ELECTRONIC PUBLISHING, VOL. 8(2 & 3), 95-110 (JUNE & SEPTEMBER 1995)

M odelling multimedia documents

P. R. KING

Department of Computer Science
The University of Manitoba
Winnipeg, Manitoba

Canada R3T 2N2

e-mail: prki ng@s. unmani t oba. ca

SUMMARY

Thispaper discussesthe need for modelsfor multimedia documentsand describesa particular
formal model. The model makes use of an executablelnterval Temporal Logic asits basis. The
paper describeshow temporal constraintsamong media items may be specified for subsequent
manipulation and for usein prototyping. In particular, it usesthe powerful notion of interval
projection, both as a device for specifying variable display ratesfor media items and also for
providing a scripting mechanism. The paper also outlines how this model may be used asthe
basis of an authoringtool for such documents.
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1 INTRODUCTION

Our work is concerned with modelling electronic documents. Our ultimate goal is to make
use of such formal models in designing authoring systems. Our specific interest is in
multimedia documents, where by the termiltimedia, we mean a document containing
continuous or time dependent components, referred toedi items [1]. We are partic-
ularly interested in documents with rich sets of various types of temporal constraints. By
providing a formal model for specifying such constraints, it will become possible to provide
tools for authoring and for prototyping such documents.

Our model uses the Interval Temporal Logic (ITL) of Moszkowgkids a notation for
expressing sets of temporal constraints between objects in multimedia documents. In earlier
papers -5, we described some aspects of this use of ITL, and showed that ITL possesses
the appropriate descriptive power. In the present paper we wish to present a number of
more powerful features which are needed in multimedia documents, and demonstrate how
our model can accommodate them. Two specific areas of concern witbpetion and
scripting. We will also discuss some of the problems associated with prototyping such
documents, specifically the important notion of determinacy. For completeness, and so that
this paper may be considered in isolation, we will also present summaries of the earlier
results.

The remainder of this paper is organised as follows. In Section 2 we review the need for
document models, and discuss the particular needs of such models in the case of multimedia
documents. In Section 3 we review a first set of functional requirements for multimedia
documents, review that part of Moszkowski's ITL needed to express this first level of
functionality, and review how it is actually expressed. We also introduce a non-trivial
example, which will be used elsewhere in the paper. In Section 4 we discuss the notion
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of projection and describe various forms that this may take in multimedia documents. In
particular, we describe the notion giripting in multimedia documents, and we present a
complete solution to modelling the example introduced earlier. In Section 5 we complete
our discussion of the model. Section 6 indicates some of the problems associated with using
this model in an authoring system, and our approach to their resolution. Section 7 presents
some future directions and concludes.

2 ELECTRONIC DOCUMENTSAND FORMALISMS
2.1 Introduction

The use of formal models in document processing systems, that is the notion of a document
as a structured object conforming to a chosen formal description, whereby the structure can
be represented and manipulated, is a well known one. It is, however, someatairiate

to talk about document models and formalisms (in the plural) for documents, since a single
formalism has predominated, th#ribute grammar. Attribute grammars have been used

as the basis both afocument editors, such as Grif §], and of standards for electronic
documents, such as ODA][ SGML [8] and HyTime [l]. The essence of the approach in

all these cases is to use the context-free portion of the grammar to define the component
structure of a document, and to use the attributes to specify those quantities needed to
perform the correct formatting. As just one instance, an SGML DTD (Document Type
Definition) is, essentially, an attribute grammar, where the context-free portion serves to
define the components of the class of document under discussion, and the attributes may
be used for layout directives.

We should temper somewhat the remarks in the previous paragraph. While much of
the work on document models depends on the attribute grammar, or some close variant
of it, some authors have used other classes of grammars, see for ex8mplerore
powerful formalisms. Some researchers have, made use of programming languages as part
of a model; Prolog has, for example, been used to perform attribute calculation. There
is also work on object-based approaches to the provision of toolkits for both structured
documents and multimedia documerit][

At this stage it is important to realise that attributes of themselves possess no under-
lying formalism for their specification or subsequent computation. Essentially, attribute
relationships in grammars are defined by arbitrary algebraic equations. Consequently, and
in particular, there is priori no formal method of verifying the consistency of a set of
attributes. By way of contrast, a central property of the model chosen in the present work
is that it must encompass a formalism which is capable of various sorts of manipulation,
including consistency verification. This is important when considering our model as the
basis of an authoring tool for the temporal aspects of such structured documents.

2.2 Document models and multimediadocuments

The HyTime Standardl] contains the following definitions:

A document is a collection of information that is identified as a unit and that
is intended for human perception.

Multimediais ... an attribute of a document indicating that the document might
contain continuous or time dependent components.
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To illustrate these definitions, and to illustrate the various aspects of our model in
what follows, we now introduce a sample document specification containing a reasonably
complex set of items and temporal constraints. We refer to this illustration Bedtieven
Problem:

Play an audio containing the four movements of Beethoven'’s Fifth Symphony,
opus 67, in ¢ minor;

Before each movement, display a video containing text with appropriate pro-
gram notes;

During the music, whenever there is a pianissimo passage, display a still video
of a sleeping baby;

During the second movement, display a video of a woodpecker at every stac-
cato passage;

At the end of the symphony, display a picture of Ludwig van Beethoven for
15 seconds, then display information about how this presentation can be pur-
chased,;

During the video-text displays, the reader of the presentation is entitled to
rewind the video at any stage, or to fast-forward to the start of the subsequent
movement;

The video-text displays should not take longer that 10 seceads.

We now describe four general requirements of a model for multimedia documents, illus-
trating these requirements with this example.

2.2.1 Modularity and top-down decomposition

It should be possible to treat media items, and the specification of their temporal constraints,
in a hierarchical manner. In this example, we should be able to treat the various components
of the specification separately, composing them into the final result. Therefore, the first line
of the example just given

Play an audio containing the four movements of Beethoven’s Fifth Symphony

may be regarded as the top level of the specification, the symphony, with the remaining
items, for instance the four movements, below it in the hierarchy. This idea goes further,
since it will usually be the case that the author wishes to add media items (MIs) and
constraints to an existing set. For example, the item involving the woodpecker may have
been added after the others. Sets of temporal constraints among discrete sets of media items
should bendependently specifiable and the formalism should provide a way of permitting

Mis to be specified in a top-down fashion.

2.2.2 Compositionality, and bottom-up design

It should also be possible to preed in the reverse manner from that jusigested. Given
independent sets of constrained media items, it should be possible to assign names say,
to those sets, and thereafter use these names in specifying further levels of constraints.
This ‘bottom-up’ approach is, in a sense, the mirror image to the top-down approach just
described. Both top-down and bottom-up are familiar design approaches in the area of
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programming, and in other areas of formal specification. In our example, we should be
able to compose the separate components of the specification into one specification in such
a way that this composed specification preserves the consistency and correctness of the
originals.

2.2.3 WK foundedness

The formalism should make use of a well defined, consistent calculus to express and manip-
ulate formulae specifying temporal constraints. In particular, it should be possible to deter-
mine whether particular formulae expressing constraints are consistent. Well-foundedness
is an important characteristic of any formalism which is to serve as a basis for formal
specifications of whatever sort, but since one of the longer term goals of these particular
temporal specifications is that they be transformable between documents, the notion of
well-foundedness is a particulageessity in this work.

2.2.4 Executability

Since the formalism is to be the basis of an authoring tool, specifications written in it should
be executable, in the sense that it should be possible to display the behaviour over time of
free variables in formulae expressing temporal constraints. In this manner, a model could be
developed for displaying the dynamic effect of sets of temporal specifications. The author
could then make use of such a display to decide whether particular specifications are indeed
what was intended. In the long term, it will be possible to use such a display as the basis
of an interactive system, permitting the author to modify certain constraints and view the
dynamic effect of such modifications.

3 REQUIRED FUNCTIONALITY IN THE MODEL
3.1 Functional requirements

As indicated earlier, we are restricting ourselvetetaporal properties of media items. We

are less concerned with their structural (context-free) composition, and not at all concerned
with their spatial attributes. If we consider the temporal dimension of a multimedia docu-
ment, the task for an authoring system is to place media items correctly on that axi§, In [
Erfle presents a comprehensive set of 18 issues, gleaned in part from existing published
authoring systems and standards, which are needed in such constraints, and shows how
each of these can be achieved in the HyTime standard. Our approach is somewhat similar.
In [3], [4] and [5], we present in full a comparable set of functional requirements which
encompass all of Erfle’s issues, but which use a different taxonomy, and define seven con-
straint classes rather than eighteen. Here we summarise our taxonomy, with illustrations
from the above example.

The first four of our set of seven issues involve constraints on absolute or relative start
and finish times and durations of media items. These four cases are subdivided into the
case of one, of two, and of more than two Mls. Consider the following component of the
Beethoven problem:

Before each movement, display text containing appropriate program notes.



MODELLING MULTIMEDIA DOCUMENTS 99

This is a relatively simple example time constraints involving more than two items; es-
sentially this specifies sequential presentation of eight items, the four movements preceded
by the four sets of program notes. Now consider the component:

At the end of the symphony, display a picture of Ludwig van Beethoven
for 15 seconds, then display information about how this presentation can be
purchased.

This is a composition of several media items, this time invohduagation as well as time.
Of the remaining three issues, one is concerned with what Erfle smjusment [11],
which in programming languages is termexdeption handling. Consider, for example, the

following specification:

The video-text displays should not take longer that 10 seceads.

The issue is what happens if one of the displays does indeed require more than 10 seconds.
A further issue is concerned with the notionpwbjection, which will is a central one
in this paper. Consider the two following instances:

During the music, whenever there is a pianissimo passage, display a still video
of a sleeping baby.

During the second movement, display a video of awoodpecker at eaepasd
passage;

We will see later that these two are fairly complex examples of projection, and illustrate
what we termscripting.
Finally, a special case of adjustmentéader intervention. Consider:

During the video-text displays, the reader of the presentation is entitled to
rewind video at any stage, or to fast-forward to the start of the subsequent
movement.

This component involves a number of constraint classes, adjustment and reader interaction,
projection, and a more complex set of compositions.

3.2 Themode —Interval Temporal Logic

Our multimedia document model is based upon the Interval Temporal Logic of Moszkowski
[2]. Interval temporal logic (ITL) is a first order predicate logic, to which is added the notion

of aninterval as finite, non-empty, unbounded sequencetates. The values of the free
variables in temporal logic formulae may change from state to state in an interval. A
temporal logic formula, therefore, is a predicate over an interval, which depends for its
logical value upon the behaviour of free variables over the sequence of states in that interval.
Temporal logic formulae may, alternatively, be regarded as imperative statements, which
assign values to free variables over the sequence of states in an interval. This is indeed
what Moszkowski does in defining his temporal language Tempura, to which we will make
reference later. In this work we assume that the interval is an intertiah@fcorresponding

to the temporal axis of a document, and that eachpmmant state represerise and the

same unit of time — a clock tick of whatever granularity is required by the application at
hand.
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Moszkowski’s ITL indeed satisfies the four general requirements of the model which
were discussed in section 2. In the case of modularity and top-down decomposition the
matter is quite simple. Briefly, the author may specify a constraint formula involving, say,
variablesA,B. Further, the desired set of constraints that exist among the varables, g
within A may be separately written, tested, and executed as a second set of constraints.
It should also be noted that Moszkowski's ITL supports the definition of bartfibda
expressions andfunctions. Bottom up composition is also possible in ITLF. Composing
two formulae with disjoint sets of free variables is achieved by a simple conjunction.
Composing two formulae with overlapping sets of free variables is harder, and the details
are beyond the scope of this paper. Some results appe§rand [5]. With regard to the
requirement that the formalism be well-founded, it is sufficient to state that temporal logic is
well-founded (sound), and permits manipulation, proofs of consistency, and so forth. Such
manipulations and proofs can be regarded as analogous to static checks in a temporal logic
program. The question of executability is more subtle, and will be deferred until section 6.

In [3] we have described that subset of Moszkowski’s ITL which is of interest to us.
For completeness and for ease of reference, we include some details in Appendix 1, but the
reader needing a fuller explanation is referred3odr even PJ. In [3,4] we also indicate
how some of the constraint classes outlined in the previous section can be specified in
Moszkowski’'s ITL. In particular, the formalism provides a very natural mode of expression
for constraints on absolute or relative times and durations of one, or more media items.
Again for completeness these results are summarized in Appendix 2. In considering these
expressions, it should be remembered that they provide what is in essence an existence
proof, that ITL is sufficient for our purposes, not a suggestion that an author should use
‘raw’ ITL to author such documents. We emphasise that it is our intention to construct
authoring tools on top of the ITL formalism.

In the next section of this paper, we turn to the use of projection for the remaining
constraint classes.

4 PROJECTION AND SCRIPTING

The termprojection refers to a change of scale. More precisely, in ITL the term denotes the
definition of a second interval in terms of a given first interval, and the subsequent use of
that second interval in some ITL formula or operation. The second interval may be of the
same length or of a different length than the first. It may be of finer or coarser granularity
than the first. The general form of an ITL formula involving the projection operator is:

W1 proj w,

In this formula, the sub-formula; is aprojector which defines a second interval from
the initial interval over which the sub-formula; is specified. The composite formula
w1 proj W; is thereby specified over this new interval.

A definition of this projection operator together with some examples of its use, appears
in [3]. In [2] Moszkowski, gives a formal semantics for the operator. For our purposes in
this paper we can afford to be far less formal. We will first consider some uses of projection
in multimedia constraints where a projector is used to change the rate of display of a MI.
This we refer to asnultiplication. We will then give an intuitive but useful meaning to the
operator, and will then discuss how it may be used in what we term scripting. Finally, we
will consider its use in providing for adjustment, exception handling.
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41 Multiplication

For a number of its uses in multimedia constraints, a projection will beléplication,
that is a projection which serves to eithreagnify an interval, by replacing each state in
the interval by a given number of states, orctmtract the interval, by replacing a given
number of states by a single state. Such projections make useleftbgeration to define
the multiplication factor. A simple example in ITL may help. Consider first the ITL formula
w, defined as

wy =len(4) A (i =0) A (i getsi + 1)

This formula specifies an interval of length 4, that is one with five states, in which the vari-
ablei takes on the following successive values: 0,1,2,3,4. Now consider the multiplication:

len(2) projw, = len(2) projlen(4) A (i=0) A (i getsi+ 1)

Here the original formulais multiplied by the projecten(2). By definition, this projection

has the effect of magnifying the interval by a factor of 2. This is done by notionally replacing
each single state in theitial interval by two states. Under the assumption that all states
occupy the same unit of time, this particular multiplication would thus have the effect of
incrementing the variablieat half the original pace.

In terms of media items such a multiplication may be used to specify a change in the
rate of display of a media item, as the following five examples illustrate. Note that for
clarity in this instance we are using an explicit presentation fungiaypfor the Ml a. The
second parameter pfay controls the actual display.

Examplel: videoais to be played at half speeln(2) proj (play(a, true))
Example2: videoaisto be played at a rate specified by the quardigred_rate relative
to the normal rate of plagplay_rate):
len(play_rate(a) /desired_rate)proj(play(a,true))
Example 3: videoato be played at double speedhort(2) proj (play(a, true))
Example4: fast forward vide@: short(max_rate(a)/play-rate(a)) proj (play(a,false))
Example5: rewind videoa: short(max_rate(a)/play-rate(a)) proj (reverse(a, false))

In example 3short is the inverse projection function ken. We will not give a separate
definition forshort. In fact, it would be possible to permén to take fractional values, and
dispense witlshort altogether.

4.2 More general projections—scripting

While multiplication represent acommon use of projection, there are several otherimportant
applications of this concept. One such is scripting. Consider the ‘sleeping baby’ portion of
the Beethoven problem:

During the music, whenever there is a pianissimo passage, display a still video
of a sleeping baby.

We assume that the predicaii@y(B5) may be used to present the audio of the symphony,
that pp(B5) is true during the pianissimo passages, and shatv(baby) will present the
required video still. Since the sub-sequence of the states of the preg@gi5) in which
pp(B5) is true defines the states of an interval in the states of which we are to display
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the video-still, this suggests that we use that sub-sequence to define a second projected
interval for the predicatshow(baby). This is a more complex form projection than the
multiplications thus far considered.

For our purposes an intuitively helpful way of describing a general projection of the
formw, projws, is to regard the projector as inserting a copwpbetween each successive
state ofw,. As an example of this intuition, consider again the projection

len(2) proj play(B5)

It should be apparent that notionally inserting an interval of length 2 betesgmnprinitive
unit of play of the music, is consistent with the earlier description of this multiplication as
slowing down the presentation by a factor of 2.

For the scripting problem, we depict the playing of Beethoven's symphony and the
pianissimo passages therein as follows:

k% ok % ok % x x *x *« *x x *x play(B5)
F TF TVFF TTFF T F F ppdsates
* * x % * new interval

At each state in this newly defined intervsiipw(baby) is to be true. This is equivalent to
saying that the predicagtways(show(baby)) is to be true over this new interval. This new
interval is a projection, according to our general notion, but it is not Hipfigation. It
which may be defined using tiseripting projectorwhen, whose definition is as follows:

w when b is true if w holds on the interval made up of just those states in
which the Boolean expressidiis true

This operator may be defined in terms of the operators listed in Appendix 1 together with
the general projection operator. Details of this definition are beyond the scope of this paper,
but are due to Roger Hale and appearlig] [where this operator is used in the specification

of the behaviour of a reactive system, an elevator.

A simple ITL illustration of this operator, taken frorhJ|, would belen(6) when (x=0).
Here,len(6) is true on the interval made up of those states in wkidhis true. This formula
then is true over any interval in whichhas the value 0 exactly 6 times.

With Hale’s scripting operator we can specify this part of the Beethoven problem. We
define in effect a single interval over which we play the symph¢piay(B5) ) and over
which the predicatpp provides the appropriate scripting projector, making use ofitinen
operator, for the predicashow(baby). Thus we write the conjunction as

play(B5) and (always show (baby) when pp(B5) )

Notice the use oBlways — we have a (projected) interval ivery state of which the
predicateshow (baby) is to hold.

4.3 Moddlingthe Beethoven Problem

We now give a reasonably complete specification of the entire Beethoven Problem. with
the exception of the final two requirements which involve intervention and adjustments.
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We will use the following media-item types and objects:

MI TYPE MIs

audio_item my,Mmp,Mg,mMy;  — movements of the symphony
text_item t1,t0,t3,t4; — notes between movements
video_dtill_item  baby; — picture of deeping baby
wideo_clip_item bird; — woodpecker video
video_dtill_item  [udwig; — picture of Beethoven
video_clip_item commercial; — purchasing information

We will also assume the following presentation operators for the various types:

TYPE OPERATOR
audio_item play
text_item display

video_gtill_item show
video_clip_item play

We now present the entire specification (in the keyword representation):

[

(display(ts); play (ma);

display(tz); play (mp);

display(ts); play (ms);

display(ts); play (m) )

and

(always show (baby) when pp(b5))
where b5 = {my,mp,mg,my }

and

(alwaysplay (bird) when staccato(imy))

len (15) and show (ludwig):
play (commercial)

The first four lines specify the sequential presentation of the program notes and the four
movements of Beethoven'’s opus 67. These are followed by two scripting conjuncts, con-
trolling the baby and the woodpecker in the manner described in the previous section. The
next conjunct specifies the presentation of the portrait of the composer for an interval of
length 15, followed, finally, by a presentation of the purchasing information.

44 Imprecision and adjustment

As Erfle [11] points out, it is not realistic to suggest that the author will want to express all
constraints with absolute precision. Nor will the author necessarily be able so to do. Here
are two examples:

Start audica shortly after vided ends;
Start audica and then start audib after a has finished, but no more than 10
seconds after the start af
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In addition to imprecise specification, there must be provision to deal with exceptional
conditions which would arise if, for instanca,in the second example just given has a
duration equal to 12 seconds. In a similar mannerli}, e outline two ways whereby
imprecision in the specifications may be modelled. Both make use of projection.

In the first approach, the degree of strictness may be determined by a multiplication
projector. For this purpose we replace bé¢h(n) and short(n) by a single multiplier
function, as suggested earlier, to which we add an additional parameter. We write this new
function aamult(£n, strict) where the second parameter is an attribute whose value defines
the strictness of the projection. The defaultisct, but the author may use other values as
required.

The second approach is again to use the multiplicatioli(£n, strict), but to interpret
strict as a directive to thapplication, which will determine which projector to use.

Although adjustment is closely tied to the notion of imprecision, it is less a question
for the document model we are introducing than it is for &hor. It is for the author
to indicate that an adjustment or, alternatively, a replacement is to occur if a media item
does not fit the interval as specified (just as it is a programmer’s responsibility to predict
and resolve exceptional conditions). The formalism provides the means to do both of
these. They provide a subset of the power normally associated with exception handling in
programming languages, but it appears to be sufficient for this application area. We first
note that a replacement may be specified using the implication operator, which defines a
conditional construct:

if dur(a)>10then belsec

In this case, the ‘normal’ formulais to be replaced by the ‘special casdf the duration

of the object a exceeds 10 units. An adjustment would also make use airttiéional. In

the two examples which follow, the abnormal condition is assumed to occur if the duration
of the object a is less thanunits.

if dur(a)<nthen (a; len (n-dur(a)))
Here the author has decided to insert an additional delay to make ojpittiis
of time.

if dur(a)<nthen (len (dur(a)/n) proj a)
In this case the presentation of a is adjusted by a multiplication projector so
that it indeed takes the correct amount of time.

Both case uses an empty else part for the case where no adjustment is needed. For the last
part of the specification of the Beethoven Problem, it would be a simple matter to add the
obvious conditional, and insert whatever adjustment is desired.

5 USER FUNCTIONS—-USER INTERACTION

Thetermuserinteraction implies that tieader interacts with the document. The Beethoven
problem contains two examples:

rewind the video
fast-forward to the start of the subsequent movement.
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Such reader intervention implies two separate issues to be resolved within the formalism:

specification and manipulation of the user ‘interrupt’
specification of the new action required by the user

The second of these requirements is relatively simple. The specification of each operation
within the media item-type definition must include a specificatioeawth perntted reader
interaction. User actions are not, in this regard, special in any way, and nothing needs to be
added to the formalism to accomplish these actions. The first of these two issues requires
a specification of ‘early termination’ of an action. ITL provides an interval opegateirx
which may be used for this purpose. In ITL, the predicptefix(w) is true over any
interval which is a prefix of an interval over whiehis true. Thus this operator permits
‘early termination’ of a statement, typically of a loop. ITL examples appeas,ij.|

To provide for reader intervention, therefore, the operation play within the media item
type video-clip in the Beethoven Problem might actually be specified as

prefix(for i < frames(b) do show(frame(i,b)))
A (if user(stop(b)) then...)

A (if user(ff (b)) then...proj...)

A

play

This is an operation definition within a type definition. The intent is that ‘normally’ the
play function will operate by showing all of the frames of a video-clip in sequence. That is
the intended effect of the formula

for i < frames(b) do show(frame(i,b))

However,prefix indicates that this loop may terminate early. This would happen if and
only if any of the other predicates in the formula are true. In this example we have added
predicates that demonstrate two possible user actions. Itis assumed that the predicates which
start withuser become true upon the specified user actaop or ff (for fast-forward) in

this instance, actually occurring.

6 DETERMINACY AND AUTHORING

In this section we will indicate fairly briefly how this model may be utilised to provide an
authoring tool.

6.1 Executability of ITL formulae

In section 2, we indicated what we meant by requiring that the modeldestable, so that

the dynamic behaviour of formulae may be exhibited. Several things are to be said with
regard to ITL. In the first place there is a notion of themal form of a temporal logic
formula. This is a formula, equivalent to the original formula, but consisting of a set of
conjuncts which show the state by state behaviour of all free variables in the formula over
the interval in question. Clearly, this normal form, ifindeed it can be derived, could be used
to display successive ‘states’ of a system of temporal constraints, and hence to build the
sort of dynamic model of the effect of a set of constraint specifications that an author might



106 P. R. KING

find useful. However, in temporal logic the general problem of finding such a normal form
is unsolvable.

On the other hand, it is known there are subsets of temporal logic where a normal form
always exists and can be found. Furthermore, there is at least one interval temporal logic
programming language based on such an implementable subset. The language in question
is known as Tempura, and is fully described 2h (e have chosen to base our formalism
very heavily on this particular interval temporal logic.

6.2 Execution and manipulation: the display form

In fact, a number of the ITL operators needed in this model fall outside this executable
subset (though Moszkowski in fact makes no claim that his subset is the largest executable
subset). For example, any operation involving the operataill be non-deterministic, and
therefore be outside the executable subset. Any formula involving a projection is similarly
outside the executable subset.

This situation is, fortunately, a good deal less serious than it sounds. The fact that a
certain formula may not be executable does not mean that it cannot be manipulated by
the author. Indeed, the author will usually wish to manipulate specifications involving
non-determinacies and inderminacies, so that selections and refinements can be made. Our
intention is to develop an authoring system in which such manipulation can take place. For
this reason, we have developedigplay form of many of the ITL formulae which we are
using. In brief, the display form make explicit the empty sub-intervals which are implicit
in the ITL formulae. Byempty we mean an interval in which no Ml is displayed. We will
consider a single example of what we mean. Consider first the binary rebefme which
appears in Appendix 2 as

aaaaa bbbbb aBb a; <>b

An alternative way of representing this formula is to make explicit the empty interval
between the Mis andb, as in the display form:

aaaaa bbbbb aBb In:[a;len(n);D]

This display form can be used to graphically display the effect of such a binary relation
to the author. The author may then manipulate the form, selecting different values of
the indeterminate quantity. Once any specific value of is selected, the display form
becomes deterministic and belongs to Moszkowski 's executable subsg}, e[ give

a display form for all of the time and duration relationships between arbitrary sets of
Mis. A particular area under current consideration involves an analogous display form for
specifications involving projections, but this matter is outside the scope of the current paper.

7 DISCUSSION AND CONCLUSIONS

As suggested earlier, we have a number of reasons for selecting Tempura, acowwegely
Moszkowski's ITL in this work. In the first place, we feel that using a wellsfided
formalism, rather than an ad hoc approach such as the attribute grammars described, is an
important decision when dealing with the complex temporal constraints which can arise in
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the documents we are interested in. Since we are ultimately interested in an authoring tool,
we believe that it is important to have specifications which an author writes based upon
a formalism which will permit consistency checking. We also require the ability to build
complex specifications by composing them from smaller verified components; that is we
require a powerful set of composition and decomposition mechanisms. Moszkowski's ITL
provides very much what is required in this regard.

On a different matter, it is also worth remarking that although we have concentrated
exclusively on the expression of temporal constraints, there agmiori reason why such
a formalism should not be used for other, related, problems. For exampleat®e@nt of
text objects onto pages in document formatting systems may be regarded as an analogous
constraint problem, where the interval in question is spatial rather than temporal. We have
not studied the application of such a formalism to this problem in any detail. Other authors
have investigated similar formalisms for problems concerned with system performance and
quality of service 14].

With regard to future work on this formalism and its applications, we wish to proceed
from the formalism to a higher-level specification language for temporal constraints in
multimedia documents. We intend to treat the version of interval temporal logic which we
arrive at as the ‘assembler’ for a specification language. Some details of what we have
in mind have been hinted at in the above. We would then provide a translator for such
specifications, which would comprise a translator from our specification language into
its "assembler”, which we hope will be very close to Moszkowski’s temporal language
Tempura. Then we would plan to make use of an existing interpreter for that language. This
aspect of the work is currently in its relatively early stages.

The longer term provides us with a number of interesting problems and challenges.
On the one hand, we wish to proceed towards a complete authoring toaiggested in
section 6, we plan to combine our specifications with a suitable editor, so that it would be
possible for the output of the interpreter to provide a graphic illustration of the static or
dynamic affect of the author’s specifications. We will then work towards an interactive tool,
which would display the effect of changes to a set of temporal constraint specifications.

A second class of questions concerns document transformation. As mentioned in the
case of static paper documents, there is already some interesting work in this area, and one
can pose analogous problems in the case of multimedia documents with temporal relations,
in addition to hierarchical and spatial ones, between component objects.
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Appendix 1 Operators from Moszkowski’s ITL

We present two forms (representations) for many of these operators, one symbolic and
one ASCII.

First order operators:

A~ and not
vV = or equiv (equivalent)
D impl (implies) can also usé . . . then ...

Temporal quantifiers:

v 3 for_all exists(there exists)

Temporal operators, such as:

O next the value in the next state
] always across all states

& sometimes  in some state

<> first in some initial subinterval
[i] all_init in all initial subintervals

@ arb in some arbitrary subinterval
[a] all in all initial subintervals

Assignment and equality operators:

gets assignment from previous state
= initial state assignment

Interval operators:

len number of states in interval
empty len = zero

more len £ zero

halt condition terminating interval

Thechop operator, ‘;’ wherea;b is true over an interval, say, ifT can be decomposed
into two consecutive subintervals,= T, T, such thag is true overT; andb is true over
To.

A set ofarithmetic operators, which are not further specified.
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Appendix 2 ITL expressions for Ml constraints involvirtgne andduration

An author will wish to select from a pre-defined set of media item (MI) types and media
item operations, and use variables of these types. For the purposes of this paper, however,
these types and variable declarations can largely be ignored; we almost always identify a
media item and the set of temporal constraints to be specified for it, and will usually use
simple identifiers, b, . . . to represent occurrences of media items.

Time and duration constraints involving one single Ml:

MI ais to start at clock timé = n units: len(n);a sequence
Specify a particular duration, n say, far len(n) Aa conjunction
Measure the duration . Ji: [(i=0)A(igets +1)Aa] computedir

Time and duration constraints involving two MBandb, say:
J. F. Allen 19 gives a functionally complete set of thirteen such binary relations, which
may be depicted as follows:

aaaaa aEb Equals

bbbbb

aaaaabbbbbaMb Meets aaaaa bbbbb aBb Before
aaaaa ash Starts aaaaa aOb Overlaps
bbb bbbbb

bbbbb aDb During bbbbb aFb Finishes
aaa aaa

together with the six inverse relatiorid1, Bl, Sl, OI, DI, FI
ITL formulae for these seven relations are as follows:

aEb = aAb

aMb = a.b aBb = adb
asb = aAddb aob = Handhb
aDb = bA@a aFb = bAaa

Time and duration constraints involving three or more MI’s:
There are two approaches:

1. Specify n-ary relations as compositions of binary relations. Example: start the item
b immediately aftela and itemc immediately afteb. Here we need to synchronise
on the objecb:3x: (> (halt X A a));b) A (halt x; b; c)]

2. Code n-ary relations directly in the formalism without decomposing them first into
binary relations.

Examples:

(i) startbimmediately aftea andc immediately afteb: a; b; ¢
(ii) startawhen first ofb,c,d stops:len(min(dur(b), dur(c),dur(d)); a
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