
ELECTRONIC PUBLISHING, VOL. 8(2 & 3), 125–138 (JUNE & SEPTEMBER 1995)

A new presentation language
for structured documents
ETHAN V. MUNSON

Department of Electrical Engineering and Computer Science
University of Wisconsin-Milwaukee
Milwaukee, WI 53201
U.S.A.

e-mail: munson@cs.uwm.edu

SUMMARY
PSL is a new presentation specification language for structured documents. It is the first such
language that is fully configurable and it is also extensible. PSL is able to support a very general
form of out-of-order layout without having to provide a general system of tree transformations.
PSL also makes an explicit distinction between the specified layout of the elements of a document
and the actual layout that results from the formatting process. PSL’s syntax and semantics are
simple and general.

This paper describes the syntax and semantics of PSL using a simple text document as a
running example and compares PSL to a number of other presentation specification languages.

1 INTRODUCTION

A central premise behind the development of the structured document model has been
that the appearance of documents should be specified separately from their structure and
content. This separation allows the user of a structured document system to display the same
document in very different styles without modifying the document itself. The user simply
chooses a different style specification and the document’s appearance changes to match the
appearance rules found there. This flexibility in presentation is an important advantage of
structured document systems over mass-market word-processing and desktop-publishing
software. Clearly, the power and flexibility of the language used to specify presentation is
critical to the success of a structured document system.

This paper presents a new presentation specification language, PSL, which has four
innovative qualities.

Configurability The language definition makes no mention of the features of any particular
application or medium. It defines a set of medium-independent constructs which can
be adapted by each structured document application to that application’s particular
needs.

Extensibility PSL provides an extension service which allows the application to introduce
new concepts into the specification language.

Out-of-Order Layout In PSL, layout is specified by constraints between elements of the
document. It is possible define constraints that place document elements on the screen
in an order different from their order in a tree traversal. This approach to layout is
quite different from the standard flow model and eliminates the need to support a
general tree transformation system, such as can be found in DSSSL [1].

CCC 0894–3982/95/020125–14 Received 16 April 1996
 1995 by John Wiley & Sons, Ltd. Revised 28 June 1996



126 ETHAN V. MUNSON

Actual/Specified Layout: PSL makes an important and useful distinction between the
specified size and position of an object and theactual size and position that result
from the formatting process. Making this distinction explicit is critical to the success
of PSL’s constraint-based layout specifications.

In addition, PSL is designed for ease of use. Both the syntax and semantics of PSL are
quite simple and general. There are essentially no special cases and the language appears
to be quite accessible to users though, to date, there has been no formal usability testing.

PSL is the specification language of Proteus [2,3], a portable presentation specification
system that supports multiple, synchronized presentations. Proteus was originally designed
to meet the needs of the Ensemble software development and multimedia document en-
vironment [4]. More recently, it has been made into an independent library. A modified
version of the NCSA Mosaic browser for the World Wide Web which uses Proteus for
presentation control has recently been created [5] and work is under way to use Proteus
in the Lynx tty-based WWW browser and a Windows-based editor for canonical SGML
documents.

The remainder of this paper is organized as follows. Section 2 provides some back-
ground on presentation specification languages for structured documents and on the appli-
cations for which PSL was designed. Section 3 presents the PSL language in some detail
along with examples of its use. Section 4 compares PSL to other presentation specification
languages and suggests future directions for the language. It is followed by conclusions in
Section 5.

2 BACKGROUND

While there is long history of research on structured document editors [6,7,8,9], work on
presentation specification languages became common only recently.

For PSL, the most closely related research is the pioneering work of Quint and Vatton
on Grif [7,9] and its presentation schema language, P [10]. Grif was the first document
systemto providesignificant support for multiplesimultaneouspresentationsand compound
documents (documents that include other documents in arbitrary combinations). P is a
powerful, declarative presentation language providing excellent support for text formatting
and more limited support for mathematics and graphics formatting.

P has an easy-to-read syntax reminiscent of Pascal, however, the grammar and semantics
have many special cases which make aspects of the language difficult to grasp. In particular,
many presentation rules in P are written in a manner that suggests that formatting attributes
may be constrained to the value of arbitrary expressions, when in fact only a very restricted
class of expressions is allowed.

Weitzman and Wittenberg showed how relational grammars can be used for multi-
media document presentation [11]. Relational grammars are Lisp-based specifications of
document structure which they extended to support presentation control. Document layout
is specified by constraint, but only simple alignment constraints are allowed. Non-layout
aspects of presentation are controlled using syntax similar to ‘set’ functions in an object-
oriented language. Relational grammars specify structure and presentation together, which
prevents them from supporting multiple presentations.

DSSSL [1] is a proposed presentation specification language for SGML that is now a
Draft International Standard. While a complete implementation of DSSSL is not yet widely



NEW PRESENTATION LANGUAGE 127

Test

“This is ...”

Paragraph

“A Test ...”

Title

“Title:”

TitleLabel

Figure 1. The trees used in the sample presentation.The nodes and arcs drawn in solid lines represent
the document tree. The presentation tree contains all the nodes of the document tree plus the dashed

node and arc

available, DSSSL specifications appear to work well for documents that are primarily
textual. DSSSL is a complex language based on Scheme that supports many data types.
While it is very powerful, it also appears inaccessible to end-users.

DSSSL has another important limitation. In order to support document presentations
that rearrange the order of elements in a document, contain generated information like
section numbers, or elide parts of the document, DSSSL has a module that can perform
arbitrary transformations on the document tree. These unrestricted transformations make it
difficult to map on-screen selections in a WYSIWIG editor back to the pre-transformation
document tree and thus hinder the construction of direct-manipulation editors for SGML
documents. As a result, DSSSL is considered unsuitable for interactive applications. Other
SGML style systems [12,13] sacrifice the ability to do out-of-order layout in order to gain
interactivity.

Neither P nor relational grammars are configurable or extensible in a general way.
This means that it is simply not possible to add features that the designers have not
already conceived of. These languages cannot be applied to new media, cannot support
unanticipated formatting features, and cannot allow presentation to be based on concepts
outside the existing scope of the language.

The DSSSL standard is somewhat more adaptable. Parts of the standard are optional
and may be left out of particular implementations. The standard allows the definition of
new flow objects and new formatting parameters (calledcharacteristics andproperties).
The mechanism for defining characteristics is fully described, but the mechanisms for
properties and flow objects are not explained in much detail, so it is difficult to determine
how much configurability they provide. Furthermore, much of the DSSSL specification
assumes the formatting is done in two dimensions, which largely restricts its use to text and
static two-dimensional graphics.

3 THE PSL LANGUAGE

The PSL language is best understood by working with example documents. This section
uses a running example, called the ‘sample document,’ whose document tree is shown
in Figure1. The “sample presentation” of this document (produced using Ensemble) can
be seen in Figure2.



128 ETHAN V. MUNSON

Figure 2. The sample presentation

3.1 Overview

A PSL specification, called apresentation schema, is a simple, declarative specification of
appearance for a class of documents. PSL expects this class to be defined by a separate
grammar such as a structure schema written in S [10] or an SGML DTD [14]. However,
the current Proteus runtime system does not require access to this grammar.

A presentation schema specifies how three presentation services (tree elaboration,
attribute propagation, and box layout) should be applied to instances of the document class.
Figure3 shows the ‘sample schema’ that was used to produce the sample presentation.

A presentation schema has four sections: header, defaults, elaborations, and rules. The

MEDIUM text;
PRESENTATION sample FOR test;

DEFAULT {
VertPos:

Top = LeftSib . Actual Bottom;
}
ELABORATIONS {

TitleLabel : Text("Title:") {}
}
RULES {

TEST {
Width = 432;
HorizPos: Left = 36;
VertPos: Top = 12;
FontFamily =

"new century schoolbook";
Size = 14;
Bold = No;

Italic = No;
LineSpacing = 1.2;
Justify = LeftJustify;
Indent = 0;
Visible = Yes;

}
TITLE {
CreateBefore(TitleLabel);
HorizPos: Left = LeftSib .
Actual Right + 12;

VertPos: Top =
LeftSib . Top;

Italic = Yes;
}
PARAGRAPH {
VertPos: Top = LeftSib .
Actual Bottom + 5;

Justify = BlockJustify;
Indent = 20;

}
}

Figure 3. Presentation schema used to produce the sample presentation



NEW PRESENTATION LANGUAGE 129

header section declares the schema’s medium, its name, and the name of the structure
schema to which it corresponds. The DEFAULTS section defines default presentation rules
that are used when there are no specific rules for a node. The ELABORATIONS section
declares the types of nodes that can be generated by tree elaboration. Finally, the RULES
section is used to define specific presentation rules for each of thenode types defined in the
document class.

In general, PSL is case-insensitive. An important exception occurs for node names,
which are case-sensitive. Node names are handled specially because document designers
do not always have control over the grammars for their documents. This is particularly true
for programming language grammars which may have to conform to standards that assume
the use of case-sensitive compiler tools (such as Bison [15]). In addition, node names may
either be unquoted identifiers (as shown in Figure3) or quoted strings. This allows the use
of grammars that define nodes whose names are also keywords in PSL. Such names must
be quoted in order to avoid producing parse errors in the schema.

3.2 Tree elaboration

Tree elaboration is used to generate material that is not present in the document itself, such
as the label ‘Title:’ in the sample presentation. Tree elaboration works by adding nodes
to a presentation tree, which is a copy of the document tree that has been elaborated by
additional nodes specified in the presentation schema. The presentation tree for the sample
presentation was shown in Figure1. It contains all three nodes of the document tree plus a
new node of typeTitleLabel.

Tree elaboration is specified in two parts: node declarations and creation commands.
Nodes that can be generated are declared in the ELABORATIONS section of the schema.
The elaborations section of the sample schema declares TitleLabel nodes to be of the Text
primitive type and to be initialized with the string ‘Title:’. The initialization argument for
this node could have been any expression returning a string. It is also possible to generate
internal nodes, which allows the creation of more complex structures such as tables of
contents. The pair of braces at the end of the declaration could have contained presentation
rules specific to TitleLabel nodes.

The actual generation of nodes is controlled by creation commands. The TitleLabel
node is added to the presentation tree because the RULES section contains a creation
command for the Title node type:

CreateBefore{TitleLabel);

TheCreateBefore command causes a node of type TitleLabel to be created as a left
sibling of the Title node. There are three other creation commands. TheCreateAfter
command creates right siblings, while theCreateFirst andCreateLast commands
create first and last children, respectively. All creation commands take a single argument
which is the name of a node declared in the ELABORATIONS section of the schema.

3.3 Attribute propagation

The central operation of Ensemble’s text medium is the line-breaking of paragraphs. The
line-breaking operation requires the text of a node and a number of parameters that specify
font, justification, line spacing. From these inputs, it converts the words of the text into lines



130 ETHAN V. MUNSON

of characters to be drawn on a screen or page. The values of the line-breaking operation’s
parameters are defined by theattribute propagation rules of the presentation schema.

For instance, attribute propagation rules in the sample schema set the font of the root
node of theTest document to be 14 point New Century Schoolbook in the Roman style
(which is neither bold nor italic). These values are propagated to the rest of the presentation
tree by simple inheritance. The Title node has a rule that overrides the inherited value of
the Italic attribute.

3.3.1 Attribute rules

Attribute rules have a simple syntax:

<attribute name> = <expression> ;

Each application has its own set of attributes, determined by the demands of its formatting
operations. For instance, Ensemble’s text medium currently has 15 attributes control-
ling font (FontFamily, Size, Bold, and Italic), hyphenation (Hyphenate, MinHyph, Min-
Left, MinRight), justification, indentation, line-spacing, visibility, foreground color, and
background color. Each attribute has a type, which is either boolean, string, real, or an
application-specific enumeration type.

The right hand side of the attribute rule can contain any expression whose type is the
same as that of the attribute named on the left hand side. Expressions can be constructed
using a variety of operations and functions common to general-purpose programming
languages including standard arithmetic, comparison, and boolean operators, common
mathematical functions (such as min, max, and round) and trigonometric functions.

All the presentation rules (attribute, tree elaboration, and box layout) for a single node
type are defined together in a rule list, which appears between braces after the name of
the node. Typically, the rule block contains several rules,each terminated by a semi-colon.
Alternate rule sets for a node type can be defined using an if-then-elsif-else syntax.

3.3.2 Defining attribute constraints

Attribute values can be constrained to depend on the attribute values of other nodes by
using the attribute access expression, for which the syntax is:

<node expression> . <attribute name>

The value of an attribute access expression is the value of the named attribute for thenode
returned by the expression on the left hand side of the dot. For instance, the following
expression gives the value of the parent node’sSize attribute:

Parent . Size

It is not possible to define attributes whose type is ‘node’, but there are several functions
that return nodes, any of which can appear in the left hand side of an attributeaccess
expression. Some of these functions return immediate neighbors (Parent, LeftSib,
RightSib, FirstChild, LastChild, andNthChild), while others return nodes
that may be more distant (Root,AncestorOfType, andCreator). All these functions
have two forms. One form takes an explicit argument of type node. The other form does not



NEW PRESENTATION LANGUAGE 131

have this explicit argument and instead returns a value computed relative to thedefining
node. The defining node is the node for which the attribute rule was defined. There is also
aSelf function which returns the defining node and is used in contexts where an explicit
node is required.

Collectively, these functions are designed to allow the specification of constraints
between the defining node and every other node in the tree. It is easiest to define constraints
with neighboring nodes, since the tree navigation functions and theNthChild function
can be used to specify all immediate neighbors. More distant nodes in the tree can be
specified through function composition, as in

FirstChild(LeftSib(Parent)) . Size

which specifies theSize attribute of a ‘cousin’ node.

3.3.3 Default rules and the order of evaluation

Proteus’s presentation schema language has a system of default rules that help reduce the
size and complexity of presentation schemas. There are two sets of default rules, explicit
and implicit.

Explicit default rules are defined in the DEFAULTS section of the schema which
contains a rule list having the same syntax and semantics as the rule lists for specific node
types. These rules are primarily used when there is no node-specific rule for the attribute,
but they are also used when the node-specific rulefails. A rule fails when its expression
cannot be computed for some reason. This could occur because of an arithmetic error (such
as division by zero), but most commonly it results from tree navigation. For instance, a
node’s first child has no left sibling, so if theLeftSib function is invoked with a first
child as its argument, the function fails.

Theimplicit default rule is used when there is no explicit default rule for an attribute or
when the explicit default rule fails. The implicit default rule uses simple inheritance, which
is equivalent to a rule of the form

Attribute = Parent . Attribute ;

The implicit default rule can fail if the root node does not have a valid rule. So, to insure
that attribute evaluation always returns a valid value, every attribute has a global default
value which is returned in this case.

3.4 Box layout

In Proteus, thebox layout service is used to specify the positions of the elements of the
document. The box layout service is based on a model of nested boxes. In this model,each
node in the presentation tree has a bounding box, which for a two-dimensional medium
like text, is the smallest rectangle that encloses all of the text of the node. The nodes of the
presentation tree are laid out by defining constraints between these bounding boxes.

The box layout service defines four attributes foreach dimension supported by the
medium. The generic names of these attributes areextent, minimum, maximum, andcenter
but each application renames them. For example, in Ensemble the text medium has two
dimensionsHorizontalandVertical. The attributes of the Horizontal dimension areWidth,



132 ETHAN V. MUNSON

Some Text
Left (minimum) HMiddle (center) Right (maximum)

Top (minimum)

VMiddle (center)

Bottom (maximum)

Width (extent)

Height (center)

Figure 4. Box layout attributes. The rectangle around the text fragment represents the fragment’s
bounding box. The four box layout attributes of the horizontal dimension are shown below the
bounding box. The position attributes of the vertical dimension are shown on the left side of the

bounding box, while the vertical extent attribute (Height is shown on the right side

Left, Right, andHMiddle while those of the Vertical dimension areHeight, Top,
Bottom, andVMiddle. Figure4 shows the relationship between these attributes and the
bounding box of a text fragment.

While each dimension logically has four attributes, there are only two degrees of
freedom among them. Thus, some special handling is required for dimensional attributes.
PSL adopts the solution used in Grif’s presentation language, P [10], which is to give each
dimension only two real attributes,extent and position. The three non-extent attributes
(minimum, maximum and center) are given a subsidiary role to the position attribute and
are calledpoints. In the text medium, the position attributes for the horizontal and vertical
dimensions are calledHorizPos andVertPos, respectively.

Extent attributes are handled just like other attributes in the presentation schema lan-
guage, but rules for position attributes are defined with a special syntax:

<position name> : <point name> = <expression> ;

In the text medium’s horizontal dimension, one possible rule would be:

HorizPos: Left = LeftSib . Right;

This rule constrains its node’s left edge to be aligned with the right edge of its left sibling.
Notice that point names, not position names are used on the right-hand side of attribute
access expressions.

3.4.1 Specified and actual layout

Experience working with presentation schemas in Ensemble [16] led to the discovery that
there are actually two sets of bounding boxes for the elements of a document:specified
andactual. The rules in presentation schemas define the specified bounding box, which
expresses a nominal size for the document element. This line from the schema for the
sample presentation

Width = 432;

specifies that the width of the Test node (and by the implicit default rule, its TitleLabel,
Title and Paragraph children) should be 432 points (6 inches). But theactual widths of the
TitleLabel and Title nodes are much smaller because theydon’t contain enough text to fill
a line.



NEW PRESENTATION LANGUAGE 133

Figure 5. This figure is illustrates the effect of stroke-width and rotation on the actual bounding box
of a line. These three lines are all of the same length. The left line is stroked with a .5 point pen and
has a rotation of 0◦. The middle line is stroked with a 20 point pen and has a rotation of 0◦. The right
line is stroked with a .5 point pen and has a rotation of 45◦. Its bounding box is shown as a dashed

square

It is important to give the author of a presentation schema access to both the specified
and actual dimensional attributes. The schema for the sample presentation includes the
following rule:

Title {
HorizPos: Left = LeftSib . Actual Right + 12;
...

}

This rule sets the Title node’sspecified left edge to be 12 points to the right of the TitleLabel
node’sactual right edge, which is about 120 points from the left edge of the window in
Figure2. If the Actual keyword were absent, the Title node’s left edge would be set
at a ridiculous position 468 points from the left edge of the window (i.e. the sum of the
TitleLabel node’s specifiedLeft andWidth attributes).

This distinction between specified and actual layout is important in all media. Figure5
shows some of the ways the distinctionarises in graphics, where attributes like stroke-width
and rotation can dramatically alter the bounding box of an object.

3.4.2 Out-of-order layout

PSL places no restrictions on layout constraints. This allows the presentation schema
author to write layout rules that draw the elements of the document on the screen in an
order different from their order in a traversal of the presentation tree. Figure6 shows a new
presentation of the sample document in which the Title and TitleLabel nodes are displayed
after the Paragraph node, even though they precede the Paragraphnode in the presentation
tree (shown in Figure1). The box layout rules that produced this presentation were

ELABORATIONS {
TitleLabel : Text("Title:") { VertPos: Top = RightSib . Top; }

}
RULES { ...

TITLE {
CreateBefore(TitleLabel);
HorizPos: Left = LeftSib . Actual Right + 12;
VertPos: Top = RightSib . Actual Bottom + 5 ;

} ...



134 ETHAN V. MUNSON

Figure 6. A presentation of the sample document showing out-of-order layout

Because the box layout system can support out-of-order layout, PSL does not have to
include a general tree-transformation module, such as the Standard Tree Transformation
Process of DSSSL [1]. All the layout effects that can be performed with tree-transformations
can also be achieved with a combination of tree elaboration, out-of-order layout, and elision
(using aVisibility attribute).

3.5 Interface functions

The features of PSL that have been described so far are quite powerful, but there can also
be important information relevant to presentation that they cannot represent. To address
this problem, PSL can be extended via a system ofinterface functions, so called because
they cross the interface between the PSL runtime system and its client applications.

As an example, Ensemble’s text medium defines an interface function calledURoman
that takes a numeric argument and returns a string containing the upper-case roman numeral
representation of the number. This function can be used to number the paragraphs of a
document by declaring a generatedParaNumber node whose content is the upper-case
roman numeral representation of its creator’s child number:

ParaNumber : Text(URoman(ChildNum(Creator))) {}

and then using theCreateBefore creation command to generate the ParaNumber as the
left sibling of each Paragraph in the document.

Within presentation schemas, interface functions are simply another kind of expression.
The URoman function can be used in any context where a string-valued expression is
appropriate. Its argument can be any expression returning a number.

TheURoman function is easy to understand, but is not a very compelling example. The
interface function mechanism was primarily designed to make three kinds of information
available within presentation schemas:

• Medium-specific information, such as the area of irregularly-shaped graphical ob-
jects;

• Editing state, such as the current selection and the current cursor location; and
• Results of document analysis, such as spell-checking or static semantic analysis of

programs. Ensemble’s text medium currently includes interface functions that allow
access to the results of program analysis.



NEW PRESENTATION LANGUAGE 135

3.6 Configurability

PSL is a configurable language that is adapted to meeteach client application’s particular
needs. The client application provides the following information in order to configure PSL:

• for tree elaboration, the names of the primitive data types that can be generated and
the type signatures for their creation;

• for attribute propagation, the name and type of each attribute; and
• for box layout, the names of the attributes ofeach dimension.

In Proteus, this information is represented by instances of the ProtMedium class. Currently,
these ProtMedium objects are defined by hand-written C++ code, but work is underway to
generate them from simple, declarative specifications.

This paper’s running example was developed using Ensemble’s text medium. Ensemble
has other media which use PSL and Proteus independently and thus take different presen-
tation schemas. The grammar for all PSL schemas is the same, but the details (primitive
types, attributes, and dimensions) change between media. For instance, Ensemble’s video
medium has three dimensions (horizontal, vertical and time), while its graphics medium
has a very different set of attributes including StrokeWidth and Rotation. Liu [5] recently
modified NCSA Mosaic so that its presentation of HTML documents is controlled by
presentation schemas written in PSL, rather than hard-coded formatting variables. Liu’s
version of Mosaic uses a PSL configuration similar to that for Ensemble’s text medium
(because most formatting choices for HTML revolve around text formatting).

4 COMPARISON TO RELATED WORK

PSL improves on existing presentation languages in several ways.

Configurability: No other presentation language is as configurable as PSL. The P language
and relational grammars are not configurable at all. DSSSL can be configured by
defining new flow objects, properties, and characteristics in the style specification,
but these features are not yet fully defined and there is littleexperience in using them.
Furthermore, it is not clear why configuration commands like these, which only need
to be specified once per application, should have to appear in every document style file
used with that application. Finally, PSL provides a much clearer separation between
the application-independent and application-specific aspects of the language.
PSL’s configurabilitymakes it well suited for adoption by existing applications. Liu’s
work using Proteus/PSL with NCSA Mosaic [5] did not require any substantive
changes to Mosaic’s formatting model or document structure. Furthermore, the ease
of configuring PSL makes its possible to add features incrementally.

Extensibility: The PSL language can be extended via its interface function mechanism.
This allows a presentation schema to ask for information that would not normally be
accessible with rest of the language. No other presentation language has an explicit
extension service.

Out-of-Order Layout: PSL’s constraint-based layout system provides the most powerful
and straightforward means of specifying out-of-order layout of any existing presen-
tation language. DSSSL supports out-of-order layout by providing a general tree-
transformation component, the Standard Tree Transformation Process (STTP). But



136 ETHAN V. MUNSON

this module is so general that it makes DSSSL inappropriate for interactive, WYSI-
WIG applications. P and relational grammars support out-of-order via constraints,
but do not allow arbitrary constraint expressions and thus lack the expressive power
of PSL.

Specified vs. Actual Layout: PSL is the only presentation language to make explicit the
distinction between specified layout and actual layout. This distinction is critical,
because we often specify nominal widths, heights, and positions of objects but allow
the formatting process to produce objects whose sizes and positions differ somewhat
from what was specified.
Only the P presentation language supports a similar notion, but it does so implic-
itly. The Grif system creates three data structures when it presents a document: a
document tree, an abstract picture, and a concrete picture [17]. Grif’s document tree
and abstract picture are equivalent to PSL’s document tree and presentation tree.
Grif’s concrete picture is a tree of bounding boxes. Certain constructs in P (e.g. the
Enclosed keyword) imply that an attribute value should be computed on the con-
crete picture, rather than the abstract picture. This is roughly equivalent toaccessing
anactual dimensional attribute value in PSL, but PSL has achieved the same result
without introducing another data structure abstraction — all PSL rules operate on
the presentation tree.

Simplicity: PSL has been designed to be accessible to end-users. It has a simple, easy-to-
describe grammar with few special cases. Functions and attribute definitions accept
any expression returning the correct type. The semantics of PSL are equally straight-
forward. In contrast, P has many special cases, DSSSL is a huge language with
complex semantics, and relational grammars are based on a somewhat tricky non-
deterministic parsing model. It is only fair to say that much of the simplicity of PSL
derives from the fact that it does not support any specific formatting concepts (other
than tree elaboration and box layout). An end-user will certainly have to understand
the semantics of the application’s formatting model, which may be complex.

The key limitation of PSL is lack of experience using it in a variety of settings.
P, and the Grif/Thot system, have been under development for many years and have
been commercialized. There is considerable experience using them for a wide variety of
document types. P also has a number of useful features which do not have direct equivalents
in PSL, such as counters, variables, and attributes. The DSSSL standard has also been
developed over a long period and it supports a wide range of layout styles within its flow
model. The language supports characters types and flow directions from many languages.

PSL’s box layout service is not suitable for all applications. For instance, text formatters
which use the boxes-and-glue page-breaking algorithm [18] cannot use box layout alone.
Such a system would either have to supplement box layout with additional attributes
or would have to ignore box layout completely (by defining a configuration with zero
dimensions) and use attributes alone to control layout.

5 CONCLUSIONS

PSL is a new presentation specification language that is unusually configurable and extensi-
ble. Its syntax and semantics are notable for their simplicity and generality. PSL supports an
extremely general form of out-of-order layout without having support general tree transfor-



NEW PRESENTATION LANGUAGE 137

mations. PSL makes explicit the important distinction between specified layout and actual
layout.

Future research on PSLwill focus on making the languageeasier to useand increasing its
power, particularly for computer programs and non-textual documents. PSL needs features
that simplify presentation specifications for objects with similar rules (which are common
in programs) and it would benefit from new syntax for defining complex tree elaborations
(useful in graphics documents). PSL also needs support for numbering document elements
and experiments must be performed to determine its suitability for applications which use
layout models different from box layout.

ACKNOWLEDGEMENTS

I want to thank Vance Maverick and an anonymous reviewer for their many helpful com-
ments on this manuscript.

This research has been supported in part by a gift from Frontier Technologies Corpora-
tion and by a grant from the UWM Graduate School.

REFERENCES

1. ISO/IEC,Information technology — Text and office systems — Document Style Semantics and
Specification Language (DSSSL), August 1994. Draft International Standard ISO/IEC DIS
10179.2.

2. Susan L. Graham, Michael A. Harrison, and Ethan V. Munson, ‘The Proteus presentation system’,
in Proceedingsof the ACM SIGSOFT Fifth Symposium on Software Development Environments,
pp. 130–138, Tyson’s Corner, VA, (December 1992). ACM Press.

3. Ethan Vincent Munson,Proteus:An Adaptable PresentationSystem for a Software Development
and Multimedia Document Environment, PhD dissertation, University of California, Berkeley,
December1994. Also available as UC Berkeley Computer ScienceTechnical Report UCB/CSD-
94-833.

4. Susan L. Graham, ‘Language and document support in software development environments’, in
Proceedings of the Darpa ’92 Software Technology Conference, Los Angeles, (April 1992).

5. Hong Liu,Multiple Presentation Mosaic, Master’s thesis, University of Wisconsin-Milwaukee,
May 1996. (Expected date of completion).

6. D. D. Cowan, E. W. Mackie, G. M. Pianosi, and G. de V. Smit, ‘Rita — an editor and user interface
for manipulating structured documents’,Electronic Publising,4(3), 125–150, (September 1991).

7. Richard Furuta, Vincent Quint, and JacquesAndr´e, ‘Interactively editing structured documents’,
Electronic Publishing—Origination, Dissemination and Design, 1(1), 20–44, (April 1988).

8. Richard Keith Furuta, An Integrated, but not Exact-Representation, Editor/
Formatter, Ph.D. dissertation, University of Washington, 1986.

9. Vincent Quint and Ir`ene Vatton, ‘Grif: An interactive system for structured document manip-
ulation’, in Text processing and document manipulation, ed., J. C. van Vliet, pp. 200–213.
Cambridge University Press, (April 1986).

10. Vincent Quint. The languages of Grif. Available by anonymous ftp from ftp.imag.fr in directory
/pub/OPERA/doc, December 1993. Translated by Ethan V. Munson.

11. Louis Weitzman and Kent Wittenberg, ‘Automatic presentation of multimedia documents us-
ing relational grammars’, inProceedings of ACM Multimedia ’94, pp. 443–451. ACM Press,
(October 1994).

12. James Clark. DSSSL Lite. Available on the World Wide Web at URL
http://www.jclark.com/dsssl/, 1995.

13. Synex Information AB’s home page. World Wide Web home page at URL
http://www.synex.se, 1995.



138 ETHAN V. MUNSON

14. Information Processing — Text and Office Systems — Standard Generalized Markup Lan-
guage (SGML), ed., Charles F. Goldfarb, International Organization for Standardization, Geneva,
Switzerland, 1986. International Standard ISO 8879.

15. Charles Donnelly and Richard Stallman,Bison: The YACC-compatible Parser Generator, Free
Software Foundation, Cambridge, Massachusetts, version 1.20 edition, 1992.

16. Roy Goldman, ‘Variable shape specification in Proteus’. Ensemble Project internal memoran-
dum, November 1993.

17. Cécile Roisin and Ir`ene Vatton, ‘Formatting structured documents’, Research Report2044,
INRIA, (September 1993).

18. Donald E. Knuth and Michael F. Plass, ‘Breaking paragraphs into lines’,Software—Practice &
Experience,11(11), 1119–1184, (November 1982).


	SUMMARY
	1 INTRODUCTION
	2 BACKGROUND
	3 THE PSL LANGUAGE
	3.1 Overview
	3.2 Tree elaboration
	3.3 Attribute propagation
	3.3.1 Attribute rules
	3.3.2 Defining attribute constraints
	3.3.3 Default rules and the order of evaluation

	3.4 Box layout
	3.4.1 Specified and actual layout
	3.4.2 Out-of-order layout

	3.5 Interface functions
	3.6 Configurability

	4 COMPARISON TO RELATED WORK
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

