ELECTRONIC PUBLISHING, VOL. 8(2 & 3), 167-179 (JUNE & SEPTEMBER 1995)

XTABLE — A tabular editor and formatter

XINXIN WANG DERICK WOOD

Nortel Department of Computer Science

P.O. Box 3511, Station C Hong Kong University of Science & Technology
Ottawa, Ontario, K1Y 4H7, Canada Clear Water Bay, Kowloon, Hong Kong

e-mail: xi nxi n@ortel.ca, dwood@s. ust. hk

SUMMARY

XTABLE is a prototype interactive tabular editor and formatter for the design of high-quality
tables and for the exploration of tabular data from different viewpoints. It abstracts the mul-
tidimensional logical structure of a table and provides a mechanism to map an abstract table
into different two-dimensional presentations. We present XABLE from four aspects: abstract
model, presentational model, system structure, and user interface. We also discuss the merits
and limitations of X TABLE.

KEY WORDS Tabular abstraction Tabular editing Tabular formatting

1 INTRODUCTION

A table is a collection of interrelated items, which may be numbers, text, symbols, figures,
mathematical equations, or even other tables. We can divide the items into two groups:
entries and label€Entries are the basic data a table displays &aloHls are the auxiliary
data that are used to locate entries. Labels are groupedatagories that are organized
hierarchically. For example, Tablepresents the average marks for the assignments and
examinations of a course offered in the three trimesters of 1991 and 1992. The marks are
the entries and the strings that denote the years, the terms, and the kinds of marks are the
labels. Furthermore, Year is a category that consists of the labels 1991 and 1992. Term is
another category that consists of the labels Winter, Spring, and Fall. Mark is a category that
consists of the subcategories Assignments and Examinations and the label Final Grade.
There are logical associations among the entries and the labels. Each entry is associated
with one label sequence from each of the categories. For example, the entry 85 at the
top-left corner of Tabld is associated with the labels 1991, Winter, and Al. The tabular
items and their logical relationships define tbgical structure of a table and the number
of categories defines thegical dimension of a table. Tabld has three categories; thus, it
is a three-dimensional table.

We usually present tabular data as a row—column structure that has four main regions.
Thestub is the lower left region that contains the row headings. biténead is the upper
right region that contains the column headings. $tiue head is the upper left region that
may either be empty or contain the categories of the row headings and column headings.
The body is the lower right region that contains the entries. The intersection of a row and
a column is called a&ell and a rectangular collection of cells is calledlack. We can

CCC 0894-3982/95/020167-13 Received 30 March 1996
11995 by John Wiley & Sons, Ltd. Revised 30 June 1996

168 XINXIN WANG AND DERICK WOOD

Table 1. The average marks for 1991-1992

Assignments Examinations
Grade
Al A2 A3 Midterm Final
1991
Winter 85 80 75 60 75 75
Spring 80 65 75 60 70 70
Fall 80 85 75 55 80 75
1992
Winter 85 80 70 70 75 75
Spring 80 80 70 70 75 75
Fall 75 70 65 60 80 70

present a multidimensional table as a row—column structure in different topologies and
styles. To present multidimensional tables in two dimensions, we need to associate more
than one category with the stub or with the boxhead. For example, in Tabke assigned
the categories Year and Term to the stub and the category Mark to the boxhead. If we move
the category Year to the boxhead, we obtain a different topology and presentation (or view)
of the data. Different orderings of the labels in a category or different orderings of the
categories in the stub and in the boxhead also generate different views of the data.

A table can convey two kinds of information: associations and patterns among entries.
Associations describe the relationships among entries paitier ns describe the character-
istics of groups of entries. Tab® from Ehrenberg’s textl]], shows the correlations for 10
TV programs based on whether peoplein a sample of 7,000 UK adults said they “really liked
to watch” a range of programs such as World of Sport (WoS), Match of the day (MoD), and
Panorama (Pan). TV programs are subcategories of the two TV broadcasting stations: ITV
and BBC. In Table, the associations and the correlations between pairs of TV programs
are easily understood. Tal?’ehowever, does not show any clear pattern among the corre-
lations for the 10 TV programs. After combining the TV programs with the corresponding
TV broadcasting stations and reordering them, we obtain Tabiat shows a cluster for
the five Sports programs and another cluster for the five Current Affairs programs. From
this presentation, we can clearly see three patterns in the data: correlations of 0.3 to 0.6
among the five Sports programs, correlations of 0.2 to 0.5 among the five Current Affairs
programs, and correlations of approximately 0.1 between these two clusters. These two
presentations contain the same items and the same logical associations among the items.
It is the topological rearrangement of the items that enables a reader to see the clustering
and the high correlations immediately. Before reordering the rows in Balbe changed
the hierarchy of the labels in the stub by combining the TV broadcasting stations with their
associated TV programs. In addition, the extra spacing between the Sports programs and
the Current Affairs programs in Tab&helps to highlight the patterns. Thus, to discover
patterns in tabular data and to present them clearly with a row—column structure, we need
to model tables based on the logical associations among items, to be able to edit category
hierarchies, to topologically rearrange items in two dimensions, and to specify styles to
emphasize patterns with typographical cues such as fonts, rules, and vatiée sp

XTABLE — A TABULAR EDITOR AND FORMATTER 169

Table 2. The initial table of correlations for 10 TV programs

Programs | PrB Thw ToD WoS GrS LnU MoD PanRgs 24H

ITV PrB 01 01 05 05 01 05 02 03 01
Thw | 0.1 03 01 01 02 01 04 01 04
ToD 01 03 01 01 02 00 02 01 02
WoS | 05 01 0.1 06 01 06 02 03 0.1

BBC GrS 05 01 01 06 01 06 02 03 01
LnU 01 02 02 01 01 00 02 01 03
MoD [05 01 0.0 06 06 0.0 0.1 03 01
Pan 02 04 02 02 02 02 01 0.1 05
Rgs 03 01 01 03 03 01 03 01 0.1
24H 01 04 02 01 01 03 01 05 01

Current tabular editing systems focus mainly on the composition of tables based on the
associations among the tabular data. Systems sutblag?], TABLE [3], and Beach’s
system fi] model tables with a row—column structure. With these systems, we are limited
in the presentation of data to reordering rows and columns. It is, however, difficult to
obtain more presentations by reordering categories in the stub and the boxhead or by
moving a category from the stub to the boxhead and vice versa. Some systems, such as
Improv [5] and Vanoirbeek’s systen6]7] model tables with a multidimensional logical
structure. Improv%] is an improved version of Lotus 1-2-3. It is an interactive commercial
system for the editing and formatting of tabular data for finance and business. Tables are
defined by specifying multiple categories in both the horizontal and vertical dimensions of
a spreadsheet. The labels of these categories are placed at the top or at the left-hand side
of the spreadsheet. Entries are placed in cells that are addressed by the labels of different
categories. Vanoirbeek’s systef{] is based on a table model in which a table is specified
as a collection of entries that are semantically connected to multiple labels of different
categories. Vanooirbeek’s model is the first one to abstract a table from its presentation and
the first one to provide a hierarchical model of the tabular abstraction. The logical structure
of a table, in Vanoirbeek’s system, is modeled by a tree with additional edges. A table
consists of a set of logical dimensions (categories) and a set of items (entries). The logical
dimensions include rubrics (labels) which may themselves contain subrubrics; additional
edges are used in the tree to represent the connections between items and rubrics. As we
shall see, in SectioB, our abstract model has much similarity to Vanoirbeek’s model, but
is sufficiently different to be of independent interest. Both Improv and Vanoirbeek’s system
are able to specify the multidimensional logical structures of tables. Neither of them, as
far as we are aware, provides sufficiently many operations to modify the logical structure
of a table. Both systems offer only the basic functions to create a new logical structure
interactively. Some changes to an existing structure, such as to combine and split categories
and to promote and demote subcategories, may require the user to abandon the old structure
and create a new one.

XTABLE is an interactive tabular composition system that runs in a UNIX and X
Windows environment. It is not only a tool for the design of high-quality presentations of

170 XINXIN WANG AND DERICK WOOD

Table 3. The modified table of correlations for the 10 TV programs of Table 2

Programs WoS MoD GrS PrB Rgs 24H Pan Thw ToD LnU
ITV WoS 06 06 05 03 01 02 01 01 01
BBC MoD 0.6 06 05 03 01 01 01 00 00
BBC GrS 06 0.6 05 0.3 01 02 01 01 01
ITV PrB 05 05 05 0.3 01 02 01 01 o1
BBC Rgs 03 03 03 03 01 01 01 01 01
BBC 24H 01 01 01 01 01 05 04 02 03
BBC Pan 02 01 02 02 01 0.5 04 02 0.2
ITV Thw 01 01 01 01 01 04 04 03 0.2
ITV ToD 01 00 01 01 01 02 02 03 0.2
BBC LnU 01 00 01 01 01 03 02 02 02

tables, but also it is a tool for the exploration of tabular data from different viewpoints.
XTABLE abstracts the multidimensional logical structure of a table which it then maps to
different presentations according to user-defirgabtogical and style specifications. The
formatted concrete tables can be displayed through a Motif interface or transformed into
IATEX [8] source files. XABLE provides operations to edit the multidimensional logical
structure, the topology, and the style of tables.

We first present the underlying abstract model gAXLE in Section2 and describe
the presentational model used byaA%LE to map the abstract model to a row—column
structure in Sectio. Then, we give an overview of the system structure in Sectiand
an introduction to the user interface of A6LE in Section5. In Section6, we discuss the
merits and limitations of XaBLE.

2 ABSTRACT MODEL

When one designs a table, one normally has a logical structure in mind before one selects
a presentational form. Thus, we should deal with the logical structure and the presentation
separately. There are at least two advantages with the separation the logical structure and
the presentation. First, tables can be manipulated independently of their presentations. For
example, to remove a label from a category, we no longer have to determine which rows
or columns should be removed from the presentation. Second, by associating different
topologies and styles with a logical structure, we can easily obtain various presentations
for a table.

The abstract model for MBLE is based on the multidimensional logical structure and
is independent of any characteristics that are related to the presentation of a table. We
specify the logical structure of a table asadstract table, which describes the hierarchical
label structure of categories and the logical associations among labels and enitaias. A
can be any string of characters and symboldaldeled set is a set together with a label
which we specify as an ordered pdiabel,set). A category is defined inductively as
either a labeled empty sét,(}) or a labeled set of categories such that the labels of the

XTABLE — A TABULAR EDITOR AND FORMATTER 171

Mark

Assignments Examinations Grade

AANA

Midterm Final
Figure 1. Thetree of the category Mark in Table 1

categories are pairwise distinct. Clearly a category can be viewed as a labeled tree; for
example, the category Mark in Taklecan be viewed as the tree of FiguzeIndeed,
Raymond 9] describes categories as partial orders and defines tables with partial orders.
Our approach is similar in that a labeled tree defines a partial ordeabeé\ sequence

is either a label or a label sequensdollowed by a labell that we denote bgl. We

use label sequences to uniquely identify the subcategories and labels in a category. Since
categories have a hierarchical structure, label sequences determine paths from the root
to a node in the hierarchy. Thus, for the category Mark of Tablihe label sequence
Mark.Assignments determines the subcategory Assignments, and Mark.Assignments.Al
determines the empty-set subcateg@y,()); see Figure. A terminal label sequenceis a

label sequence that determines an empty-set subcategory and these subcategories are used
to index entries in a table. (Terminal label sequences also determine the terminal nodes in
the labeled tree of a category.) We use the notdtsi@@) to denote the set of terminal label
sequences of a catega®y tls(C) is the set of all subcategories@fthat can label an entry.

An abstract table consists of a set of categories and a map that associates values with
table entries. It is specificied by an ordered &), whereC is a set{C;,Cy, . . . ,Cp} of
categories and is a map fromgtls(C) to the universe of possible values. (The notation
®tls(C) is the unordered Cartesian productlsfCi),tIs(Cy), . . . ,tIS(Cy).) We usextls(C)
to model the entry set of a table. Each entry is identified or indexed by a @#s{(C) and
is assigned a value by For example, we can specify the logical structure of Tdbidth
the abstract tabl& = (C,6) in which C has following three categories:

(Year,{(19910),(19920)});

(Term,{ (Winter,0),(Spring,®),(Fall,0)});

(Mark, {(Assignments, {(A1,0), (A2,0), (A3,))}),
(Examinations, {(Midterm,0), (Final,0)}),
(Grade, 0)}).

The corresponding mapis defined by:
6({Year.1991, Term.-Winter, Mark.Assignments.Al}) = 85;
6({Year.1991, Term.-Winter, Mark.Assignments.A2}) = 80;
6({Year.1991, TermWinter, Mark Assignments.A3}) = 75;
6({Year.1991,TermWinter, Mark. Examinations.Midterm}) =
6({Year.1991,TermWinter, Mark. Examinations.Final }) =
6({Year.1991,TermWinter, Mark.Grade}) = 75;

172 XINXIN WANG AND DERICK WOOD

6({Year.1992,Term.Fall, Mark Assignments.Al}) = 75;

6({Year.1992,Term.Fall, Mark Assignments.A2}) = 70;

6({Year.1992,Term.Fall, Mark Assignments.A3}) = 65;

6({Year.1992,Term.Fall, Mark.Examinations.Midterm}) = 60;

6({Year.1992,Term.Fall, Mark.Examinations.Final }) = 80;

6({Year.1992,Term.Fall, Mark.Grade}) = 70.

Since we use sets to specify categories, the categories are unordered and the labels in a
category or a subcategory are also unordered. Ordering is an issue of topology, and we do
not include it in the abstract model. We will deal with category ordering and label ordering
in Section3.

The second author well remembers listening to Vanoirbeek’s presentation at P 92 [
with a mixture of admiration, enjoyment, and horror! We had developed a preliminary
abstract model in late 1991 and early 1992 without any knowledge of Vanoirbeek’s work.
The model had the elements described here but the formalism was not as complete. Vanoir-
beek’s talk gave us the motivation to describe our model in its preliminary fa A
natural question is: How similar are our models and how different are they? The similarity
is clear, we each abstract a table from its presentational form and describe its categories as
hierarchies. In our work, we specify from the beginning that categories are not ordered in
any way, other than by the hierarchy of subcategories. Thus, given two subcategories of
a category neither one is first. For example, in Tabl2991 is not automatically before
1992. Similarly, we do not impose any order among the categories in the abstract model.
For example, in Tablé, Year, Term, and Mark do not have any inherent order. We also
specify the asssociation between categories and entries functionally, whereas Vanoirbeek
chose a semantic association represented by additional edges in the hierarchical model.
Lastly, Vanoirbeek models a table as a single hierarchy (with additional edges for entries)
in which it is unclear whether there is an implicit ordering of categories and an implicit
ordering within categories. Since Vanoirbeek’s model has been incorporated in Grif, there
is an implicit ordering in that framework. Clearly, Vanoirbeek’s model, while an important
stepping stone, is incomplete; it is completed by its implementational environment. Our
model, on the other hand, is intended to be a complete, stand-alone model for tables and to
be independent of any implementational environment.

3 PRESENTATIONAL MODEL

To present multidimensional tables in two dimensions, we may need to associate more than
one category with the stub or with the boxhead. In this case, some labels appear more than
once. For example, in the stub of Taldlethe labels of the category Term appear twice to
clarify the association between Year and Term. The arrangement of labels determines the
arrangement of entries. Each entry usually appears to the right of its associated labels in the
stub and beneath its associated labels in the boxhead. Different types of typographic cues can
be usedto helpreaders search forinformation and highlight data patterns. We can use rules or
white space to separate tabular items, distinct type faces or point sizesriguiisti different

types of items, and background colors or patterns to highlight important information. The
presentational model forABLE consists of two parts: topological specification and style
specification.

XTABLE — A TABULAR EDITOR AND FORMATTER 173

3.1 Topological specification

A topological specification defines the relative arrangement of tabular items in two dimen-
sions. We use two topological rules to specify the category orderings, one for the stub and
the other for the boxhead:

STUB: C3.Cs,... C
BOXHEAD: Cbch ... b

whereC} is theith category in the stub arﬁ}’ is thejth category in the boxhead. For
example, the category orderings of Talilare specified by

STUB: Year, Term
BOXHEAD: Mark.

The label ordering within a category or subcategory is another attribute that affects the
topological arrangement. In Tablethe labels in category Term are arranged in the order
Winter, Spring, Fall. If we reverse the order to give Fall, Spring, Winter, we get a different
arrangement. Therefore, we use another topological rule to specify the label ordering within
a category:

ORDERC: Lj,lLa,... Lk,

whereC is a category or subcategory ands theith label ofC in the ordering. Sometimes,

we do not explicitly specify the label ordering for a category; instead, we implicitly specify
the ordering using a standard ordering such as numerical or lexicographic. Thus, another
possible topological rule for label ordering is

ORDERC: (ordering option,

where(ordering optioh includes numerical order, reverse numerical order, lexicographic
order, and reverse lexicographic order. For example, the label orderings for the categories
in Tablel are specified by:

ORDER Year: lexicographic order
ORDER Term: Winter, Spring, Fall
ORDER Mark: Assignments, Examinations, Grade

ORDER Mark.Assignments: lexicographic order
ORDER Mark.Examinations: Midterm, Final.

Once we are given a topological specification, we can determine the topological positions of
the labels and the entries of a table. The geometric positions, however, cannot be determined
without a style specification.

3.2 Style specification

A style specification determines the final appearance and the physical dimensions of a table.
It consists of style rules for different components of a table. A style rule consists of a scope

174 XINXIN WANG AND DERICK WOOD

and a set of formatting attributes that are associated with the scope. For example, tables
(scope) are displayed in Roman (formatting attribute) with only horizontal rules (formatting
attribute). The style rules for tables fall into three classes: presentation-oriented style rules,
content-oriented style rules, and layout-oriented style rulgzegentation-oriented style

rule has a scope that is a major region of a table: the table itself, the stub, the boxhead, the
stub head, and the body. It affects the cells and separations (rules and spacing) in the major
regions. Acontent-oriented style rule has a scope that is a logical object or a set of logical
objects of an abstract table, including a category, a subcategory, a label, an entry, an entry
value, and an entry set. It affects only the cells in which the logical objects are located
and the separations of these celldagout-oriented style rule has a scope that is a layout
component of a concrete table, including a row, a column, and a block. It always affects
the cells and separations in the layout component no matter what objects are put into it.

XTABLE provides eight types of formatting attributes for style ruled! style allows
us to control the appearance and the background of the items in cells by specifying type
faces and sizes, backgmd colors, line spacing, leading spacing, horizontal and vertical
alignment options, and so o8eparation style specifies white space or different types of
horizontal and vertical rules to separate different kinds of itéfmame style enables us to
select white space or different types of rules to surround a rectangula®araagement
style enables us to control the arrangement of labels in the stub, the boxhead, and the stub
head. For example, we can arrange the labels hierarchically as in the boxhead df Table
or indent the labels as in the stufpanning style allows us to span the entries that have
the same value within a rectangular block. We can span entries in one dimension without
spanning them in the other dimension, or span the entries in two dimensions by giving
priority to one dimensionGrouping style groups items into blocks of a given number of
rows by the use of either white space or rul@ategory heading style allows us to either
display the category heading above its labels or hide the category heSdegpnstraints
enables us to restrict the sizes of columns, rows, and tables.

The appearance of a table can be governed by many style rules. Some style rules are
given by a publisher or an editor of a book to achieve a uniform appearance for all tables in
the same book. Some style rules are given by a table designer for the specific presentation
of one table. XABLE classifies the style rules for a table into two classes: collective style
rules and specific style rules. @llective styleruleis a style rule for the presentation of a
collection of tables and specific style rulesis a style rule for a particular table.

We do not have to specify style rules for all components of a table. A component
can inherit the style rules of one of its super-components or the default style rules. For
example, a cell that holds a label can inherit the style rules of the label's category and
the cell’s region (stub, boxhead, or stub head). Thus, we need to find approaches to solve
style inheritance. If we were able to use a tree structure to describe the relationships among
the tabular components, we would define a priority order for style inheritance based on
single inheritance. There are, however, multiple inheritances in a table. For example, a
cell belongs to its row and column, which do not conteaith other completely; thus, it
can inherit style rules from both the row and the column. Therefore, the approaches for
style inheritance should handle multiple inheritanceaB(E handles multiple inheritance
in two steps. It first tries to combine the style rules of all super-objects. For instance, italic
Roman is the result of combining Roman and italic. Whenever there is no satisfactory
combination, for example, combining Roman and CourieneXE uses the style rules of
the super-object with a priority ordering determined by the system and the user. The priority

XTABLE — A TABULAR EDITOR AND FORMATTER 175

Figure 2. The genealogical relationships of some scopes

for some scopes, including the whole table, the stub, the boxhead the stub head, the body,
and the categories, is predetermined. We use a genealogical tree, shown inZ-iqure
describe the relationships between these scopes. Thus, we can predetermine the priority for
these scopes using single inheritance. Since the remaining scopes, including the rows, the
columns, the blocks, the labels, the subcategories, the entries, the entry set, and the entry
values, are specified infrequently and may cause multiple inheritance, the priority for these
scopes is determined by users according to their requirements. For the style rules with these
scopes, the last specified style rule has the highest priority. Moreover, these style rules have
higher priority than the style rules in the preceding single-inheritance ordering.

4 OVERALL SYSTEM STRUCTURE

We specify, in XABLE, the logical structure of a table using the abstract model given in
Section2 and the presentation using the topological and style rules described in Sction
Given an abstract table, a topological specification, and a style specification, we generate
a concrete table using two processes. First, atv@ngement process generates a grid
structure and a set of size constraints for the columns and rows in the grid structure. Then,
theformatting process determines the physical dimensions of the columns and rows for the
grid structure according to the size constraints. The fttingaalgorithm and its complexity
analysis are described elsewhet&,12].

XTABLE accepts three kinds ofiput: table files, collective style files, and user in-
structions. A table file has three parts: an abstract table, a topological specification, and
a specific style specification. A collective style file contains only collective style rules.
XTABLE maintains four major data structures for the abstract table, the topological speci-
fication, the specific style specification, and the collective style specification. Their initial
values are given by a table file and a collective style file or assume defaults if neither table
file nor collective style file is provided. During the interactive editing process, these data
structures are updatedcording to user commands. We use Motif as the interface between
a user and the system. We generate three intermediate data structures whaneuer X
displays a table or compiles a table specification int®IgX file. The arrangement process
generates a grid structure and a set of size constraints, and then the formatting process
generates a concrete table. A concrete table can either be displayed through the Motif in-
terface or be transformed into a source file fX. Due to limitations of theATEX table
environment, we transform a concrete table to #%X picture environment in which all
tabular items and rules are treated as graphical objects.

176 XINXIN WANG AND DERICK WOOD

5 USER INTERFACE

We adopt an object-oriented technology ima¥LE to provide an interactive environment

for the manipulation of the logical structure, the topology, and the styles of tables. Tabular
components are classified into object classes and editing operations are associated with
them.

There are three kinds of object classes: presentational objects, logical objects, and lay-
out objects. Theresentational objectsinclude the entire table and the four major regions:
the stub, the boxhead, the stub head, and the body.Iddieal objects are the logical
components of an abstract table including category, subcategory, label, entry, entry set, and
entry value. Thdayout objects are the layout components of a concrete table including
block, row, and column. There are also three kinds of operations for the object classes: log-
ical, topological, and style. Aogical operation changes the logical structure of a table. We
can change the logical dimensions of tables by adding, removing, combining, and splitting
categories, and update the label hierarchy of a category by moving, copying, promoting,
and demoting subcategories. We can also edit the labels and enttagml dgical opera-
tion changes only the topological specification of a table, for example, transposing a table,
moving a category from the stub to the boxhead, or changing the ordering for a category.
A style operation changes only the style specification of a table, for example, changing the
cell style, the separation style, or the arrangement style for different objects.

XTABLE’s user interface enables users to select editing objects by using mouse and to
indicate the operations by the menu, tool-box, and dialog-box techniques. Bighosvs
the main window of XABLE in which a table is displayed. There are three editing areas
in the main window: stub, boxhead, and table. The categories that are assigned to the stub
(the boxhead) appear in the stub area (the boxhead area) and the concrete table is presented
in the table area. A menu bar and a set of tool boxes are created for users to use for editing.
Once users have selected an object and indicated an operation and its arguments, a new
presentation of the table is generated in the table area after applying the operation to the
object.

The most frequently used operations (Add, Remove, Copy, Move, Combine, Split, and
Text) are provided as tool boxes. Once the user clicks on a tool box, the corresponding
operation is active until the user clicks on another tool box. When a tool box is active, the
user needs to indicate to which object the operation is applied and to specify the required
arguments by pointing and dragging in the three editing areas. The tool box Select is used
to indicate the editing objects for menu operations. The content of the current active object
is displayed in the subwindow at the bottom of the main window.

Most topological operations, style operations, and system commands are listed in the
menu bar. The menu File consists of input and output commands, such as reading a table
file or a collective style file, and generating®X source files; the menu Edit consists of
the other logical and topological operations that are not available as tool boxes; the menu
Style consists of the style operations for specific style specification that can be applied
only to the current edited table; menu Collective-Style consists of the style operations
for collective style specification that can be applied to a collection of tables; the menu
Calculation consists of the operations average, total, minimum, and maximum that are used
to compute entry values; and the menu Setting consists of the commands for the selection
of the system parameters. When a style operation is selected, a dialog box pops up to assist
users to edit the formatting attributes of the style rules for the selected object.

177

XTABLE — A TABULAR EDITOR AND FORMATTER

MRSy _ _\M.xm.wwxou
0z 08 09 9 04§54 e
4 o7 0 0z 08 08 Suwds T84T
4 s/ 0z 0z 08 58 JAYULA
L 08 gg €/ &g 08 e
04 04 09 4 ¢ 08 Supdy T84T
L g/ 09 €/ 08 <8 T
W] UUSIPIN £S5V gSSY [SSY
pery uLa, Jeap
SUDQELIUEEY SJUAUUEIS Y

pesyxog I

[3xeL |311d5} [ouTquon i [Rdoy [enol [orowey Empuﬁem 8uT1185 UCTIETNOTED STAI5-9ATIOSTTO) oTMS 1TPT 3TT4

(f1s* 109 ju0d)ge yaew

alqerx (X

Figure 3. The main window of XTABLE

178 XINXIN WANG AND DERICK WOOD

6 CONCLUSIONS

XTABLE is atool that helps users to design high-quality tables in two dimensions. It provides
an interactive environment for editing the logical structure, topology, and style of a table
and for easily presenting a table with different topologies and stylessLx is also a tool

that helps users to explore the data from different viewpoints. By arranging table items
flexibly in two dimensions, users are able to discover relationships among or patterns in
the data. This ability helps users to analyze and understand tabular data in an efficient way.

Since XTABLE is a prototype for validating our tabular mod#1], it does not provide the
functionality that a production system provides. For example, we have made the simplifying
assumption that we do not model footnotes in the abstract model. Clearly, footnotes play an
important role in tables. Although we do not model footnotes, a user can still use footnotes
with any tabular entry. The limitation is that they are dealt with by the target typesetting
system, they are not manipulable as abstract objects within our model. Second, the abstract
model does not capture all tables even when we ignore footnotes. The model can be used
to specify tables that have only a multidimensional logical structure. Not all tables have
such a nice structure however; some tables are a combination of several 1dples [

The topological rules in the presentational model specify only the arrangement of labels
in the stub and in the boxhead. This approach forces users to place the most frequently
referenced items to the left or to the top of a table. ExperimetfsHave proved that
readers tend to ignore the labels that are put in the body and consider them as entries. Also,
the presentational model cannot specify all styles observed in all tables. For example, we
do not handle oblique lines; thus, we are unable to specify a table in which the headings
of the categories in both dimensions are put in the stub head, separated by an oblique line.
We also allow only horizontal typesetting of text, vertical typesetting is not provided.

We carried out experiments to measure how well our abstract model and presentational
model specifies tables in the real world. We collected tables from books in the fields of
statistics, sociology, science, and business. The results of the experitiergvieal that
the abstract model can be used to specify 56 percent of the tables if we consider footnotes,
or 97 percent of the tables if we ignore footnotes. The presentational model can be used to
specify the topology of 94 percent of the tables and to specify the style of 97 percent of
the tables. From this experiment, the majority of the tables in traditional printed documents
can be specified with a multidimensional logical structure and our presentational model
matches real-world tables.

ACKNOWLEDGEMENTS

This work has benefited from the interactions with Annédgyemann-Klein and Darrell
R. Raymond over many years. David Levy also helped us to formulate our ideas about our
editing, topological, and style models by his arguments against mathematical models in a
train from Lausanne and EP 92.

We are also grateful for financial support from the Natural Sciences and Engineering
Research Council of Canada and from the Information Technology Research Centre of
Ontario.

XTABLE — A TABULAR EDITOR AND FORMATTER 179

REFERENCES

1. A.S.C. Ehrenberg, ‘Rudiments of numeradigurnal of the Royal Satistical Society, A. 140,
part3, 277-297, (1977).

2. M. E. Lesk, ‘Thl— a program to format tables’, WiNIX Programmer’s Manual, volume 2A,

Bell Telephone Laboratories, MurrayilHHNJ, 7th edition, (Januar§979).

3. T.J.Biggerstaff, D. M. Endres, and I. R. Forman, ‘TABLE: Object oriented editing of complex
structures’, inProceeding of the 7th International Conference on Software Engineering, pp.
334-345, (1984).

4. R. J. Beachgetting Tables and lllustrations with Style, Ph.D. dissertation, Department of
Computer Science, University of Waterloo, Canada, 1985. Also issued as Technical Report
CSL-85-3, Xerox Palo Alto Research Center, Palo Alto, CA.

5. ImprovHandbook, Lotus Development Corporation, Cambridge, MA, 1991.

6. Christine Vanoirbeek/ne Modelisation de Documents pour le Formatage, Ph.D. dissertation,
Departmentd’Informatiqués cole Polytechniquedtérale de Lausanne, Lausanne, Switzerland,
1988.

7. Christine Vanoirbeek, ‘Formatting structured tables’EPO2(Proceedings of Electronic Pub-
lishing, 1992), ed., C. Vanoirbeek & G. Coray, pp. 291-309, Cambridge, UK, (1992). Cambridge
University Press.

8. L.Lamport, ATEX: A Document Preparation System, Addison-Wesley, Reading, MA, 1985.

9. D. R. RaymondpPartial Order Databases, Ph.D. dissertation, Dept. of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, 1996.

10. X.Wang and D. Wood, ‘An abstract model for tables’, Tk#aT, The Communications of the
TeX Users Group, 14(3), 231-237, (October 1993).

11. Xinxin Wang,Tabular Abstraction, Editing, and Formatting, Ph.D. dissertation, Department
of Computer Science, University of Waterloo, Canada, 1996. Available as Research Report
CS-96-09, Department of Computer Science, University of Waterloo.

12. X. Wang and D. Wood, ‘Tabular forrtiemg problems’. To appear in thehird International
Workshop on Principles of Document Processing (PODP 96), 1996.

13. P. Wright, ‘Using tabulated informatiorErgonomics, 11(4), 331-343, (1968).

	SUMMARY
	1 INTRODUCTION
	2 ABSTRACT MODEL
	3 PRESENTATIONAL MODEL
	3.1 Topological specification
	3.2 Style specification

	4 OVERALL SYSTEM STRUCTURE
	5 USER INTERFACE
	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

