
ELECTRONIC PUBLISHING, VOL. 8(2 & 3), 51–62 (JUNE & SEPTEMBER 1995)

Web applications and SGML

JACCO VAN OSSENBRUGGEN, ANTON ELÏENS AND BASTIAAN SCHÖNHAGE

Vrije Universiteit
Faculty of Mathematics and Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands

e-mail: {jrvosse,eliens,bastiaan}@cs.vu.nl

SUMMARY
This article advocates the use of SGML technology for the creation, dissemination and display
of Web documents. It presents a software architecture that allows for defining the operational
interpretation of arbitrary document types by means of style sheets, written in a scripting
language. Our approach has been motivated by a desire to extend the functionality of the Web
with support for multimedia and active documents. Although growing in complexity, HTML
is still lacking in functionality. We prefer a more flexible and generic approach, as enabled
by the employment of SGML. After a brief introduction to SGML, we will illustrate how
our approach accommodates (extensions of) HTML as well as arbitrary SGML documents
containing multimedia data such as video and audio. We will then briefly sketch the software
components used in the realization of our approach and discuss some topics for further research.

KEY WORDS SGML WWW Style sheets Active documents

1 INTRODUCTION

SGML (Standard Generalized Markup Language)[1] is an ISO standard which uses tagging
to encode the logical structure of a document. The set of tags needed to describe a specific
document structure depends on the type of documents involved. For example, the tags
needed to mark up a mathematical article are in general not suitable for describing the
structure of a telephone book. As a consequence, SGML does not describe a fixed set of
tags, but a way to define an appropriate set of tags and the order these tags should appear
in a document instance. Such a definition is called adocument type definition or DTD.

Having a markup language reflecting the structure of the document — instead of the
physical layout capabilities (and limitations) of the systems used to process the document
— is an intuitively appealing idea. It enables one to define a simple and lean markup
language, well suited to markup documents from a specific domain. Because the syntax
of the language is defined in a standardized format, processing software can be build
upon generic SGML tools (e.g. parsers), and can be kept simple due to the limited set of
tags. Resulting document instances can be platform independent and possibly outlive the
software and hardware used to process them.

Although HTML — the markup language of the World Wide Web — is an application
of SGML, the scenario sketched above is the exact opposite of the “one size, fits all”
approach of current Web browsers. One of the main reasons of the success of the Web was
the initial simplicity of HTML. A quick look at the draft HTML 3.0 specification[2] (or at
an arbitrary ‘Netscape enhanced’ Web page) will learn that most of that initial simplicity has
gone. Many HTML documents lack structure and depend heavily on (the current version of)

CCC 0894–3982/95/020051–12 Received 3 April 1996
 1995 by John Wiley & Sons, Ltd. Revised 14 June 1996

52 JACCO VAN OSSENBRUGGEN, ANTON ELÏENS AND BASTIAAN SCHÖNHAGE

the browser used by the author. Most of today’s Web browsers are large, complicated and
often inflexible software products, which do not take advantage of the flexibility provided
by SGML parsers.

Despite the complexity of the latest HTML specifications, the functionality of the Web
can still be considered primitive in comparison with other hypermedia systems[3,4]. To
allow for more complex hypermedia documents, other document formats than HTML
are needed. This article advocates the employment of SGML technology in Web-aware
software, and sketches the architecture of a prototype SGML Web browser developed at
the Vrije Universiteit. Additionally, we give some examples to show how this browser can
be used to process extensions of existing document types, as well as completely new ones.

The article is structured as follows. We start by a brief introduction to SGML. In
“SGML on the Web” we discuss the software architecture underlying our approach to de-
veloping Web applications. We will illustrate how our approachaccommodates (extensions
of) HTML as well as arbitrary SGML documents containing multimedia data such as video
and audio by giving some examples of active documents. In “Software Components” we
characterize the software components used in the realization of our approach. We conclude
by evaluating our approach and indicating issues for future research. The material concern-
ing the basic SGML concepts and the active document examples has been adapted from
‘Animating the Web — An SGML based approach’[5], which describes the architecture
of our Web browser in more detail.

2 RELATED WORK

Advantages of SGML-aware Web browsers (and servers) are discussed in[6]. Various
style sheet languages for SGML documents have been proposed. An ambitious proposal
is the Document Style Semantics and Specification Language[7], which is a (draft) ISO
standard. DSSSL Online[8] specifies a subset of DSSSL to implement style sheets to be
used by SGML browsers. Several other methods, including a simple mechanism using
mapping tables, are described in[9]. The W3C developed the Cascading Style Sheet
mechanism[10] to attach style sheets to HTML documents. In contrast to our work, these
proposals focus on the physical layout and are less suited for the description of dynamic
and interactive hypermedia document formats.

HyTime[11] defines several syntactical conventions (known asarchitectural forms) for
describing the most fundamental hypermedia concepts of SGML documents: addressing,
linking and alignment. Some commercial Web browsers[12] support a subset of the
functionality defined by the HyTime standard.

The expressive power of a general purpose programming language (e.g. Java) can also
be deployed by including script fragments or applets directly in a hypermedia document.
While the resulting documents are often hard to maintain and even harder to process by other
applications (e.g. index engines), the combination of applets technology and distributed
object systems[13,14] appears to be a powerful approach.

3 SGML — BASIC CONCEPTS

An SGML document essentially consists of two parts: a prolog, containing the document
type declaration, followed by the document instance, containing the data interspersed with
markup.

WEB APPLICATIONS AND SGML 53

3.1 Document instance

A document instance is a hierarchical structure of (possibly empty)elements, where each
non-empty element contains other elements or character data. Each element has a name
(thegeneral identifier) and the start and end of an element are indicated by tags (typically
<name> content</name>). Begin or end tags may be mandatory or optional. Moreover,
elements contain zero or moreattributes. Consider the example document below.

<memo security=confidential>
<to>Anne
<cc>Anton<cc>Bastiaan
<from>Jacco
<subject>EP submission
<body>

Dear Anne,
I’m sorry we couldn’t make it before the deadline,
but we will send you a PostScript copy of our
EP submission before next Wednesday.

</body>
</memo>

The root elementmemo has one attribute, indicating the security level of the document.
The memo element contains six other elements. Ato and twocc elements stating the
addressees, afrom element specifying the sender, asubject and abody field. All elements
of memo contain character data and no other elements. Note that the tags emphasize the
logical structure of the document rather than stating how it should be formatted.

3.2 Document type declaration

The document instance above must be preceded by adoctype declaration. The main part
of the document type declaration is thedocument type definition or DTD. It defines the
elements of a document and the required order of their sub-elements. The elements and
their contents are defined by the use ofelement declarations.

<!doctype memo [
<!element memo O O (to+,cc+,from,subject?,body) >
<!element (to|cc|from|subject|body) - O (#pcdata) >
<!attlist memo security (low|confidential|topsecret) low >
]>

The second line declares the memo element, and defines its content as a sequence of
one or moreto elements, one ore morecc elements, afrom, an optionalsubject and abody
element. The two ‘O’ characters stand for “omit”, indicating that the begin and end tag
of memo may be omitted. The third line defines the elements containing character data
only. Their start tags are mandatory, indicated by the ‘-’. The list of attributes ofeach
element is declared by anattlist declaration. Attributes can be of different types, and be
mandatory or optional. The DTD can specify a default value, as is shown in the case of the
security attribute. The DTD declaration may be contained within thedoctype declaration,
but is typically defined by a separate file. In that case, thedoctype declaration contains a
reference to that file.

54 JACCO VAN OSSENBRUGGEN, ANTON ELÏENS AND BASTIAAN SCHÖNHAGE

3.3 Processing instructions

Processing instructions are used to pass system dependent information to the application to
tell how the document is to be processed. Processing instructions are contained within ‘<?’
and ‘>’ characters and can appear on arbitrary places within the document. In the following
examples, we employ processing instructions to indicate the URL of a style sheet.

3.4 Entities

Fragments of markup and character data can be given a name using anentity declaration.
The declaration of an entity is part of the document type declaration, but the entity may be
used within the document instance. The contents of an entity may be defined by a string,
or may be contained in an external file, in which case the entity declaration contains a
reference to the file. External entities may be referenced by asystem identifier. Support
for these identifiers is system dependent and may include filenames, URLs and database
queries. Consider a variant of the previous example:

<!doctype memo
system "http://www.cs.vu.nl/˜hush/demo/memo.dtd" [

<!entity ps "PostScript">]>
<?stylesheet lang=Tcl

src="http://www.cs.vu.nl/˜hush/demo/memo.style">
<memo>

...

... but we will send you a &ps; copy of our submission ...
</body>

</memo>

The first line references an external DTD by means of a system identifier, and the
second line defines an entity for later usage. Note that the entity definition is enclosed
within the square brackets of thedoctype declaration. The third line contains a processing
instruction to define the location of the style sheet. In contrast to the URL of the DTD,
which is resolved by the parser, the URL of the style sheet is passed to the application
without further processing by the parser.

To avoid system dependent identifiers such as filenames, an extra indirection is provided
by the concept ofpublic identifiers. These identifiers are assumed to be publicly known,
and the SGML parser of the target application is expected to be able to resolve them.
Typically, a local catalog file is used to map public identifiers onto system dependent ones.
Formal public identifiers have a standardized and meaningful inner structure, to facilitate
automatic resolving without the use of catalogs. In the following examples, we refer to the
HTML 3.0 DTD by means of a formal public identifier.

4 SGML ON THE WEB

As stated before, many HTML documents depend on the browser technology used to display
them. The employment of SGML in Web-aware software supports a more document-
centered approach, because it allows one to use a different markup language foreach type
of document, and adapt the processing software to the structure of these documents, instead
of adapting documents to the software.

WEB APPLICATIONS AND SGML 55

However, SGML offers only part of the solution. Applications need to attach semantics
to the syntactic constructs defined by the DTD. SGML does not address the semantics the
elements a document contains. Style sheets have been proposed to attach such semantics.
The expressive power of the style sheet language and the ways it can address the func-
tionality offered by the processing software (e.g. a Web browser) is extremely important,
since it determines the look and feel of the resulting documents. Especially in a hypermedia
environment, the interactive and dynamic nature of the documents requires the use of a
very powerful style sheet language.

The example in the following section describes how to extend HTML with avideo
tag, which is used to include inline video fragments in HTML documents. While SGML is
used to specify the syntactic details (e.g. in which context the video tag is allowed, which
attributes are required, which ones are optional, etc.), one needs a style sheet language
which is powerful enough to specify the operational semantics to be able to instruct the
browser how to process the new tag. A style sheet language specially designed to handle
documents containing video will probably allow a clear, declarative description of the video
tag in an associated style sheet. However, such a special purpose language will be far less
useful for applications not anticipated by its designer.

Therefore, we will use a general purpose and extendable procedural scripting language
to attach operational semantics to the syntactic constructs defined by the DTD. Which
language should be used is a matter of taste and, more often, a matter of pragmatics (we
will use Tcl [15] in our examples). Many interpreters of modern scripting languages are
embeddable and extendable, which make them good candidates for a style sheet language.
More important is the application programmers interface (API) of the underlying software
system, which should beaccessible from the style sheet language. The interactive nature of
hypermedia documents often requires the manipulation of the user interface. To describe
the functionality of such tags, a style sheet needs to address the underlying GUI toolkit. To
specify how a browser should handle multimedia data, the audio and video components of
the platform should be madeaccessible as well. For more complexhypermedia documents,
access tohyperlink databases and amultimediascheduler will be required.Finally, theparser
itself should beaccessible to enable the style sheet to have full access to the document’s
contents and structure.

5 ACTIVE WEB DOCUMENTS – AN EXAMPLE

Developing a complete document type from scratch is a complex task. Fortunately, one can
often reuse (parts of) existing ones. As an example, we will first illustrate how an existing
document type (in this case HTML) may be extended with an additionalvideo tag. On a
syntactical level, we do this by developing a new document type definition, which uses the
standard HTML DTD. On an operational level, we supply a style sheet which defines how
the video components of the underlying system should be deployed to display the video
data.

5.1 Extending Document Types

We will start by illustrating how to extend the default HTML document type definition.
The document instance given below is specified in HTML but employs in addition two
extensions for active documents. The first extension is avideo tag, which is used to display

56 JACCO VAN OSSENBRUGGEN, ANTON ELÏENS AND BASTIAAN SCHÖNHAGE

inline video fragments. The other is anapplet tag, used to embed small applications written
in a scripting language. We use Tcl in the examples. In the example below, theapplet
displays some notes that are played when the user clicks on the image.

<!doctype demo
system "http://www.cs.vu.nl/˜hush/demo/video.dtd" [

<!entity title "Hush browser inline video/applet demo">]>
<?stylesheet lang=Tcl

src="http://www.cs.vu.nl/˜hush/demo/video.style">

<demo>
<title>&title;</title>
<h1>&title;</h1>

<p>This page shows the ability to inline video into
an HTML-page: <p><video
src="file:/usr/local/public/animations/mpeg/canyon.mpg">

<p>Inline applets are supported as well.
Here is an interactive arrow editor:
<p><applet class=arrow>
<hr>
<p>hush@cs.vu.nl, Vrije Universiteit Amsterdam, 1996.

</demo>

The first line of the example defines the type of the document (demo). It is specified
in a separate document type definition (DTD) that we will describe below. The parser
automatically retrieves the DTD from the Web if its location is specified by a URL. The
next line illustrates the use of anentity declaration, an SGML mechanism used here as a
primitive macro facility defining the title of the document. The title entity is used twice, in
the title andh1 tag, and will be expanded by the parser. The third line specifies the style
sheet that is needed to display the contents of the document. The use of style sheets will be
explained later. Thevideo element requires asrc attribute defining the location of the video
file. Finally, theapplet tag is used to inline embedded script code defining an interactive
arrow editor.

Whether active document elements are to be defined by a new, specific tag or by the
more general applet mechanism is a matter of taste. A new tag requires modification of the
DTD and style sheet but describes the element in a more declarative way, which gives the
application more freedom in displaying the contents. For example, a browser may decide
to display a text alternative if the local platform does not support video.

5.1.1 DTD

Recall that a document type definition defines the structure of a document by describing
theelements andattributes that can be interspersed as tags with the document content. The
following DTD extends the (draft) HTML 3.0 DTD[2] with thevideo andapplet elements
required for the example above.

WEB APPLICATIONS AND SGML 57

<!entity % special "tab|math|a|img|br|applet|video ">
<!entity % htmldtd public "-//IETF//DTD HTML 3.0//EN">
%htmldtd; <!-- include standard HTML 3.0 DTD -->

<!element demo O O (%html.content;) >

<!element (applet|video) - O empty>

<!attlist applet
class cdata #required -- class name of applet --
lang (Tcl|Java|Python)

Tcl -- Default script language --
-- URI is defined by HTML DTD: --

src %URI; #implied -- defaults to base URL --
data %URI; #implied -- location of additional data --

>
<!attlist video

src %URI; #required -- URI of video fragment --
alt cdata #implied -- optional text alternative --

>

The first line extends thespecial parameter entity defined by the HTML DTD with
video andapplet elements, enabling the use ofvideo andapplet tags where image or anchor
tags are allowed. The second definition ofspecial (in the HTML DTD) will be ignored by
the parser. In the second line, the SGML parameter entity mechanism is used to include the
draft HTML 3.0 document type definition, which is referenced by a formal public identifier.
The demo element consists of the sub-elements defined by the HTML DTD. The twoO
characters in the element declaration indicate that begin and end tag of thedemo element
may be omitted, since the begin and end of the document can be derived by the parser.
In contrast, the begin tag of avideo or applet element is mandatory, the end tag optional.
The video and applet elements have optional (implied), mandatory (required) and default
attributes (e.g. thelang attribute defaults toTcl).

The information contained in the DTD is used by the parser to generate a complete and
validated document instance. Note that this task could be performed by an HTTP-server
as well, which would significantly simplify the design and implementation of Web clients.
Therefore, there are strong arguments to add SGML functionality to servers as well[6].

5.1.2 Style sheet

Style sheets define how the various elements should be processed. Thehush browser
(seefigure 1) defines a default style for HTML elements. However, these styles can be
redefined and extended by a document instance using a special processing instruction,
notated as<?stylesheet url>. The browser retrieves the URL specified in the
processing instruction and uses it to display the contents of the document. The example
specifies a URL to a style sheet that describes how to process the newvideo tag. Recall
that processing instructions are application dependent, so the parser passes the text in a
processing instruction directly to the application. At the moment, we use an experimental
style sheet language based on Tcl. An example of a style sheet fragment that specifies how
thevideo tag should be processed, is given below.

58 JACCO VAN OSSENBRUGGEN, ANTON ELÏENS AND BASTIAAN SCHÖNHAGE

Figure 1. The example document as displayed by the hush browser

example of Tcl style sheet

proc VIDEO {atts data} {
HMextract_param $atts src # nasty Tcl details
upvar #0 HM$win var

set top $win.videoframe # create root frame
pack [frame $top]
$win window create $var(S_insert) -window $top

frame $top.bf # create control buttons
button $top.bf.b1 -command "$top.film start"

-text "Play"
button $top.bf.b2 -command "$top.film stop"

-text "Pause"
button $top.bf.b3 -command "$top.film step next"

-text "Back"
button $top.bf.b4 -command "$top.film step prev"

-text "Forward"

WEB APPLICATIONS AND SGML 59

pack $top.bf.b1 -fill x # pack buttons into frame
pack $top.bf.b2 -fill x
pack $top.bf.b3 -fill x
pack $top.bf.b4 -fill x
pack $top.bf -side left

use hush video widget
pack [xanim $top.film] -side left -padx 20
set tmpfile [urlget_tmp $src] # use hush web interface
$top.film file $tmpfile # to get video form web

}

The fragment shows the low level Tcl code needed to display the video fragment and
some control buttons. While the style sheet mechanism clearly needs some refinement,
our approach supports the extension of existing document types and allows for extensive
experimenting with new document types.

5.2 Creating New Document Types

Thedocument instanceof theprevious examplewas very similar to plain HTMLdocuments,
which made it worthwhile to reuse the original HTML DTD and style sheet. However, for
some applications HTML is not suited at all and a completely new document structure is
needed. The next example shows a document instance of a simple musical application.

<!doctype score system "music.dtd" [
<!entity G7 "<note name=keynote>g<note>b<note>f">]>
<?stylesheet lang=Tcl src="music.style">

<score> <!-- document instance -->
<chord id=chord1>&G7; <!-- entity usage -->
<chord id=chord2>&G7;
<chord id=chord3 name=Cmajor>

<note name=keynote>c<note>e<note>g
</score>

The first line defines the (filename of) a new document type definition. The next line
contains an entity definition describing a G7 chord. An SGML processing instruction is
used to specify the filename of the style sheet. The root of the document hierarchy is the
score element, consisting of several chords. Chords are build of notes, which are described
by single characters. The first two chords use the entity defined before, specifying the notes
of a G7 chord. The third occurrence ofchord describes a C major chord.

5.2.1 A new DTD

The DTD corresponding to the simple musical document given above defines the structural
elements and their attributes. When the application processes the document, the parser will
fill in the default duration for all notes, resolve the entity definition and add the missing
end tags for the notes and chords.

60 JACCO VAN OSSENBRUGGEN, ANTON ELÏENS AND BASTIAAN SCHÖNHAGE

<!-- Simple music DTD -->

<!element score - O (chord)+ >
<!element chord - O (note)+ >
<!element note - O (#pcdata) >

<!attlist (chord|note) -- all have same attributes --
id id #implied -- optional identifier --
name cdata #implied -- optional name attribute --
duration cdata "4" -- default duration: quarter -- >

The DTD defines three structural elements: ascore containing severalchords, achord
containing severalnotes and anote consisting of data. Both chord and note have three
attributes:id, name andduration. The first two are optional and the last has a default value
of 4. Note the difference between theid attribute, which has to be a unique identifier, and
thename attribute, which can be an arbitrary string.

5.2.2 Style sheet

Playing the document by a Web browser does not necessarily involve displaying the data
visually. The simple style sheet shown below simply collects notes and chords and plays
them by using theplay command. Note that most of the timing relations are implicit in the
document. For example, the notes within a single chord are to be played in parallel, and
the chords themselves are to be played sequentially. However, this is not explicitly defined
by the document instance or DTD and can only be intuitively derived from the element
names. Even in the style sheet below, these timing relations remain implicit.

Simple Tcl style sheet for music example

set score ""; set chord ""

proc SCORE { atts data }
{ global score; set score "t120 " }

proc CHORD { atts data }
{ global chord; set chord "(" }

proc NOTE { atts data }
{ global chord; set chord "$chord$data<" }

proc /SCORE { } { global score; play $score }
proc /CHORD { } { global score chord;

set score "$score$chord r)" ; set chord "" }
proc /NOTE { } { }

The procedures corresponding to the open and close tags build a string representation
of the score. At the opening of the score element the string is initialized with a command
defining the tempo at 120 beats per minute. During the parsing process the string is extended
with the parsed notes. After the last chord has been parsed the resulting string is:t120
(g<b<f< r)(g<b<f< r)(c<e<g< r). This string is played after the score end
tag has been encountered. The Tcl commandplay used to play the notes is provided by the
hymne extension ofhush [16,17].

WEB APPLICATIONS AND SGML 61

6 SOFTWARE COMPONENTS

The components constituting the hush Web browser are build upon thehush class li-
brary [18,19], which offers a C++ class interface to the Tcl/Tk[20] GUI toolkit. Addi-
tionally, it offers a discrete event simulation package and multimedia support, including
VRML, software video and sound synthesis[16,17]. All hush components can beaccessed
by means of both a C++ and script interface, which allows one to use these components in
C++ applications, style sheets and Web applets.

The browser can be used as a document validation tool since we use SP[21], a validating
SGML parser to parse theSGML documents. The parser generates events during the parsing
process when it encounters open and close tags (even when optional tags are omitted in
the document instance), character data, processing instructions, entities, etc. Style sheets
specify the way these events are processed. A default style sheet for HTML is provided,
which may be overruled by other style sheets specified by individual documents or by the
user.

Currently, our research is focused on providing higher level support for the definition
of style sheets, including mechanisms to provide support for more complex hyperlinking
and the scheduling of synchronized multimedia fragments by means of a distributed logic
programming language[22].

7 CONCLUSIONS

Employing SGML technology in Web applications can have several advantages, on a
software level, but especially on a document level. It allows one to use document types es-
pecially suited for reflecting the structure of documents of a specific domain, and document
instances which are free of markup describing physical layout. However, the solutions pro-
vided by SGML are mainly addressing the definition of syntactical concepts (i.e. tags and
attributes), whose semantics need to be specified as well. Common style sheet languages
are not suited to describe highly interactive and dynamic hypermedia documents.

Using an extendible general purpose scripting language for style sheets has several
advantages. First, the style sheet language can offer fullaccess to theunderlying system,
including the graphical user interface, multimedia devices, document parser, and hyperlink
base. Secondly, it allows for the introduction of new tags and document types without
changing the browser. Finally, new software components can be madeaccessible by ex-
tending the scripting language.

A disadvantage is the low level interface of our style sheet language and the lack of
standardized APIs, which make it hard to define platform independent style sheets without
sacrificing functionality. Until SGML-aware Web browsers become more common, SGML
encoded documents need to be converted to HTML. Still, the SGML browser described
here provides a suitable test environment to experiment with more complex hypermedia
document types.

REFERENCES

1. International Organization for Standardization, ‘Information Processing — Text and Office
Information Systems — Standard Generalized Markup Language’,TechnicalReport 8879:1986,
ISO, (1986).

62 JACCO VAN OSSENBRUGGEN, ANTON ELÏENS AND BASTIAAN SCHÖNHAGE

2. D. Raggett, ‘Document Type Definition for the HyperText Markup Language (HTML DTD)’.
Expired Internet Draft, Part of the HyperText Markup Language Specification Version 3.0,
March 1995.

3. Gary Hill and Wendy Hall, ‘Extending the Microcosm Model to a Distributed Environment’, in
ECHT’94, The EuropeanConferenceon Hypermedia Technology,pp. 32–40, (September 1994).

4. G. van Rossum, J. Jansen, K. S. Mullender, and D.C.A. Bulterman, ‘CMIFed: A Presentation
Environment for Portable Hypermedia Documents’, inThe First ACM International Conference
on Multimedia, pp. 183–188, (August 1993).

5. Anton Eliëns, Jacco van Ossenbruggen, and Bastiaan Sch¨onhage, ‘Animating the Web — An
SGML-based Approach’, inProceedingsof the International Conferenceon 3D and Multimedia
on the Internet, WWW and Networks, 17-18 April 1996, Bradford. British Computer Society,
(April 1996).

6. C. M. Sperberg-McQueen and Robert F. Goldstein, ‘HTML to the Max — A Manifesto for
Adding SGML Intelligence to the World-Wide Web’, inProceedingsof the SecondInternational
World Wide Web Conference ’94: Mosaic and the Web, (October 1994).

7. International Organization for Standardization/International Electrotechnical Commission, ‘In-
formation technology — Processing languages — Document Style Semantics and Specification
Language (DSSSL)’, Technical Report DIS 10179.2, ISO/IEC, (1995).

8. (Compilation by) Jon Bosak. DSSSL Online Application Profile, December 1995. Available
from http://occam.sjf.novell.com:8080/docs/dsssl-o/do951212.htm Formerly known as DSSSL
Lite, available from http://www.falch.no/people/pepper/DSSSL-Lite/.

9. J. Warmer and H. van Vliet, ‘Processing SGML Documents’,Electronic Publishing — Origi-
nation, Dissemination and Design, 4(1), 3–26, (March 1991).

10. Håkon W. Lie and Bert Bos. Cascading Style Sheets, level 1, Februari 1996. W3C Working
Draft. Available at http://www.w3.org/pub/WWW/TR/.

11. International Organization for Standardization, ‘Information Technology — Hypermedia/Time-
based Structuring Language (HyTime)’, Technical Report 10744:1992(E), ISO, (1992).

12. SoftQuad Inc. Panorama PRO. See http://www.sq.com/.
13. Xerox Corporation, ‘ILU: The Inter-Language Unification System’. Available from

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html, 1995.
14. The Object Management Group. CORBA 2.0 Specification, 1996. Available from

http://www.omg.org/.
15. J.K. Ousterhout, ‘Tcl: An Embeddable Command Language’, inUSENIX, (1990).
16. Jacco van Ossenbruggen and Anton Eli¨ens, ‘Music in Time-based Hypermedia’, inECHT’94,

The European Conference on Hypermedia Technology, pp. 224–270, (September 1994).
17. Jacco van Ossenbruggen and Anton Eli¨ens, ‘Bringing Music to the Web’, inProceedings of the

Fourth International World Wide Web Conference, pp. 309–314, (December 1995).
18. Anton Eliëns, ‘Hush: A C++ API for Tcl/Tk’,The X Resource, (14), 111–155, (April 1995).
19. Anton Eliëns,Principles of Object-Oriented Software Development, Addison-Wesley, 1995.
20. J.K. Ousterhout, ‘An X11 Toolkit Based on the Tcl Language’, inUSENIX, (1991).
21. James Clark, ‘SP — An SGML parser’. Availble at http://www.jclark.com/sp.html, October

1995.
22. Anton Eliëns,DLP — A Language for Distributed Logic Programming, Wiley & Sons, 1992.

	SUMMARY
	1 INTRODUCTION
	2 RELATED WORK
	3 SGML --- BASIC CONCEPTS
	3.1 Document instance
	3.2 Document type declaration
	3.3 Processing instructions
	3.4 Entities

	4 SGML ON THE WEB
	5 ACTIVE WEB DOCUMENTS -- AN EXAMPLE
	5.1 Extending Document Types
	5.1.1 DTD
	5.1.2 Style sheet

	5.2 Creating New Document Types
	5.2.1 A new DTD
	5.2.2 Style sheet

	6 SOFTWARE COMPONENTS
	7 CONCLUSIONS
	REFERENCES

