences in document representations and then provide a set of
basi ¢ definitions concerning trees.

Example: Manuscript stylesin scientific journals

In order to identify differences between various document representations, we anayzed a
situation where authors have written an e ectronic document, or a set of documents, using
a specific form and where they would later need them in one or severd different forms. In
theideal situation, the author could change automatically the el ectronic representation to a
new one. We considered manuscript styles of articlesin eight scientific journalsinthefield
of Computer Science. Scientific journalsgive usualy very detailed rulesfor thelayout and
structure concerning submitted papers. We chose the foll owing Computer Science journals:

ACM Transactions of Information Systems;

Journal of American Society of Information Science;

The Computer Journal;

Communications of the ACM;

Journal of Computer and System Sciences;

Information Systems;

Electronic Publishing - Origination, Dissemination and Design; and
SOFTWARE - Practice and Experience.

Although the journals have been selected from asingle field, our study revealed that there
are many differences. Some of them concern specific partsof texts(fonts, letter types, order
and existence of elements), characters between text elements (spacing and various kinds of
separators of the content el ements, and codes for the layout), and whole structures of texts
(such as places of footnotes, figures, tables, etc.). Sinceformats of scientific articlesare not
usually dependent on the subject, but rather the whims of the publisher we are sure that no
other differences would have been observed if journalsfrom different disciplines had been
chosen. A detailed representation of the comparison of journa stylesisfoundin the earlier
version of this paper [31]. In this paper we describe only some examples.

Preliminary definitions

We consider documents that have a treelike structure. A tree is a collection of eements
called nodes, one of which is distinguished as the root, along with arelation that places a
hierarchica structure on the nodes [32]. A pair of nodes (a,b) in the relation is called an
edge and it issaid to leave node a and enter node b. For atreeit istrue:

1. A singlenode by itself isatree, being the root of thetree.

322 E. KUIKKA AND M. PENTTONEN

2. Letnbeanodeand Ty, To, . . ., Tk treeswithrootsng, ny, . . ., N, respectively. A new
tree is constructed by making n to be the parent of nodes

ni, Np, ... ,Nk. In thistree, n is the root and Ty, To, ... ,Tx are the subtrees of
theroot. Nodes ng, ny, . .. ,nk are caled the children of the node n.
If n1, N, ... Nk IS asequence of nodes in atree such that n; is the parent of nj 1 for

1 <i < k— 1, then the sequence is called a path from node n; to node ny. Node n; is a
predecessor of node n; and node n; is a successor of noden; for 1 < i < j < k. A child
of node nisadirect successor of n and the parent of node n is the direct predecessor of
node n. A node with no direct successors is called a |eaf, nodes with direct successors are
internal nodes. The depth of a nodein atree isthe length of the path from the root to the
node. The depth of the tree is the length of the longest path.

Inan ordered tree, children of internal nodes are ordered from I eft toright. A child node
has sistersto itsleft and toitsright. In alabelled tree, nodes have labels.

Let T beatreeand n aninternal nodein T. A parttree PT rooted at node n is a subtree
of T whoseroot isn, or asubtree of T whoseroot isn and from which one or more subtrees
are replaced by their roots. If one child of an internal node n isin a part-tree then also all
other children of node n are in the part-tree.

A local part-tree is a part-tree whose number of nodesis bounded by asmall constant.
A loca part-tree cannot be very wide or very deep. A part-treeisconsidered global if itis
not local.

Basesfor theclassification

The main question in the transformation from one tree to another iswhat kind of modifica-
tions should be made to which parts of atree and how. Dissimilarities of two trees may be
measured by the distance from one treeto another tree defined as aminimum cost sequence
of edit operations (for example, change place, delete or insert one node) needed to effect the
transformation [33]. A classification of differencesin two trees using different values of the
distance, however, does not support our declarative approach in document transformations.
Itis based on how atransformation should be carried out, rather than describing where the
differenceisand what typeitis.

We will base our classification of differences between two trees on a pair of parttrees
determining nodes which specify the difference and the nature of the difference between
nodes. Thiskind of classification has arelation to the selection of transformation methods.
The greater the number of nodes under consideration in a single trand ation step, the more
complex the difference will be and the more information for the definition and control of
the transformation is needed. The fundamenta assumption for classifying differences in
trees isthat the association between the nodes of two trees under consideration is given.

Definition 1.

An association is amapping h from a subset of nodes of atree T to a subset of the
nodes of atree T’ such that if uisasuccessor of vthen h(u) isasuccessor of h(v).

Definition 2.

An associationistotal if itsdomain isthe set of internal nodes of atree T and itsrange
isthe set of internal nodes of atree T'.

TRANSFORMATION OF STRUCTURED DOCUMENTS 323

c -
E F -G H E F ,G' C H’
T T B e T P S
e o f g h e“ s f "‘g, c h
Figurel.

Definition 3.

An association keeps the structure between trees T and T’ if there is an association h
between their internal nodes such that

(i) hisbijection between internal nodes of T and T’, and
(ii) whenever wu,...,u, are interna children of v from left to right, then
h(u1), . ..,h(uy) areinterna children of h(v) from left to right.

The total association h which keeps the structure defines an isomorphism between
internal nodes of trees T and T’; thus, it defines that internal structures of trees are identical
except for labels.

Definition 4.

An association is local if there are constants ¢ and ¢’ such that whenever nodes in a
part-tree PT of atree T with a most ¢ nodes are mapped, the associated nodes are in a
part-tree PT’ of atree T' withat most ¢’ nodes. Part-Trees PT and PT’ are called associated
part-trees. An association isbasicif it isloca and depths of associated part-trees are equal
to one.

Inthefollowingtrees, |abelsof interna nodesare written by upper case lettersand |abel s
of leaves by lower case |etters. The association is denoted by dotted linesbetween internals
nodes and by identical |abels between leaves. The association defines, for example, that
nodeswiththelabels A and A’ are associated and are rootsof trees. Nodeswhoselabels are
written in the bold font and edges between them present a pair of associated local parttrees
of these trees. The association between them defines alocal association between trees; itis
total but does not keep the structure.

1) Simpledifferences: same structure, differences in leaves
Example 1.

The following bibliographic references for abook are presented according to the rules
from two journas: Journal of Computer and System Sciences, and Information Systems.

324 E. KUIKKA AND M. PENTTONEN

Journal of Computer and System Sciences: | Information Systems:

1. A. V. AHO, AND J. D. ULL- 1. A. V. Aho and J D. Ullman.
MAN, "The Theory of Parsing, The Theory of Parsing, Tranda-
Trandation and Compiling, Vol. I: tion and Compiling, Vol. I: Pars-
Parsing", Prentice-Hall, Inc., Engle- ing. Prentice-Hall, Inc., Englewood
wood Cliffs, N. J., 1972. Cliffs, N. J. (1972).

Figure 2.

The elements of both of these references are the reference number, the names of authors,
the title of the book, the publishing company and its address, and the publishing year.
Their orders are the same, but their layouts differ. Differences are in character strings that
separate elements of the actual content (such as spaces, commas, periods, double quotes
and parenthesis) and in the fonts (the title of the book).

Definition 5.

Two treeshave no structure differenceif thereisatotal association between treeswhich
keeps the structure.

In the following trees the association h is denoted by dotted lines for internal nodes
and using the identical letters for labels of leaves. Hence, there is no structure difference
between trees. Differences arein leaves.

2) Local differences

a) Order difference

Example 2.

The following bibliographicinformation for a conference article reference is made accord-
ingto therulesfor amanuscript for two journas: Communicationsof the ACM, and Journal
of Computer and System Sciences.

The el ementsinthesereferences (reference number, names of the authorsconsistinginitias
and the last name, thetitleof the article, the name of the conference proceedings, the place
and time of the conference, and page numbers of the article in the proceedings) are the
same, there are however differencesin their order. The last name and initials of the authors
and, similarly, thetime and the place of the conference are in the reverse order. In addition,
there are font and separator differences.

Definition 6.

Two trees have an order difference if there is a total association between trees that
doesnot keep the structure. Order differences are determined by local associations between
nodes of trees.

In the following trees, the association is denoted by dotted lines for internal nodes and
using the same letters for labels of leaves. In both figures, a pair of associated local part-

TRANSFORMATION OF STRUCTURED DOCUMENTS

Figure 3.

Communications of the ACM

1. Franchi-Zannettacci, P, and Arnon,
D. S. Context-sensitive semantics
as a basis for processing structured
documents.

In WOODMAN'89, Wobrkshop on
Object-Oriented Document Manip-
ulation (Rennes, France) 1989, pp.

Journal of Computer and System Sciences:

1P FRANCHI-ZANNETTAC-
Cl, AND D. S. ARNON, Context-
sensitive semantics as a basis for
processing structured documents,
in "WOODMAN'89, Workshop on
Object-Oriented Document Manip-
ulation, 1989", Rennes, France, pp.

135-146. 135-146.
Figure4.
@ (b)
A A’ A A
B c_\ D c B D B}»\I c F)xu”vB’ IFD’
R R e
b c d c b d b c EF b E o F
e e Cc f
Figureb.

trees contains nodes whose labels are written by the bold font. In (8), the local association
determining associated part-treesisbasic. In (b), thelocal association isnon-basic.

b) Existence difference

Example 3.

Figure 6 presents rules for the title page of two different scientific journals: The ACM
Transactionson Information Systems, and The Computer Journal . Therearemany structural

325

326 E. KUIKKA AND M. PENTTONEN

'SI'{/\; e,rAn(SZIE{Ir(;I;rSa)rjsactmns on Information The Computer Journal (CJ):
Title page

This should contain the following infor-
mation: the full and short title, and a
complete list of authors, their affiliations
and addresses. The correspondence au-
thor should be identified along with both
his’/her postal and e-mail addresses, and
telephone and fax numbers.

Titleand Abstract. Use aspecific and in-
formativetitle. Typically, atitlemight con-
tain Authors names should be given
without titles or degrees, along with the
name of the sponsoring organization. Cur-
rent mailing addresses, including email ad-
dresses, should be given in afootnote.

Figure6.
(a) (b)
IR VANEE SN f T AN
b cE F ° e F bc e e o F
| o
e f e f e c f
Figure7.

differences between representations according to these rules. TOIS has a footnote which
is missing from CJ. On the other hand, CJ requires a short title which TOIS does not. In
TOIS, the author’s information after the title consists of the name of the author and the
name of the university or acompany, the detailed addressisin the footnote. In CJ, aso the
name of the department of the university or company is required. Further, in CJ only one
author has a detailed mailing address which contains a so telephone and fax numbers.

Definition 6.

Two trees have an existence differenceif there isan associ ation which isnot total . Existence
differences are determined by local associations between nodes of trees.

In the trees in Figure 7, the association is denoted by dotted lines between internal
nodes and using the same labels for leaves. In both trees, a pair of associated local part-
trees contains nodes whose label s are written by the bold font. In (), associated part-trees

TRANSFORMATION OF STRUCTURED DOCUMENTS 327

Journal of Computer and System Sciences

(JCS9): The Computer Journal (CJ):

Footnotesintext shouldbeavoidedif atal | Footnotes Footnotes to the main text are
possible. If they must be used, identified by | acceptable and should be identified by
superscript numbers and type together on | superscripted numbers. Footnotes should
a separate page, double- or triple-spaced. | appear on the page of citation.

Figure8.

with existence difference are determined by abasic association. In (b), the associations are
non-basic.

Global differencesin the structure
Example 4.

Therulesfor footnotesin two journas, Journal of Computer and System Sciences, and
The Computer Journal, are as follows.
JCSSrequiresthat footnotesbe placed inalist at the end of the manuscript. In amanuscript
for CJ, footnotes are among other elements inside the text. Otherwise, footnotes are repre-
sented similarly.

Definition 7.

Two trees have a global difference if the association does not keep the structure, and
there are no local associations.

In thefollowingtrees nodeslabelled by C and C' are associated nodeswhich arelocated
invery different placesin these two trees. Associated part-trees contain nodes whoselabels
are written in the bold font and in addition, in the worst possible case, all the nodes from
subtrees which are denotated by triangles. In this case, part-trees are "large’” meaning that
the numbers of nodes of part-trees are not bounded by small given constants.

In addition to the situation presented in Example 4, large associated part-trees arise
also, if trees are represented using very different structures, meaning that, in the worst case
only leaves of trees can be associated.

TREE TRANSFORMATION METHODS

There are many transformation methods suitable for trees to be found in the literature.
This section presents brief descriptions of four different methods potentially useful for our
purposes. syntax-directed trandation, tree transducer, pattern matching and replacement
methods, and manua methods. The syntax-directed trand ation requiresthat trees are parse
trees for context-free grammars and transformation definitions specify syntactic structures
of trees. Other methods are applied to |abelled trees and use structural information of tree
instances. They do not require structure definitionsfor the trees. Further, rules of a syntax-
directed trandation and tree transducer contain implicit mechanisms to locate places for
changesin trees. In other methods, the user must specify the application order of rules.

328 E. KUIKKA AND M. PENTTONEN

Figure9.

Syntax-directed translation

Beforerepresenting the definition of syntax-directed trandlation, wewill define context-free
grammar, derivation and parse tree, concepts which are the basis of the method.

Context-free grammar, derivation and parse tree

A context-free grammar [21] consists of afinite set of non-terminals, one of them being a
distinguished non-termina called a start symbol, a finite set of terminas, and afinite set
of productionsin theform A — «, where A isanon-terminal and « is a sequence of non-
terminals and terminals. A context-free grammar defines aformal language by specifying
the symbols that can be used and the ways these symbols can be combined in a legal
character string of the language. Such a string can be derived according to the grammar
from the start symbol. In derivation, a non-termina A in a sequence A5 (o and /5 are
sequences of non-terminalsand terminals) isreplaced by a sequence on the right-hand side
of aproduction A — ~ to generate a new sequence 5. If in each step the derivation is
applied to thefirst non-terminal from the left, the derivation is called aleftmost derivation.
Parse trees for a context-free grammar G are defined as follows:

1. Theroot isanodelabelled by the start symbol of G.
2. If anodeislabelled by a non-terminal A then its children from the left are labelled
by a1, ... ,ak, where A — «1 ... g iSaproduction of G.

The parse tree defines a graphical representation of an equivalence class of derivationsfor
a context-free grammar.

Syntax-directed translation method

Asamethod for compilersappliedtoformal languages, asyntax-directed trandation (SDT)
[21,22] combines asyntax analysis according to agrammar and code generation according

TRANSFORMATION OF STRUCTURED DOCUMENTS 329

to a second grammar. A transformation is defined by a schema comprising of a finite set
of non-terminals, one of which isa start symbol, afinite set of input terminals, afinite set
of output terminals, and a set of rules defining an input form and an output form for each
non-termina of the schema. For example, in the following rule for a non-terminal S,

S— ABb,BAb,

A and B are non-terminals and b is aterminal. The first part of the right side of the rule
defines the input form and the second part the output form. In arule, for each non-terminal
of the input form, one will find associated an identical non-terminal of the output form. If
anon-terminal occurs only once the association isobvious. If the same non-terminal exists
more than once, then integer superscripts are associated with different occurrences of the
same non-terminal name to indicate the associations.

An SDT schema has an input grammar and an output grammar. In a production of the
input grammar, the right side of the production for the left side non-terminal of the SDT
schema s the input form. The output form, contai ning the same non-terminal s as the input
form, istheright side of a production for the same non-terminal in the output grammar. For
the above SDTSrule, the production of theinput grammar isS — ABb and the production
of the output grammar isS— BADb.

In syntax-directed translation schema (SDTS) rules, the non-terminals in the output
form are apermutation of the non-terminal sintheinput form. An SDTSdefinestrand ations
from a parse tree for an input grammar to a parse tree for an output grammar reordering
non-termina children of a node and changing terminal children. In simple syntax-directed
trand ation schema (SSDTS) rules, associated non-terminasin the input and output forms
must be in the same order. An SSDTS defines transformations which only allow one to
change the terminal children of a node.

The syntax-directed translation schema can be formed automatically from two gram-
mars whose productions are paired and in each pair of productions, all non-terminas are
associated. Aho and Ullman [21] provide an agorithm for the automatic transformation
of a parse tree viaan SDTS. The algorithm processes a parse tree from the root to leaves
using the depth-first traversal of nodes of a modified tree. Each trandation step is applied
to a node and al its children. It removes al input termina children of a node, reorders
associated non-terminal children, and adds new output termina children. An agorithm
which usesan SSDTS can be employed in asimilar way.

Another way to implement syntax-directed trand ationsisto use the Szilard-word of the
context-free grammar [34]. For a grammar whose productions are associated with labels,
the Szilard word is a sequence of labels for a derivation according to the grammar. The
tree transformation via Szilard word forms the leftmost Szilard word corresponding to the
leftmost derivation for the input tree, maps the labels in the Szilard word to production
label sfor the output grammar and generates the output tree according to the mapped 1abels.

Treetransducer

A tree transducer [25,24] isatree automaton with output that replaces afinitelabelled tree
with another finitelabelled tree so that every transition rule of the transducer is defined for
an occurrence of asubtreein theinput tree, and astate of thetransducer. A treetransducer is
adescending tree transducer if it readstreesfrom theroot towardstheleaves. An ascending

330 E. KUIKKA AND M. PENTTONEN

tree transducer processes trees from the |eaves towards the root.

In thetransition rule of atree transducer, an occurrence of a subtreein theinput treeis
defined by an input pattern and an occurrence of the replacing subtree for the output tree by
an output pattern. In the descending tree transducer, the input pattern consists of the label
of an internal node in an input tree associated with a state of the transducer, and variables
for all subtrees of the node. The output pattern consists of labels of internal and leaf nodes
in the output tree, and combinations which are formed from a state of a transducer and a
variablein theinput pattern. A transition rule, which is used to relabel internal nodes may
take theform

aS(X1, Xz, - - - Xn) — R(PX1,PX2,-PXn) (@D}

where g and p are states of a tree transducer, Sand R labels for the internal nodes, and
X1,%2, . - . X Variables corresponding to subtrees of a node labelled by S. The rule can be
applied to the occurrence of a subtree whose root nodeis labelled by Sand associated with
the state g. It produces a subtree where the root is labelled by R and roots of subtrees of
R are associated with the state p and labelled by |abels of roots of subtrees corresponding
to variables x3 ,%z,....%n . If theinput and output patterns are specified as syntactic structures
of trees and expressed with the use of the semantics for labels of the trees defined by
grammars, tree transducers can be applied to parse trees.
In astronger form of atree transducer, rules are of the form

q(t(Xe, - - - Xn)) — V' (PoyL, - - - .Pmym), 2

wheret and t' are terms with variablesin leaves. In this generdization, thetermst and t/
can be of arbitrary depth, and the states py, . . . ,pm need not be equal. The set {1, ... ,Ym}
of variablesis not necessarily the same as {x, . . . X, }. Either each y; is some of variables
{X1,. .. X} or therecan be new variablesamong yi, . . . ,ym. In thelatter case, the new vari-
ables remain unknown in the transformation. Another way to increase the transformational
capability of tree transducersisto consider the context of an internal node of the input tree
in the input patterns. This approach was used in various tree transducers introduced, for
example, in [35-38].

Tree pattern matching/replacement methods

Transformations with the use of a tree pattern matching and a tree replacement consist of
three steps according to [28]. The first stage, pattern matching, is the process of locating
substructuresin alarger structure by comparing them to a given form of a pattern. The sec-
ond stage isthe process of deciding between different replacements. The third step, pattern
replacement, is a process that takes one substructure and replaces it with a new one. Lan-
guages for tree pattern matching/repl acement methods specify atree-to-treetransformation
as sets of

pattern { replacenent }

rules.

The tree pattern matching/replacement methods may beimplemented in many ways. If
the pattern is defined using syntactica structures, the transformationsmay beimplemented
with methods such as syntax-directed transl ation, tree transducer and term rewriting system

TRANSFORMATION OF STRUCTURED DOCUMENTS 331

[26]. A term rewriting system defines the pattern for matching and replacement as terms
inasimilar way as atree transducer, but has no states to define where to apply arule. The
syntax-directed trandation approach is aso used in the method presented in [27] which
specifies trangition rules using a paired sets of productions of grammar for the input and
output patterns. Algorithms for the tree pattern matching problem presented in [28] are
mainly extensions to string pattern matching algorithms. Whereas, agorithmsin [29] are
based on a tree inclusion. Pattern matching is also an essentia part of query languages
for structured text [39]. Usually efficient pattern matching methods require some kind of
pre-processing for patterns and/or for input trees providing additional information (tables,
indices).

Manual transformations

In manual transformations, the user modifiesindividual trees and defines both the rulesand
the control flow for transformation. Only the environment (a specification language or an
editor) can be offered as atool for the user.

Asafilter we understand a sequence of filtering operationswhose executionismanually
controlled. The transformation is implemented usualy by a programme which is made
either by acommon or by a specia programming language [8-10, 23]. The transformation
is specified as a set of

pattern { action }

rules. Transformations implemented by filter programmes are often employed for specific
tasks.

An interactive tree editor, for example such as in [30], allows the user to make mod-
ifications in any single part of atree. The editor represents a tree on the screen and the
user modifies the tree with the use of editor commands or a mouse. This permits any
modifications, but thereis no way to carry out similar modificationsto al trees of onetype.

METHODS FOR VARIOUS TYPES OF DIFFERENCESIN DOCUMENTS

Because in this work we want to apply methods described in the previous section to
structured documents, our requirement isthat the method takes asitsinput aparsetreefor a
grammar and produces a parse tree for another grammar, accompanied by the grammar. In
the following subsections, for each difference class we describe severa methods whichin
various situations are capabl e of making the required modifications. Our aim isto describe
thetransformation capabilitiesof themethodsin general athoughwehave notimplemented
all of them yet. Since documents are assumed to be grammartical, internal nodes are called
non-terminal nodes and |eaves are called terminals nodes.

Transformationsthat keep structure

A simple syntax-directed trandation schema (SSDTS) can be used to define tree trans-
formations which only delete existing terminal nodes and add new ones. Terminals are
character stringswhich are the same for al documents defined by agrammar, and therefore
may be deleted or added without losing information. Other nodes in a parse tree, either

332 E. KUIKKA AND M. PENTTONEN

defining the structure of a document or containing the actual content text, are considered
to remain unchanged.

All the information needed for the transformation of a parse tree, in order to change
terminals, is contained in an SSDTS which can be created automatically from the input
and output grammars. An output grammar, if one does not exist, is made from an input
grammar by an editor which permits only the modifications of terminals. This guarantees
that structures of documents remain the same in a transformation. An automatic batch-
oriented transformation programme can be made either according to the algorithm in
[21], the algorithm which uses Szilard words, or by making a compiler which compiles
a transformation programme automatically from an SSDTS as we implemented in [40].
Our purpose in [40] was to generate various layouts from an interna representation of a
structured document in a syntax-directed text processing system. Generated programmes
transform document instances automatically. The SSDTS can also be used interactively to
execute incremental transformationsin the input phase of structured texts. As described in
[40], we used an SSDTS also to implement the interactive input of structured documents
in a syntax-directed text processing system. The input tree is created on the computer
screen from the pieces of text written by the user according to an input grammar. An
interna representation is transformed from this according to an SSDTS. The automatic
transformation via SSDTS is well defined, the difficultiesin applying it to documents are
in the definitions of grammars.

A parse tree for a document can aso be represented as a character string that uses
tags interleaved with the content to mark the structure. The tags are terminas of the
grammar for the string representation and correspond to terminal nodesin aparsetree. The
transformation to change tags to other tags can be implemented by a filter programme if
there is a string homomorphism [21] between tags on the input and output representation.
In this case, the automatic filter programme only substitutes terminals for new terminals.

Transformationsfor local order differences

a) Order differences determined by basic associations

A syntax-directed trandation schema (SDTS) offers a method to reorder non-terminal
children (with their denominated subtrees) of associated non-terminal nodes. The automatic
implementation of transformations managing thiskind of order differences can be achieved
similarly asdescribed for the SSDT inthe previoussubsection. If one hasan editor to create
an output grammar from an input grammar, the user is permited to move non-terminalsin
theright side of agrammar production, but not to deletethem. Asan SSDTS, also an SDTS
can define aso transformations for terminal differences if needed. Our implementation of
the transformation of structured documents described in [41] suitsalso for transformations
viaan SDTS.

An SDT isbased on syntactic structuresof trees. It can processalist of unknown number
of nodes labelled by the same non-terminal only in sequential order and it cannot locate
some particular nodesinthelist. If reordering or recognition of non-terminal nodesinsuch a
list isneeded transformation must be implemented using tree pattern matching/repl acement
methods which permit the user to locate nodes according to the order or content. In the
tree pattern matching/replacement methods, patterns are described by the language of the
selected method. Only in restricted cases, structure grammars may be used to help the user

TRANSFORMATION OF STRUCTURED DOCUMENTS 333

to generate patterns (check relations or give warnings), not to define them. The user is
responsible for the order in which the rules are applied in the input tree. If the control of
the transformation is not defined, rules are applied to a parse tree of adocument as long as
there are matching structures.

b) Order differences determined by non-basic associations

A descending tree transducer allows local moving of non-terminal nodes from a place
to another. If transition rules are represented in the form represented in Equation (2) on
page 330, it permits to move non-terminal nodes from a hierarchy level to another, and
in addition, to rename labels of non-terminal nodes and delete or insert terminal nodes.
This kind of descending tree transducer can be used used to parse trees of document
representations to employ modifications (including order differences) which concern more
than one, however bounded number of hierarchy levels. In order to guaranteethat structures
of documents obey the grammars of the old and the new structure, an interactive editor
to help the user to generate transition rules would be needed to represent two subsets of
grammar productions as two trees, to alow the user to specify associations between their
leaves, and then to form two terms from these trees to correspond to the input and output
pattern of arule. It remains however open, how the construction of atree transducer can be
automatized. In thiswork, we made transformation rules manually and the transformation
programme was compiled automatically from these rules.

Tree pattern matching/replacement methods alow the recognition of any kind of local
structuresin document instances according to their structure and content, and replace them
with new instances. These methods should be used if the order difference is not defined
according to syntactic structures between non-terminal nodes.

Transformationsfor local existence differences
Existence differences determined by basic associations

In the simplest case, an existence difference means that a deletion of a node as a child
of another non-terminal node deletes its subtrees as well and an insertion of such a node
adds an atomic non-terminal node, without any subtrees. The modificationin each step of a
transformation concerns only a non-terminal node and its children. In [41] we describe an
extended syntax-directed translation schema (ESDTS) as a natural extension to an SDTS
for these kinds of changes. The difference compared with the SDTS is that an ESDTS
does not require that al the productions of input and output grammars are paired and
that al the non-terminasin input and output forms are associated. Tree transformations
viaan ESDTS can reorder, add and delete non-terminal children with their denominated
subtrees and change terminal children of anon-terminal node. Adding a non-terminal child
however, means only adding a new non-termina node as a non-terminal leaf. The user
will subsequently generate its subtrees according to the output grammar. An ESDTS can be
formed from productionsof input and output grammars[31]. An editor can beimplemented
to help the user to create an output grammar from an input grammar. For a non-associated
production, either the input form or the output form is an empty string. Our agorithm
for a tree transformation via an ESDTS [31] is a modification from the corresponding
SDTS algorithm [21]. A single step of the agorithm cuts input termina children and
non-associated non-terminal children (and their subtrees) from the input tree, reorders the

334 E. KUIKKA AND M. PENTTONEN

associated non-terminal children and their denominated subtrees, and adds nodes |abelled
by output terminals as terminal |eaves and nodes labelled by non-associated output non-
terminals as non-terminal leaves. The automatic, batch-oriented transformation using an
ESDTS can be implemented by a programme for using our algorithm mentioned above, or
by making a compiler which automatically generates the transformation programme from
an ESDTS as we employed in [41].

Example 5. Local transformationvia ESDTS

The examples of manuscript styles in the second section of the paper presented structure
differences in manuscripts of eight scientific journas. Transformations of the manuscript
of this paper written using our structure for an article to the required structures of al of
these journas would entail structure and layout modifications. In order to test our ideas
of structure transformations, we defined grammars for structures of the front part and the
bibliographies of manuscripts and implemented the transformations from the structure of
our manuscript to the structures requested by these journals.

An ESDTS was sufficient to define the transformation to the format of The Computer
Journal and Software — Practice and Experience journas. The differences were only in
order or existence of non-terminalson theright sides of grammar productions, for example,
amissing short title, postal address, tel ephone and fax number, and different places for the
publishing year of a bibliographic reference.

b) Existence differences determined by non-basic associations

In addition to modifications needed for order differences and mentioned earlier, a descend-
ing tree transducer allowsonelocally to add, delete and duplicate non-terminal nodes (with
or without their denominated subtree?s). Subtrees of adel eted node can be del eted or moved
to be subtrees of other nodes. An inserted node can bewithout subtrees or subtreesfor it can
be moved or copied from subtrees of other nodes. In thiswork we used the implementation
based on syntactic structures of parse trees as described for order differences.

Example 6. Local transformation via tree transducer

We consider the situation described in the Example 5.

A descending tree transducer was used to carry out transformations for Journal of
American Society of Information Science (JASIS), Communication of the ACM (CACM),
Journal of Computer and System Science (JCSS), Information Science (1S) and Electronic
Publishing- Origination, Disseminationand Design (EPODD) journas. Thetreetransducer
was used because associated non-terminals exist in different grammar productions (for
example, authors names and affiliations, information in footnotes, and first page number
in a bibliographic reference) and input and output patterns correspond trees whose depths
are greater than one. Actualy, transformations of the bibliography to JASIS, JCSS, IS
and EPODD could have been implemented with the use of an ESDTS. Their structure
differences were restricted to non-terminals on the right side of the productions.

Tree pattern matching/replacement methods, allowing the recognition of any kind of
local structures in document instances according to their structure and content, must be

TRANSFORMATION OF STRUCTURED DOCUMENTS 335

used in local transformationsto add, del ete or duplicate nodes not recognized by syntactic
structure definitions.

A transformation needsafilter programme, if operationsappliedto elementsare needed,
for example, if an element must be replaced with several elementsby parsingit, or if several
elements should be replaced with one element by unparsing them. The user is responsible
for the definition of the location of the elements and writing of the required procedures.

Example 7. Local transformationvia filters

We consider the same situation as described in Example 5.

The transformation for The ACM Transactions of Information Systems
(ACMTOIS) journa would have needed a filter programme because the transformation
should have had to parse names of authors in our manuscript to the initials and the last
names of the authors when names were copied to the author information part at the end of
amanuscript for ACMTOIS. Since we have not yet implemented filter-based transforma-
tionsin our prototype, we made the transformation with the use of atree transducer. The
transformation generated new atomic elements for the initials and for the last name of an
author. The user should add the content later.

3) Transformationsfor global differences

The transformation between structured documents having global differencesin their struc-
turesrequires either that one reorder elements, delete or insert aset of elements, and move
or copy elements or aset of e ements from one placeto another if theold and new locations
of associated elements are not situated insidelocal parts of atrees.

Filter programmes and tree editors allow modifications that are not restricted to some
local parts of parse trees and can be used in the above kinds of transformations. For
document transformations, the tree pattern matching in afilter programme should be based
ontheintegration of the structureand content aswell asinthe order or quantity of eements.
The filter must be able to save structures temporarily and replace them later, and process
a document more than once. In a tree editor, it should be possible to spread an executed
single modification in atree to all similar structures, thus, taking care of the cases where
the same elements have the same structure in a document.

The globa modification may be employed in some cases also by loca methods (an
SDTS, an ESDTS, atree transducer, or tree pattern matching/replacement methods) if the
modification can be processed incrementally applying the methods sequentially so that the
output of a previoustransformation isthe input of the next transformation.

Globa transformations are aways made under the control of the user only. Either
the user edits each single document separately, writes a filter programme which achieves
the transformation in its entirety, or creates grammars or transformation rules for the
incremental steps of thetransformation. If thereisan output grammar, the methods should
check that the modified document is valid according to the grammar. If the user does not
have an output grammar, the transformation system should use methods that can generate
the grammar of atransformed document [42].

336 E. KUIKKA AND M. PENTTONEN

Skeleton grammar

Gl
Sereen : Printer representation
representation v / 6L,
Clg \ SYNDOC
. Representationof __ . | | o Representation of
Pa?%ertg’f pasetreeforGL | TRANSDOC [~ T parsetreefor G2
)
e LaTeX representation
Tagged string P . Gl|a
representation .
Gl
S SGML representation
G1
g
- automatic translation
,,,,, -~ (semi)automatic translation
,,,,,,,,, . data flow

Figure 10. A model for a document transformation system

MODEL FOR A DOCUMENT TRANSFORMATION SYSTEM

In the previous sections, methods suitable for different kinds of document transformations
were characterized. Aswe saw, if the hierarchical structure of adocument isnot changed or
if only reordering of subelements of an element is needed, the transformation can be made
automatically. Otherwise, transformations can be managed automatically only in specific
cases which, however, may need the user’shelp to define the transformation rules.

Our model for a document transformation system separates transformations that are
simple and easy to automatize from transformationsthat need more sophisticated methods.
Wedividethesystemintotwotools(Figurel). Thefirst tool allowsonly transformationsthat
do not change the structure and the second one makes transformations from one structure
to another. In the first tool, document editing and transformations that keep structure are
possible. The second tool has a set of available methods for structure modifications and
offers the possibility of analyzing differences between the definitions of an old and new
representation and use different methods according to the result of the analysis.

The first tool called SYNDOC [40], was originally planned as a tool for a SY Ntax-
directed DOCument processing system including inputting, editing and outputting. It con-
tains those transformations which produce representations for the user of the system. The
input, output, storage, import and export of a document in different forms need transfor-
mations in this group. The interna representation for documents in SYNDOC is a parse
tree for a context-free grammar in extended Backus-Naur Form [21] which defines the
hierarchical, logica structure of a document and contains only non-terminals. We call the
grammar skeleton grammar and it is not used, for example, to generate or parse a string
representation of aparse tree. Grammarsfor externa representationsare skeleton grammars
added by terminals. Whereas the internal representation is only for the use of the system,
externa representationsare thosethat are generated for the user. With thistool, transforma-
tions are always between the internal representation and an external representation. They
are defined automatically from the grammars for the input and output representations and
are executed automatically or semi-automatically. Figure 10 describes those transforma-
tionsthat are automatic with solid arrows and those transformations which may need help

TRANSFORMATION OF STRUCTURED DOCUMENTS 337

from the user with dashed arrows. User’s help is needed if the input representation of the
transformation contains ambiguous notations for the structure of a document (for reasons
stated in [5]). Dotted arrows describe data flows.

The second tool called TRANSDOC, TRANSation system for DOCuments, manages
transformations from a structure to another. The input of TRANSDOC is a representation
of aparsetreefor the skeleton grammar and the output i s arepresentation of aparsetreefor
the new skeleton grammar. The representation must define the parse tree unambiguoudly. It
can be atree representation of SYNDOC or a string representation of a parsetree produced
by SYNDOC or some other system and accepted by the methods of TRANSDOC. The
only assumptionin TRANSDOC isthat transformation methods create a representation for
one grammar from a representation to another grammar. Each available method contains
itsown toolsto help the user to define the transformation definitions. Methods are sel ected
in TRANSDOC based on the difference type between the input and output representation.
Hence, TRANSDOC needs methods to compare grammars or representations, to identify
differences existing in parse trees.

Inour earlier workswe have devel oped the prototypefor the SY NDOC [40]. Thesimple
syntax-directed trand ation schema is used for the syntax-directed input of documents and
for the generation of the outputs for documents. A grammar directs the syntax-directed
input. Different kinds of layout representations can be produced for the same structured
content using variousoutput grammars. The implementation of transformation methodsfor
TRANSDOC has started as a part of SYNDOC. The implementation of transformations
using an extended syntax-directed trandation schema is described in [41]. Rules for an
ESDTS were generated automatically using input and output grammars. A tree transducer
was implemented as described briefly in this paper and in detail in [31]. To obtain atree
transducer, transition rules were created manually using atext editor.

RELATED WORKS

In contrast to our system, many transformation methods for structured documents found
in the literature are intended for some specific task. The method developed by Brown
et al. [6] for documents defined by attribute grammars, or the method defined by the
standard for Document Style Semantics and Specification Language (DSSSL) [9] for
SGML documents employ transformations for the layout process of documents. Part of
the transformations defined in DSSSL may be used also in static transformations of SGML
documents. The methods developed by Furuta and Stotts [4] and Akpotsui and Quint [1]
and Scrimshaw language developed by Arnon [8] are suitable for static transformations
of documents defined by context-free grammars. GOEDEL language [10] may be used to
static transformationsfor structured documents which do not have a structure definition.

The systems and methods closest to our document transformation model are listed
below. The first two are mainly aimed for representation transformations, the second two
for static transformations.

The trand ation programme qwertz/FORMAT [43] is a software to change SGML [44]
representation of a document to representati ons contai ning some other markups (for exam-
ple, for IATEX and nroff/troff formatters). Transformations do not change the structures of
documents. Integrated Chameleon Architecture (ICA) [5] is the software environment to
generate trand ators for automatic modifications of documents' character string representa-
tionsfrom theform of atext formatter to the form of another formatter. Transformationsin

338 E. KUIKKA AND M. PENTTONEN

ICA mainly do not change the structure, but reordering of elements inside another el ement
ispossible, however. A transformation from one representation to another ismade using an
intermediate representation defined by SGML Document Type Definition [44] and repre-
sented as aparsetree and used only by the system. Grammars for document representations
are used to generate programmes for the transformation.

M ore complex structure modificationsare possiblein SIMON [7] and using the method
represented by Chibaand Kyojima[11]. SIMON, agrammar-based transformation system
for structured documents is suitable for transforming documents with local and global
differences. Documents are defined by attribute grammars and atransformation is defined
by a higher-order extended attribute grammar. Chiba and Kyojima used a syntax-directed
trand ation schemato define transformati onsbetween instances of different document types.
Similarly to us, they require that the input and output document have to have a structure
definition represented as a context-free grammar. Their method applies the syntax-directed
trand ation method to a specific string representation for atree. The syntax-directed trans-
lations schema is generated from two grammars for string representations for the input
and output document trees, respectively, not from grammars for logical structures of doc-
uments. This produces a system capabl e of achieving transformations between documents
with certainlocal differences, for example, transformationswhich need tolocalize members
of lists of the same elements. The additional power of SIMON and the method of Chiba
and Kyojima is however counterbalanced by the complexity in the way transformation
definitionsare crested.

CONCLUSION

Transformation of documents occurs very often when documents have to be reprocessed.
Thereuse of documents hasmadeit even moreimportant becausetoday’scomputer systems
contain a huge amount of informationin electronic form and via nets like the Internet they
are available worldwide. This information is represented in very many ways, more and
more often in a structured form. Automatic transformations of these many representations
are only possible if the system has some information about the documents that it has to
process. A structure defined by a grammar often contains sufficient information.

Thiswork has analysed the suitability of tree transformation methodsfor tree-structured
documents. Our goal was to model a document processing as transformations between all
different representationsfor documents. Structuresof documentsaredefined by context-free
grammars and different document representations are parse trees for their own grammars.
Transformations either change the structure of a document or leave it unchanged. A clas-
sification for differences in trees was defined to get a basis for the selection of the most
suitable method for each transformation. After brief descriptions of different tree trans-
formation methods, this paper described which methods could be used for each kind of
difference class and, finally, described amodel for asystem for structured documents based
on transformations.

In such a transformation system, methods like a simple syntax-directed trandation
schema, a syntax-directed trandation schema, an extended syntax-directed trandation
schema, a descending tree transducer, pattern matching/replacement methods, and a lan-
guage to generate tree pattern matching based filters as well as a tree editor, form a
powerful environment for making modificationsin documentswhose structures are defined
by context-free grammars. But instead of asking the user to select the method, according

TRANSFORMATION OF STRUCTURED DOCUMENTS 339

to our model, the most suitable method may be decided by the system. The translation
system is divided into two modules. The first module manages transformations which do
not changethe hierarchical structureof adocument and uses asimple syntax-directed trans-
lation method. The second module is used when structure modifications are needed and it
uses severa methods. Each method would contain its own tool sto generate transformation
programmes from the grammars of the different representations either automaticaly or
with help of the user. The transformations produce documents for a grammar, or at least
check the vaidity of a document against a grammar.

In this work we continued the implementation of this kind of a system as one part
of our prototype for a syntax-directed document processing system. The prototype itself
implements transformations when the structure is not changed. Current implementation of
the second module has started in the prototype and contains the main components for the
syntax-directed trand ation methods and a tree transducer. The development of a separate
document transformation system will be tackled in our future research. We will attempt
to extend the use of these novel methods to cover more complex differences as well as to
apply the model to SGML documents.

ACKNOWLEDGEMENTS

The authors would like to thank Magnus Steinby and Frank Tompa for their help and
comments during thiswork, and the referees whose comments significantly improved the
paper. The research was financed by the Academy of Finland and supported by grants
of the Saastamoinen Foundation and the Emil Aaltonen Foundation, which are gratefully
acknowl!edged.

REFERENCES

1. E. Akpotsui and V. Quint, ‘ Type transformations in structured editing systems’, in EP92, Pro-
ceedings of Electronic Publishing, 1992, eds., C. Vanoirbeek and G. Coray, 2741, Cambridge
University Press, Cambridge, (1992).

2. D.D.Cowan, EW. Mackie, G.M. Pianosi, and G. deV. Smit, ‘RITA - an editor and user interface
for manipulating structured documents’, Electronic Publishing - Origination, Disseminationand
Design, 4(3), 125-150, (1991).

3. C. Roisin and E. Akpotsui, ‘Implementating the Cut-and-Paste operation in structured editing
system’, in Second Workshop on Principles of Document Processing, PODP’ 94, (1994).

4. R. Furuta and PD. Stotts, ‘Specifying structured document transformations’, in Document
Manipulation and Typography, ed., J.C. van Vliet, 109-120, Cambridge University Press, Cam-
bridge, (1988).

5. S. Mamrak, C.S. O’ Connell, and J. Barnes, Integrated Chameleon Architecture, PTR Prentice
Hall, Englewood Cliffs, N.J., USA, 1994.

6. A.L.Brown Jr. and H.A. Blair, ‘A logic grammar foundation for document representation and
document layout’, in EP90, Proceedings of the International Conference on Electronic Pub-
lishing, Document Manipulation & Typography, ed., R. Furuta, 47-64, Cambridge University
Press, Cambridge, (1990).

7. A. Feng and T. Wakayama, ‘SIMON: A grammar-based transformation system for structured
documents’, Electronic Publishing - Origination, Dissemination and Design, 6(4), 361-372,
(1993).

8. D.S. Arnon, ‘Scrimshaw: A language for document queries and transformations’, Electronic
Publishing - Origination, Dissemination and Design, 6(4), 385-396, (1993).

9. I1SODIS 10179.2, Information technology - Text and office systems- Document Style Semantics
and Specification Language (DSSSL), 1994.

340 E. KUIKKA AND M. PENTTONEN

10. E. Blake, T. Bray, and F.W. Tompa, ‘ Shortening the OED: Experience with a grammar-defined
database’, ACM Transactions on Information Systems, 10(3), 213-232, (1992).

11. K.Chibaand M. Kyojima, ‘ Document transformation based on syntax-directedtree translation’,
Electronic Publishing - Origination, Dissemination and Design, 8(1), 15-29, (1995).

12. E. Kuikka and E. Nikunen, ‘Rakenteisten tekstien kasittelyjarjestelmista (Systems for struc-
tured documents)’, Technical Report A/1994/4 (in Finnish, English version avaible at WWW
addressht t p: / / www. cs. kuopi o. fi /™ kui kka/ syst ens. ht nl), University of Kuo-
pio, Department of Computer Science and Applied Mathematics, Finland, (1994).

13. A.N.Habermannand D.S. Notkin, ‘ Gandalf: Software development environments', IEEE Trans-
actions on Software Engineering, SE-12, 12, 1117-1127, (1986).

14. The Synthesizer Generator Reference Manual, eds., T.W. Reps and T. Teitelbaum, Springer-
Verlag, New York, USA, 19809.

15. D. Garlan, C.W. Krueger, and B.S. Lerner, ‘ TransformGem: Automating the maintenance of
structure-oriented environments’, ACM Transactionson Programming Languagesand Systems,
16(3), 727774, (1994).

16. J.P.Fry (Ed.), ‘ Conversiontechnology, an assessment’, ACM SIGBDP Data Base, 12& 13(4& 1),
39-61, (1981).

17. M. Ahlsen, A. Bjornestedt, S. Britts, C. Hulten, and L. Soderlund, ‘Making type changes
transparent’, Technical Report No. 22, University of Stockholm, SY SLAB, Sweden, (1984).

18. J.Banerjee, H.-J. Kim, W. Kim, and H.F. Korth, * Schemaevolution in object-oriented persistent
databases', ACM SIGMOD Record, 16(3), 311-321, (1987).

19. A. Borgida, ‘Language features for flexible handling of exceptions in information systems’,
ACM Transactionsof Data Base Systems, 10(4), 565-603, (1985).

20. A.H. Skarra and S.B. Zdonik, ‘Type evolution in an object-oriented database’, in Research
Directions in Object-Oriented Programming, eds., B. Shriver and P. Wegner, 393-416, The
MIT Press, Cambridge, Massachusetts, (1987).

21. A.V. Aho and J.D. Ullman, The theory of parsing, translation, and compiling, Vol. I: Parsing,
Prentice Hall, Inc., Englewood Cliffs, N.J., USA, 1972.

22. A.V.AhoandJ.D. Ullman, Thetheory of parsing, translation, and compiling, Vol. I1: Compiling,
Prentice Hall, Inc., Englewood Cliffs, N.J., USA, 1973.

23. JR. Cordy and I.H. Carmichel, ‘ The TXL programming language syntax and informal seman-
tics, version 7', Technical Report 93-355, Department of Computing and Information Science,
Queen’sUniversity at Kingston, Canada, (1993).

24. F. Gécsegand M. Steinby, Tree Automata, Académiai Kiadd, Budapest, 1984.

25. JW. Thatcher, ‘ Tree automata: An informal survey’, in Currentsin the Theory of Computing,
ed., A.V. Aho, 143-172, Prentice Hall, Inc., Englewood Cliffs, N.J., USA, (1973).

26. Term Graph Rewriting, Theory and Practice, eds., M.R. Sleep, M.J. Plasmeijer, and M.C.J.D.
van Eekelen, Wiley & Sons, Chichester, UK, 1993.

27. S.E. Keller, JA. Perkins, T.F. Payton, and S.P. Mardinly, ‘ Tree transformation techniques and
experiences’, SSGPLAN Notices, 19(6), 190-201, (1984).

28. C.M. Hoffman and M.J. O’Donnell, ‘Pattern matching in trees’, Journal of the ACM, 29(1),
68-95, (1982).

29. PKilpelédinenandH. Mannila, ‘ Thetreeinclusion problem’, in TAPSOFT’ 91, Proceedingsof the
International Conference on Theory and Practice of Software Development, Vol. 1: Colloquium
on Treesin Algebra and Programming (CAAP’91), eds., S. Abramsky and T.S.E. Maibaum, pp.
202-214. Springer-Verlag, Berlin, (1991). Lecture Notes in Computer Science No. 493.

30. P Desain, ‘Tree Doctor, a software package for graphical manipulation and animation of tree
structures’, in Human-Computer Interaction: Psychonomic Aspects, eds., G. van der Veer and
G. Mulds, 223-236, Springer Verlag, Heidelberg, (1988).

31. E. Kuikkaand M. Penttonen, ‘ Transformation of structured documents’, Technical Report CS-
95-46, University of Waterloo, Department of Computer Science, (1995).

32. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley,
Reading, Massachusetts, 1983.

33. K.-C. Tai, ‘The tree-to-tree correction problem’, Journal of the Association for Computing
Machinery, 26(3), 422-433, (1979).

34. A. Salomaa, Formal languages, Academic Press, NewYork, N.Y., USA, 1973.

TRANSFORMATION OF STRUCTURED DOCUMENTS 341

35.

36.

37.

38.

39.

40.

41.

42.

43.

J. Engelfriet, ' Top-down tree transducerswith regular look-ahead’, Mathematical Systems The-
ory, 10, 289-303, (1977).

J. Engelfriet and H. Vogler, ‘ Macro tree transducers’, Jour nal of Computer and System Sciences,
31, 71-146, (1985).

B. Courcelle and P. Franchi-Zannettacci, ‘ Attribute grammars and recursive program schemes,
I 'and II’, Theoretical Computer Science, 17, 163-191, 235-257, (1982).

J. Engelfriet and H. Vogler, ‘High level tree transducersand iterated pushdowntree transducers’,
Acta Informatica, 26, 131-192, (1988).

R. Baeza-Yates and G. Navarro, ‘Integrating contents and structure in text retrieval’, ACM
SIGMOD Record, 25(1), 67-79, (1996).

E. Kuikka, M. Penttonen, and M.-K. Vaisanen, ‘ Theory and implementation of SYNDOC doc-
ument processing system’, in Proceedings of the Second International Conferenceon Practical
Application of Prolog, pp. 311-327, London, UK, (April 1994).

E. Kuikkaand M. Penttonen, ‘ Transformation of structured documentswith the useof grammar’,
Electronic Publishing - Origination, Dissemination and Design, 6(4), 373383, (1993).

H. Ahonen, H. Mannila, and E. Nikunen, ‘ Generating grammars for SGML tagged texts lacking
DTD’, in Second Workshop on Principles of Document Processing, PODP’ 94, Darmstadt,
Germany, (1994).

Ingtitut for Applied Information Technology, German National Research Center for Computer
Science, Schloss Birlinghoven, Germany, The qwertz SGML Document Types, Version 1.2,
Reference Manual, October 1992.

C.F. Goldfarb, The SGML Handbook, Oxford University Press, Oxford, UK, 1990.

	SUMMARY
	INTRODUCTION
	A CLASSIFICATION OF DIFFERENCES BETWEEN TREES
	Example: Manuscript styles in scientific journals
	Preliminary definitions
	Bases for the classification
	1) Simple differences: same structure, differences in leaves
	2) Local differences
	Global differences in the structure

	TREE TRANSFORMATION METHODS
	Syntax-directed translation
	Tree transducer
	Tree pattern matching/replacement methods
	Manual transformations

	METHODS FOR VARIOUS TYPES OF DIFFERENCES IN DOCUMENTS
	Transformations that keep structure
	Transformations for local order differences
	Transformations for local existence differences
	3) Transformations for global differences

	MODEL FOR A DOCUMENT TRANSFORMATION SYSTEM
	RELATED WORKS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

