
ELECTRONIC PUBLISHING, VOL. 8(2 & 3), 81–93 (JUNE & SEPTEMBER 1995)

Typographic sheets and
structured documents
HÉLÈNE RICHY AND JACQUES ANDŔE

Irisa
Campus de Beaulieu
F-35042 Rennes Cedex, France

e-mail:Helene.Richy@irisa.fr, Jacques.Andre@irisa.fr

SUMMARY
Document structure provides facilities for accessing and presenting hypermedia documents,
and style sheets support their layout on screen (or paper). However, little attention is given to
the quality of these documents in terms of typography, in the sense, for example, of abiding by
the rules of the Chicago Manual of Style. This paper shows how the specification of typographic
sheets can help apply typographic control to structured documents. This approach provides
a mapping between elements and typographic properties. A typographic checker based on
typographic sheets is presented.

KEY WORDS Typography Correctness Quality Sheets Structured documents SGML Thot

1 INTRODUCTION

For centuries, authors have been obliged to go through the ‘Gutenberg galaxy’ to be
published. Today, thanks to electronic documents and world-wide networks, authors and
readers communicate directly. Alas, this is quite often done without the knowledge or the
savoir-faire underlying the traditional activities of typographers, editors, proofreaders, and
printers. Structured documents offer an alternative to this situation by separating concerns.
A typical example is the definition of the graphical aspects of a document in so-called style
sheets, layout style, etc., allowing the author to focus on the logical contents of his/her
document.

However typography is not limited to the graphical (visual) aspects of the layout. In
fact, this is only one of three levels:

1. The lower level is concerned with characters and is usually calleddigital typography.
It describes how the characters are individually defined and rendered depending on
the device (e.g. the use ofgreyscalefor characters on screen) and on the size (optical
scaling), and how these characters are grouped as fonts [1].

2. The upper level is concerned with the layout, the graphical presentation, and the tem-
plate. This level is sometimes calledmacro-typographyand refers to ‘visual quality’,
a matter of esthetic judgement and legibility. The main goal is to insure a graphical

CCC 0894–3982/95/020081–13 Received 29 March 1996
 1995 by John Wiley & Sons, Ltd. Revised 17 June 1996

82 H. RICHY AND J. ANDRÉ

consistency while assembling all pieces of text (margin,titles, notes, bibliography,
index) and setting all graphical elements (illustrations, figures). Traditional WYSI-
WYG composition systems attempt to provide for this visual representation through
user control, whereas style sheets [2,3] offer another way to control layout.

3. An intermediate level concerns the text itself, not its layout. It works on the juxta-
position of letters, signs (such as punctuation signs) and words. This level is some-
times calledmicro-typography. The control of micro-typography consists of checking
grammatical mistakes (syntactical or spelling errors, errors in the use of punctua-
tion, capital letters, parentheses,. . .), and typographic errors (misuse of spaces or
character variants such as italic or roman). Checking micro-typography correctness
requires not only typographic knowledge, but also knowledge of linguistics and an
understanding of the text. Proofreaders work at this level.

In the following we are only interested in this intermediate level. For simplicity, we
will call typographyall the rules that are relevant to micro-typography.

Various studies about vision [1,4], legibility [5,6], and ‘textual anatomy’ [7,8] show
that defining typographic rules is a very complex question. We believe that by referring
to the know-how of professionals, a typographic checker for electronic documents can be
developed. Thus, the aims of our work are to draw on the main concepts of typography
to specify the typographic checking of electronic documents. Without expecting to replace
human proofreaders, we have developed an easy to usetypo checkerwhich will improve
the typographic style of documents. The ease of use relies on the modifiability of the rules
and their adaptability to various styles of documents.

Our approach for checking structured documents is based on what we calltypographic
sheets. Just as a style sheet specifies formatting and layout characteristics (defining boxes as
in TEX [9]) mapped with elements and attributes,a typographicsheet1 specifies typographic
characteristics mapped with elements and attributes. The purpose of typographic sheets is
to provide:

• a consistent interpretation of the typographic rules,
• a basis for implementation of a typographic checker,
• a reference for improving and extending existing style sheets.

This paper2 discusses the current state of development of our typo checker for struc-
tured documents. Analysis of typographic usage leads us to propose (in the next section)
classification for the typographic rules. A language based on these classifications is used for
definingtypo sheetsof SGML (Standard Generalized Markup Language [10]) documents,
and incidentally HTML (Hypertext Markup Language [11]) documents. An overview of
this language is presented in section3. Section4 explains the method of checking the
typography using typo sheets and describes the typo checker currently available in Thot,
an interactive editor derived from Grif [12].

1 Typo sheets are used by a typographic checker (section4), a specific tool not involved during the formatting
process.

2 We did not process our paper through this typo checker itself because its publication requirements entailed
LATEX, for which we do not have an implementation. However, a first draft was checked using the typographic
checker in Thot.

TYPOGRAPHIC SHEETS AND STRUCTURED DOCUMENTS 83

2 CLASSIFICATION OF TYPOGRAPHIC RULES

First, let us look at traditional typographic rules. They are published in books likeThe
Chicago Manual of Style[13], or the various FrenchCodes typographiques[14–16]. Some
in-house publishing rules remain unpublished. Most style manuals classify typographic
rules depending on the nature of the signs that are used. This classification is summarized
in section2.1. However, many rules also depend on various concepts of document structure
as we describe them in section2.2.

2.1 Classification by nature and signs

The manuals do not agree about all the rules3, but most of them classify typographic rules
as follows:

Punctuation Punctuation is governed by its function. For instance, ‘close’ punctuation
refers to the grammatical structure of the material (sentences). Punctuation may also
be governed by the logical structure (vertical list, title page, heading,. . .).

Abbreviations and acronyms Aside from publications in science and technology, abbre-
viations only appear in tables, notes, or bibliography. It is often an open question
whether or not periods should be used with particular abbreviations. When in doubt,
authoritative lists of abbreviations are consulted (e.g. in standard dictionaries).

Capitalization and names Patterns of capitalization for various categories (names, titles,
offices, geographical terms,. . .) are established for helping in the use of names
and of terms associated with names: several famous dictionaries are considered as
accurate sources for the capitalization and for algorithms.

Distinctive treatments of words Italics, capital letters, quotation marks,. . . may be used
to achieve special effects—emphasis, irony or whatever—or for isolating words in a
foreign language.

Quotations Quotations may be incorporated in two ways. Whether to run in or set off
a quotation is commonly determined by its length. In American practice, single
quotation marks enclose quotations within quotations. British practice is often the
reverse.

Numbers Numbers may be spelled out or composed of numerals, either in arabic or in
roman faces depending on the context. It is difficult to be entirely consistent in the
treatment of numbers in textual matter.

Hyphenation and word division When justified lines are required, some words will be
hyphenated at the ends of lines. Logical hyphenation is provided by most desktop
publishing systems (see algorithms in [17]).

3 Rules depend on languages (for example, French printers conventionally put a thin space between a word and
the subsequent semi-column; while English ones don’t), national usage varies (even for a given language, say
English, usage varies from one country to another one — as is frequently pointed out in the netnews group
comp.fonts) and even from one publisher to another one. Note that consistency is required whatever the rules
are.

84 H. RICHY AND J. ANDRÉ

2.2 Classification by context

Many rules described in the previous section depend heavily on the structural, syntactic,
semantic, linguistic or other context. For instance:

Logical structure Some rules only apply to a specific type of elements. For example, the
period is omitted after centered headings, signatures or legends.

Syntactical structure Some rules are governed by the syntactic structure of sentences.
For instance, a capital letter is used at the beginning of a sentence. Nevertheless,
unusual but intended punctuation and capitalization may contribute to the author’s
style.

Semantics Some rules are governed by the nature or the semantics of words. For example,
the titles of published works are conventionally set in italic type (The Chicago Manual
of Style);full names, and often the shortened names, of legislative or administrative
departments, bureaus, and offices are capitalized:parliament, but Parliament of
Paris, etc.

Language Some rules are governed by the language: usage of spaces around punctuation
and use of these punctuations in the sentences, word hyphenation, etc.

3 LANGUAGE FOR SPECIFYING TYPOGRAPHIC SHEETS

Our language for specifying typographic sheets is based on the classification described
in section2. Some of the contexts are easy to identify when using an editing system: the
analysis of the structural context is obvious when using a structured authoring environment;
spellingcheckers used in theauthoringenvironment identify the language when considering
multilingual documents (the language is a characteristic of the paragraph style or related
to attributes as in SGML [10], LATEX [18], or Thot [12]). However, identification of other
contexts is not so easy and may only be solved when using linguistic tools or a syntactical
analyzer [8].

For easy application on structured documents, typographic rules are first considered as
properties mapped with structured elements or attributes. The other contexts are specified
in conditional rules. For example, if a different capitalization rule applies to a French title
and to an English title, these two punctuation rules are mapped with the title element and a
condition on the language is applied to this rule.

Considering the generic structures of documents, we propose here a generic approach
for typography: atypo sheetis defined for a class of documents. A typo sheet is composed
of the set of all the typographic properties mapped with elements as defined in a generic
structure.

Before describing this typographic language, a short review of the generic approach to
structured documents is given below.

3.1 Typo sheets for structured documents

A structureddocument [19] consists of a document whose content is organized as a logical
structure comprising different types of elements such as titles, paragraphs, sections, chap-
ters, figures, etc. Some elements may have attributes (language, emphasis, etc.) describing
a specific semantics within the document. For instance, the attributelanguagewhen applied
to an element indicates in which language the corresponding text is written. Attributes may
be applied to any kind of elements: a word, a section, or a whole chapter as well.

TYPOGRAPHIC SHEETS AND STRUCTURED DOCUMENTS 85

The generic approach (ODA [20], SGML [10], Thot [12]) allows the definition of
typed elements and provides for their organization within a document: the generic logical
structure is called a Document Type Description (DTD) in SGML. Documents with the
same generic logical structure are considered as belonging to the same class of documents.

We consider that:

• A typo sheet holds all the typographic rules available for elements of documents of
the same class. This feature enables a homogeneous application of the typographic
rules within a document depending on the types of elements, on the position of the
elements in the logical structure of the document and on the attributes which may be
related to them.

• The use of the same typo sheet for checking several documents ensures consistency
and homogeneity of the documents.

• Various typo sheets may be specified, reflecting, for instance, differing typographic
requirements for technical documents and for philosophy books, for French papers
and for English publications.

• Because typography is changeable and not standarized, the typo sheet can easily be
updated to follow new styles of typography.

Thus a typo checker that relies upon various typo sheets ensures flexible control.

3.2 Overview of the language

Our typographic language is a declarative language (see the syntax in the appendix). This
language is used to write typo sheets which define the typographic rules to be applied to
different classes of documents: rules are associated to elements and attributes defined in a
DTD. These rules only apply to textual elements which require special typographic usage.

As typographic rules may depend on various contexts (see2.2), our typographic lan-
guage allows specification of various kinds of conditions within rules:

• depending on the position of the element within the document structure: on the type
of the enclosing element, of the next, or of the previous element,

• depending on the language (English, American, German, French, etc.),
• depending on the lexical unit (proper names, acronyms, etc.).

A rule can be defined at any level in the document structure. Inheritance allows rules
which are associated with an element to apply to all nested elements until the terminal level
(textual elements). However, some typographic functions calledalinea functionsdo not
apply to every textual element, but only to some of them when considered asalinea4. Thus,
the language allows the definition of alinea elements for identifying a class of elements
which are concerned with alinea functions: only elements which have been defined as
alineawill be checked by these functions. For example, a rule may require that an element
ends with a special punctuation mark only applies toalinea, i.e. only to the last textual unit
that this element may contain.

A typographic rule invokescontrol functions, each of which belongs to a category (as
identified in section2.1): capitalization, abbreviation, punctuation,. . . The classification

4 alineaare paragraphs. The wordparagraphis not used here because it is overridden by a restricted meaning in
most document models.

86 H. RICHY AND J. ANDRÉ

of functions into categories offers several advantages. First, it allows limitation of inheri-
tance to functions belonging to the same category. For instance, the definition of a function
belonging to the category ‘punctuation’ on an element enables inheritance of any function
belonging to this category that could be inherited from an upper level. A second advantage
concerns the running of a typo checker. The categories permit judicious ordering of the
evaluation of rules, e.g., checking abbreviations before checking punctuation. A last ad-
vantage concerns the checking capabilities. Based on these categories, a typo checker will
be able to propose partial verification of typographic rules. The category can be considered
as a filter allowing extraction of rules from an existing typo sheet. For instance, a user who
wants to check the use of capitals will only indicateCapitaland not the various functions
that might otherwise be invokedaccording to the specific style sheet. Any number of func-
tions can be created and referenced in a typo sheet and the naming of functions is without
restriction. However, the categories of functions are fixed by the grammar of the language5.
Thanks to this feature, a typo checker can easily be extended when developing new control
programs associated to new functions6.

3.3 Content of a typo sheet

As defined in the grammar of the language (see appendix), a typo sheet is composed of four
sections (see in Figure1,an exampleextracted froma typo sheet for HTML documents).The
first section is a list ofalineaelements (ALINEA). In the second section (COMPOSITION),
it is possible to definecomposition modelsas sets of typographic rules that may be reused
as typographic rules either on elements or on attributes. The typographic rules applying on
elements (ELEMENT) and attributes (ATTR) are defined in the two last sections. Some of
them may refer to composition models which have been previously defined in the second
section.

A typographic language may provide the following categories of control functions:

• Abbreviation: use of abbreviations,
• Attribute: use of attributes and presentation,
• Capital: use of capitals,
• Distance: spacing between elements,
• Exponent: use of superscripts,
• InsertPair: quotations and parentheses,
• Punctuation: punctuation (appearance and position),
• SpaceTable: spacing between characters.
• Word: typography of words (capitals, italics,. . .).

Several functions may be defined in each category. For instance, in the categoryDis-
tance, relevant functions for checking spacing are listed below:

• DistAlineaNonemay check no final space left,
• DistNextHardmay check ‘hard’ (em-) space after the element,
• DistPrevSoftmay check ‘soft’ space before the element,
• DistNextNonemay check no space between elements,
• DistPrevPunctPar may check the relative position of a final punctuation and

an element such as reference to a note, etc.
5 In the first implementation within Thot nine categories are implemented.
6 The use of an interpreted language (such as Tcl) for writing such functions will allow a faster development and

experimentation with new typographic functions.

TYPOGRAPHIC SHEETS AND STRUCTURED DOCUMENTS 87

TYPOGRAPHY HTML
ALINEA

H1, H2, H3, H4, H5, H6, Toggle_Item;
...

COMPOSITION
HeadingMod =
BEGIN
IF (Language = English) Capital: CapAllWord;
IF (Language = Francais) Capital: CapFirstElem;
Punctuation: PunctHighNone;
END;
...

ELEMENT
Form:
BEGIN
IF (IS Acronym) Word: CapitAll;
InsertPair: PairNone;
END;

H1: HeadingMod;
Toggle_Item:
BEGIN
Capital: CapFirstElem;
Punctuation: PunctHighNone;
END;

Paragraph:
BEGIN
IF (IN Form AND Next = Toggle_Menu)
Punctuation: PunctColon;

IF (IN Form AND NOT Next = Toggle_Menu)
Punctuation: PunctNone;

IF (NOT IN Form) Punctuation: PunctEnd;
InsertPair: FunctNil;

END;
...

ATTR
Default_Value (Submit_Input):
Capital: CapFirstElem;

...
END.

Figure 1. A typo sheet for an HTML Form (extract)

88 H. RICHY AND J. ANDRÉ

The syntax of typographic rules is identical whether they are associated to elements or
to attributes. A globalnull rule — available for any category of function (FunctNil in
Figure1) — can be used to supress inheritance without defining a new rule on the current
element. The rules may be either imperative or conditional and a composition model can be
used as a typographic rule. A composition model associates a name to a set of typographic
rules. For instance, a composition model calledHeadingMod can be defined and reused
for defining the typographic rules associated with H1 element (or H2 element, as well).
Various conditional rules may be specified: rules depending on the identified lexical unit, on
the position in the logical structure or on the language. The rules to be applied on attributes
may apply either for any value of the attribute or only for special values. In the latter case,
one typographic rule may be written foreach value of the attribute.

A special treatment concerns the attributeLanguage. The Languageattribute can be
involved in conditional rules by means of aLanguagecondition. Thus, when using con-
ditional rules depending on theLanguageattribute value, only one typo sheet is used for
checking multilingual documents. Nevertheless, it is possible to define a typo sheet for
each language andeach style of document, if wanted.

4 IMPLEMENTATION OF A TYPO CHECKER

The language for typography described above has been implemented and used for writing
typo sheets for structured documents. This section describes a typo checker based on the
typo sheets and developed in Thot (more details are given in [21]). This typo checker detects
typographicerrors such as capitalization or punctuationerrors withinstructured documents.
In the same way as a spelling checker does [22], the typo checker analyses the text and
detects errors concerning micro-typography within the textual parts of the document. This
checker may also suggest a list of corrections to help users recover from errors. A generic
approach has been adopted. This approach consists of describing homogeneous sets of
typographic properties related to a document class [12].

4.1 Specification of the typo sheets

A typo sheet specifies typo characteristics mapped with elements and attributes that are
defined in a DTD. Several style sheets and several typo sheets may be defined for the
same class of documents (the same DTD). It is generally useful to define various typo
sheets for different classes of documents: for example, use of punctuation changes when
considering atechnical reportor when considering aset of conference slides. In order to
avoid proliferation of typo sheets for a class of document, conditional typographic rules
are defined. For example, conditional rules depending on the language attribute are defined
for checking multilingual documents.

Each control function7 searches for one category of typographic error within a text:
a missing capital, a misused punctuation, a misused abbreviation, etc. Each function is
composed of a detection part and of a correction part.

7 Control functions are written in the C language. A set of procedures (for selection, search or correction) is
provided to help writing new functions. The ability to define new functions in TCL [23] and to write them
directly in the typography models is planned.

TYPOGRAPHIC SHEETS AND STRUCTURED DOCUMENTS 89

4.2 Operating mode and user interface

The typo checker works as follows: considering a structured document, it first reads the
typo sheet(s) related to the class of this document. It then checks the rules issued from these
sheets, element by element, using any inherited functions and functions invoked based on
attributes. When an attribute is defined, the typographic rules associated with this attribute
override the others.

The typo checker works in the same way as the Thot spelling checker does [22]. The
checking process is interactive. A dialog between the human proofreader and the typo
checker supports resolution of ambiguities. All text belonging to thechecking areaof the
document is checked. Each control function is executed one by one on the current leaf (text
only)—in the logical tree structure of the document. If no typographic error is detected, the
next text leaf is checked until the entire checking area has been examined.

A dialog form displayed in a window on the screen allows theuser to define thechecking
area (before or after the current selection, within the selection or in the whole document).
When a typographic error is detected, the suspect text is highlighted and displayed on the
screen within the document window. A special message in the dialog window indicates the
kind of error that has been detected. If the option ‘correction on demand’ is selected, the
dialogue indicates which kind of correction is wanted and displays the related proposals
(see Figure2).

At present the typo checker can propose the following corrections:

• addition or suppression of a character (punctuation, parenthesis, apostrophe, space,
etc.)

• replacement of a character or a word by another character or word (punctuation,
abbreviation, or acronym, etc.)

• insertion or suppression of an attribute (italics, bold, etc.)
• moving a character (a period or a parenthesis) before a reference,
• capitalization (caps or small caps) or lowercase.

The user can either confirm, stop, or ask for explanation. It is also possible to modify
the text directly within the document window or continue searching for the next error.

In addition, an option window (see Figure3) gives options for controlling the checking
process: categories of control functions to be checked, typo sheet to be used, types of
elements or types of characters to be checked.

4.3 Initial results

The success of a typo checker based on typo sheets depends on a set of features:

• quality typo sheets: whether, for a particular category and function, inheritance should
be specified or explicitly avoided.

• efficient control functions: it may be more efficient to gather several functions than
to split them; for example, for checking small caps and initial caps, it will be better
to use only one function that does both, and thus propose only one correction.

• accurate sources for recognition of lexical units: for example, lexicons of historical
and cultural terms when working on historical documents, or lexicons of scien-
tific terminology (plants, animals, geological terms, astronomical terms, etc.) when
checking scientific documents for capitalization of names.

90 H. RICHY AND J. ANDRÉ

Figure 2. Dialog window of the typo checker within the Thot authoring environment. (Here a capital
is proposed for the word ‘checker’ because it is in atitle.)

The first experiments are very promising. We found that a checking process based only
on structural and on some linguistic considerations detected many typographic errors and
that the proposed corrections were pertinent. See footnote2.

Some rules, such as the usage of spacing, could be checked using the automatic cor-
rection mode. However, we found it inadvisable to ask for automatic correction of all
typographic rules: because the user may better ‘understand’ the document content than the
typo checker does, the user can resolve any ambiguities by a dialogue with the typographic
checker as provided by Thot. For example, ambiguities could be detected when checking
capitals or abbreviations,but their resolution often requires an understanding of the content.
Despite these successes, a precise measure of the results is difficult because there is no

TYPOGRAPHIC SHEETS AND STRUCTURED DOCUMENTS 91

Figure 3. Option window for the typo checker

‘standard’ set of erroneous documents for testing and many corrections are a matter of
taste.

In short, the use of the typo checker insures the homogeneity of documents as to the
application of the typographic rules. Further studies and experiments for validating the
typo checker are required, particularly for preventing some rules from interfering with
each other. The integration of this typo checker within Tamaya [24] a structured authoring
environment for the Web, based on Thot, is under consideration. Such a tool will provide
easy checking of the typography correctness of HTML documents.

5 CONCLUSION

Desktop publishing and editing systems still have much to learn from the experience of
professional editors and proofreaders who have spent many years improving the art of
printing. Users are far from having gained such lengthy experience, and few of them feel
concerned with pleasing typography either for printed documents, or for text appearing on
displays. Because many users ignore typographic rules, a tool such as our typo checker is
welcome, especially when documents are distributed in electronic form, without guidelines
from professional editors.

ACKNOWLEDGEMENTS

The authors would like to thank Jeanine Grimault for her experience in proofreading and her
help in understanding typographic rules, the anonymous reviewers and especially Robert A.
Morris for his comments and his careful review of this paper and for his editorial assistance.
Merci!

92 H. RICHY AND J. ANDRÉ

REFERENCES

1. Visual and Technical Aspects of type, ed., R. Hersch, Cambridge University Press, Cambridge,
UK, 1993.

2. H. Lie and B. Bos. Cascading Style Sheets, level 1, W3C Working Draft, May 1996.
http://www.w3.org/pub/WWW/TR/WD-css1.html.

3. ISO,Information technology – Text and office systems – Document Style Semantics and Speci-
fication Language (DSSSL), 1991. ISO/IEC DIS 10179.

4. G. Legge, ‘Psychophysics of reading’,Vision research, 239–252, (1985).
5. R. A. Morris, K. Berry, and K. Hargreaves, ‘Towards quantification of the effects of typographic

variation on readability’,SID93 Digest, (1993).
6. M. Tinker,Legibility of Print, Iowa State University Press, USA, 1963.
7. P. Norrish, ‘Semantic structures of text’, inStructured documents, eds., J. Andr´e, R. Furuta, and

V. Quint, pp. 143–159, Cambridge, UK, (1989). Cambridge University Press.
8. J. Virbel, ‘The Contribution of Linguistic Knowledge to the Interpretation of Text Structures’,

in Structured Documents, eds., J. Andr´e, R. Furuta, and V. Quint, pp. 161–180, Cambridge, UK,
(1989). Cambridge University Press.

9. D. E. Knuth,The TeXbook, Addison-Wesley, Reading, Massachusetts, USA, 1984.
10. ISO,Information processing– Textand office systems– StandardGeneralizedMarkup Language

(SGML), October 1986. ISO 8879–1986(E).
11. T. Berners-Lee and D. Connoly. Hypertext Markup Language - 2.0, November 1995.

ftp://ds.internic.net/rfc/rfc1866.txt.
12. V. Quint and I. Vatton, ‘Grif: an Interactive System for Structured Document manipulation’,

in Text Processing and Document Manipulation, ed., J. C. van Vliet, pp. 200–213, Cambridge,
UK, (1986). Cambridge University Press.

13. The Chicago Manual of Style, The University of Chicago Press, Chicago, Illinois, USA, 1993.
14. Lexique des r`egles typographiques en usage `a l’Imprimerie nationale, Imprimerie nationale,

France, October 1990.
15. Code typographique, Fédération nationale du personnel d’encadrement des industries poly-

graphiques et de la communication, Paris, France, 1981.
16. Guide du typographe romand, Groupe de Lausanne de l’Association suisse des compositeurs `a

la machine, Switzerland, 1994.
17. F. M. Liang,Word Hy-phen-a-tion by computer, Ph.D. dissertation, Standford University, USA,

June 1983.
18. L. Lamport, LATEX, A Document PreparationSystem, Addison-Wesley,Reading, Massachusetts,

USA, 1986.
19. R. Furuta, V. Quint, and J. Andr´e, ‘Interactively Editing Structured Documents’,Electronic

Publishing-Origination, Dissemination, and Design, 1(1), 19–44, (April 1988).
20. ISO,Information processing – Text and office systems – Office Document Architecture (ODA),

1989. ISO 8613.
21. H. Richy and J. Andr´e, ‘Correcteur typographique pour l’´editionélectronique’, Research report

2562, Inria, Irisa, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France), (April
1995). [Richy95a] at http://opera.inrialpes.fr/OPERA/BibOpera.html.

22. H. Richy, P. Frison, and́E. Picheral, ‘Multilingual String-to-String Correction in Grif, a structured
editor’, in EP’92, eds., C. Vanoirbeek and G. Coray, pp. 183–198, Cambridge, UK, (1992).
Cambridge University Press. [Richy92a] at http://opera.inrialpes.fr/OPERA/BibOpera.html.

23. J. K. Ousterhout, ‘Tcl: An Embeddable Command Language’, inUSENIX Conference, (Winter
1990).

24. V. Quint, C. Roisin, and I. Vatton, ‘A structured authoring environment for the World-Wide
Web’, Computer Networks and ISDN Systems, 27(6), 831–840, (April 1995). [Quint95b] at
http://opera.inrialpes.fr/OPERA/BibOpera.html.

25. V. Quint, ‘The Languages of Thot’, Int. Report, Opera project, Imag, Grenoble, France, (De-
cember 1995). Translated by E. Munson, http://opera.inrialpes.fr/OPERA/BibOpera.html.

TYPOGRAPHIC SHEETS AND STRUCTURED DOCUMENTS 93

APPENDIX: Grammar of the typo language

This appendix gives the syntax of the grammar of the typo language of Thot. It is described
here in the M meta-language [25].

TypoSheet = ’TYPOGRAPHY’ IdentType ’;’ [’ALINEA’ SeqOfType]
[’COMPOSITION’ SeqOfMod] [’ELEMENT’ SeqOfTypo]
[’ATTR’ SeqOfTypoAttr] ’END’ .

SeqOfType = IdentType < ’,’ IdentType > ’;’ .
TypeFunct = ’Abbreviation’ /’Attribute’ /’Capital’ /’Distance’ /

’Exponent’/’InsertPair’ /’Punctuation’ /’SpaceTable’/
’Word’ .

IdentFunct = NAME .
TypoRule = [’IF’ ’(’ SeqOfCondition ’)’] SeqOfParam ’;’.
SeqOfParam = ’BEGIN’ ParamTypo < ParamTypo > ’END’ ’;’/ParamTypo .
ParamTypo = TypeFunct ’:’ IdFunct / IdentMod .
IdFunct = IdentFunct [’=’ DefFunct] / ’FunctNil’ .
DefFunct = ’BEGIN’ CmdTcl ’END’.
CmdTcl = STRING .
SeqOfCondition = Condition < ’AND’ Condition > .
Condition = [’NOT’] ConditionElem .
ConditionElem = ’First’ / ’Last’ / RelType OpType IdentType /

’IN’ IdentType / ’LANGUAGE’ ’=’ Language /
’IS’ LexicalUnit .

OpType = ’IN’ / ’=’ .
RelType = ’Next’ / ’Previous’ .
LexicalUnit = NAME .
Language = NAME .
SeqOfMod = Mod < Mod > .
Mod = IdentMod ’=’ SeqOfRules .
IdentMod = NAME .
SeqOfRules = ’BEGIN’ TypoRule < TypoRule > ’END’ ’;’ / TypoRule .
SeqOfTypo = Typo < Typo > .
Typo = IdentType ’:’ SeqOfRules .
SeqOfTypoAttr = TransAttr < TransAttr > .
TransAttr = AttrIdent [’(’ IdentType ’)’] [AttrRelat] ’:’

SeqOfRules .
AttrIdent = NAME .
AttrRelat = ’=’ AttrValue/ ’>’ [’-’] MinVal/ ’<’ [’-’] MaxVal/

’IN’ ’[’ [’-’] MinInterval ’..’ [’-’] MaxInterval’]’.
AttrValue = [’-’] ValEqual / TextEqual / AttrValIdent .
MinVal = NUMBER .
MaxVal = NUMBER .
MinInterval = NUMBER .
MaxInterval = NUMBER .
ValEqual = NUMBER .
TextEqual = STRING .
AttrValIdent = NAME .
IdentType = NAME .

	SUMMARY
	1 INTRODUCTION
	2 CLASSIFICATION OF TYPOGRAPHIC RULES
	2.1 Classification by nature and signs
	2.2 Classification by context

	3 LANGUAGE FOR SPECIFYING TYPOGRAPHIC SHEETS
	3.1 Typo sheets for structured documents
	3.2 Overview of the language
	3.3 Content of a typo sheet

	4 IMPLEMENTATION OF A TYPO CHECKER
	4.1 Specification of the typo sheets
	4.2 Operating mode and user interface
	4.3 Initial results

	5 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX: Grammar of the typo language

