
ELECTRONIC PUBLISHING, VOL. 8(2 & 3), 181–193 (JUNE & SEPTEMBER 1995)

Filtering structured documents in the SYNDOC
environment
E. KUIKKA 1 A. SALMINEN

Department of Computer Science and Department of Computer Science and
Applied Mathematics Information Systems
University of Kuopio University of Jyv¨askylä
P.O.Box 1627, 70211 Kuopio, Finland P.O.Box 35, 40351 Jyv¨askylä, Finland

SUMMARY
This paper describes the filtering approach for searching documents whose structure is defined
by a grammar. The method is based on the theoretical model for defining filters to specify
information interest of a user. It is employed to find documents in SYNDOC, a syntax-directed
text processing system. The method is suitable, for example, for SGML and ODA documents.
The user selects a grammar and indexes only documents for the selected grammar. A filter
generated in a syntax-directed way using the grammar describes conditions for indexed docu-
ments integrating structure and content constraints. The user compares a filter with indexed
documents and, either edits, browses or prints original documents using the selected output
form. Indexed documents, filters and retrieved documents can be stored for further purposes.

KEY WORDS Structured document Filtering Context-free grammar Parse tree

1 INTRODUCTION

In filtering [1], the user describes in a profile or filter which documents she or he wants to
retrieve. A filter describes a long-term interest of a person or a group of persons as opposed
to queries in interactive information retrieval systems. The filtering is characteristically used
to remove unnecessary information or to choose necessary information from an incoming
data stream. Instead of applying the filtering to all documents in a data stream, it is common
to restrict the amount of source documents. For example, in news systems the user can
select certain news groups and filtering is applied to these groups. There is however a need
for various classes of document filters and their flexible use in document management.

Nowadays users have lot of documents in files. Text processing, e-mail and news
systems create files. Documents in the Internet are entirely based on files which are linked
with hypertext links. In many of these files, the content consists of structured text. When
documents are in files it is easy to update, delete and insert them, but searching for them
is a problem. To handle this problem, it is possible to use string search methods which
are based on regular expressions (for example, grep program in the unix operating system,
sgrep [2] and cgrep [3]). They can find out lines or parts of ASCII files where a given
character string exists in documents. Another option is to store documents in a centralized
repository or database as, for example, in Dynatext [4] or Maestro [5,6]. They offer SQL-
type query capability to retrieve documents or their parts, but the update of documents
requires the update of the repository as a whole by means of reindexing. The distributed
system developed in MULTOS project [7] for multimedia documents is based on the client-
server paradigm and allows loosely coupled components to store documents. Different
1 This work was done during the author’s stay in the University of Waterloo in Canada.

CCC 0894–3982/95/020181–13 Received 25 March 1996
 1995 by John Wiley & Sons, Ltd. Revised 27 March 1996

182 E. KUIKKA AND A. SALMINEN

access methods for an SQL-type language may be used for formatted data and for the text
files in various components. Abiteboulet al. [8,9] have introduced a method which allows
translations to be made from files to an object-oriented database and inverse translations
from the database to files. Documents can be updated and retrieved in the database and
represented to the user as files. Consens and Milo [10,11] have described a framework
which allows to access and manipulate structured data regardless of whether it resides in
a database or in a file system. The surveys in [12,13,14] describe retrieval languages for
structured text. In the languages, criteria for the documents to be retrieved are specified by
expressions which integrate structure information with content conditions. For end users
to express their information needs, expression-based queries are often too complicated.

The popularity of the QBE-type (Query-by-Example) graphical query languages of
relational databases shows that the use of the table schemas as templates in queries helps
the end users to specify their information needs [15,16]. An example of a graphical text
retrieval language using a hierarchic structure description as a template is LQL [17]. LQL
is designed, however, for a specific application: dictionary entries.

In [18] we have defined a model to describe information interests of a user for structured
text in a template. Templates are created from the grammar of the text. The basis of the
model is the text model introduced in [19,20] and more extensively described in [21]. The
aim of this paper is to describe how the model was used to search documents in SYNDOC
(SYNtax-directed DOCument processing system) [22]. SYNDOC uses a syntax-directed
approach for the input, output, retrieval and transformations of structured documents.
Structured documents are defined by grammars and stored as parse trees in files. The
retrieval by filtering comprises indexing of documents, definition of filters, and application
of a filter to a set of documents. The indexed documents are stored in files and depict
hierarchic structures of documents. Filters are generated in a syntax-directed wayaccording
to the grammar. They define constraints for the structural elements of documents. Filters are
stored in files and may be used in later search processes or in other filters. Before retrieval
of documents, the output form and device may be specified.

The document management model of SYNDOC is suitable, for example, for SGML
documents.When using themodel,parsed documents with thesameDTD can be collected in
a directory and indexed separately. The user does not collect a large database or repository
as, for example, in Dyntext [4], but can consider separate subsets of documents in the
directory. The problem of updates which occurs in databases does not exist. Documents
can be updated, deleted or inserted without effecting filtering of other documents.

In the following sections, this paper briefly describes the model for the definition of
two-dimensional filters. The third and fourth sections present the architecture of SYNDOC
and, phase by phase, the search for documents from the user’s point of view. The final
section comprises conclusion.

2 TWO-DIMENSIONAL FILTERS FOR STRUCTURED TEXTS

In our filtering approach, which we have defined theoretically in [18], a two-dimensional
representation of a grammar is used as a template of a filter, and a filter is derived by adding
constraints and annotations to the template. Two dimensions of the filter describe parent
and sibling relations in the hierarchic text structure. In the following sections we present
the main concepts of the model. The details can be found in [18].

FILTERING STRUCTURED DOCUMENTS 183

2.1 Grammars as definitions of text types

A context-free grammardefines a set of terminal symbols, a set of nonterminal symbols to
represent structural elements, a specific nonterminal symbol called the start symbol, and a
set of productions to show how structural elements are composed of other elements. In the
text model described in [19,20,21] and applied in [18], a context-free grammar is regarded
as a definition for a set of text types, and a parse tree for the grammar as a hierarchy of
instances calledparts of the types. The names of the text types appear as nonterminal
symbols in the grammar.

(3) content --> abstract section+

(6) itemizelist --> itemize+

(4) section --> heading paragraph+

(5) paragraph --> |text_para |itemizelist

(1) article --> authors [date] title content

(2) authors --> author+

Figure 1. Grammar productions for an article

Consider, for example, the productions in the Fig.1. The metasymbols associated with
nonterminals on the right side of productions indicate iteration (* for zero or more times
and+ for one or more times), alternatives (|) and optionality ([and]). The produc-
tions define the text typesarticle,authors,content,section,paragraph and
itemizelist. Productions (1) – (4) and (6) define types whose parts consist of one or
more parts of other types. Production (5) defines parts of typeparagraph being either
parts of typetextpara or parts of typeitemizelist. The nonterminal symbols ap-
pearing on the right side of productions but not on the left side of any production are all
regarded as text types whose parts consist of word sequences. For example, in the sample
grammartitle is a type defined by the implicit production

title --> word+

where typeword represents a terminal symbol of the grammar accepted as a word constant
in the language. A parse tree for the sample grammar is shown in the Fig.2.

The parse tree is a containment hierarchy of the parts of the types defined by the sample
grammar. The parts are represented in the tree by nodes labelled by text types. The root of
the tree is a part of the type defined as the start symbol of the grammar. All other nodes
labelled by types are parts except the nodes which have no siblings. For example, the
nodes labelled byparagraph are parts while the nodes labelled bytextpara are not;
they only indicate that the parts of typeparagraph are also parts of typetextpara.
The subtree with a part as its root is thecontentof the part and the string produced by
concatenating the terminal symbols of the subtree (in their preorder) is thevalueof the part.
A partx containsparty is y is a node in the content ofx.

Each of the text types of a grammar can be considered as a logical operation which
tests if a part of a parse tree is a part of the type. In addition to text types, also other logical
operations may be defined for parts by associating a text type with a condition denoted
by braces. The operations are calledproperties. In [18], the following properties were

184 E. KUIKKA AND A. SALMINEN

article

content

title -

section

section

authors
author

author word - "William"

word - "Kay"

word - "Smith"

paragraph - textpara

paragraph - textpara

paragraph - textpara

paragraph - textpara

abstract

word - "Filtering"

word - "Filtering"

word - "selects"

word - "documents"

heading - word - "Documents"

word - "Documents"

word - "contain"

word - "elements"

word - "Documents"

word - "are"

word - "files"

word - "Filters"

word - "define"

word - "conditions"

word - "Filters"

word - "match"

word - "documents"

heading - word - "Filters"

word - "Johnson"

Figure 2. Parse for the grammar in Fig. 1

represented. In the following descriptionst andt1 are text types,s is a character string,n1

andn2 are positive or negative integers andq1,q2, . . . ,qk are constraints. The text in the
right column defines those cases in which the property is true for a part of the typet.

t{s} the value contains stringsas its substring
t{= t1} the value of the part equals the value of some part

of typet1
t{t1} contains a part of typet1
t{n1..n2} the position of the part among siblings of the same

type is between the numbersn1 andn2

t{q1 & q2 & . . . & qk} all of the propertiest{qi} are true
t{q1 | q2 | . . . | qk } at least one of the propertiest{qi} is true
t{! q1} the propertyt{q1} is not true

For example, the propertyauthor{"Smith"} is true for theauthor parts which contain
the word Smith and the propertyauthor{"Smith" & 1..2} indicates that the word
Smith has to be in the first or secondauthor part.

2.2 Templates

A templateis created for one of the text types of the grammar to depict the structure defined
for the parts of the text type, at a chosen level of detail. Formally, a template is defined as an
ordered labelled tree whose root is labelled by the type for which the template is generated.

FILTERING STRUCTURED DOCUMENTS 185

A template as a tree is visualized such that eachnode label is written on its own line,
and the parent-child relationship is expressed by indentation. The following are templates
for an article generated from the previous grammar. The root of both of the templates is
typearticle. The left-hand side template shows the main components of an article. The
right-hand side shows also the structure of theauthors component.

article
authors

author+
[date]
title
content

article
authors
[date]
title
content

In [18], the correspondence between text type occurrences of a template and parts of
a parse tree is defined. To set restrictions to parts corresponding to text type occurrences,
a constrained templateis formed by adding constraints defined for properties to type
occurrences of the template. Constraints are written on the right side of a type occurrence.
The following constrained filter

article
authors

[date]
title
content

author+........."smith" & 1..2

defines articles having Smith as the first or second author. The semantics of a constrained
template is specified in [18] by defining those cases where a part of a parse tree matches a
constrained template.

For iterative text type occurrences, expressed by metasymbols* or + in templates, a
quantity constraintmay be added to express the number of parts for which the property
associated with the text type must be true. The quantity constraint is one of the following:
ALL, n, > n, ≥ n, < n or ≤ n wheren is a non-negative integer.

2.3 Filters

A filter consists of constrained templates where the specified parts are indicated byanno-
tations. While the text types are schema-level definitions, annotations allow query-level
definitions. Names of annotations cannot be names of text types. Annotations are written
on the left side of a type occurrence in a template.

A simple filter is a constrained template where one or more text type occurrences
are annotated. Acompound filteris a sequence of simple filters bound with the use of
annotations. The annotations are regarded as definitions ofdynamic text types. A dynamic
type defined in a simple filter may be used in constraints of the subsequent filters. In [18]
it is defined in which cases a part of a parse tree matches an annotation in a filter.

186 E. KUIKKA AND A. SALMINEN

Let us consider the following compound filter.

long_chan_art....article
 authors
 author+..........."Chan"
 [date]
 title
 content
 abstract

 authors

 [date]
 title
 content
 abstract

 author+..........."Smith" & 1..2

 section+..........QTY: =<4

 section+..........QTY: >4

art...............article................long_chan_art | short_smith_art

short_smith_art..article

The annotationart in the last simple filter specifies articles which are either long (more
than four sections) written by Chan, or short (less than or equal to four sections) written by
Smith as the first or second author. The first condition is defined by the first simple filter,
the second one by the second filter. The annotations of the first two simple filters define
dynamic text typeslong chan art andshort smith art, which are then used to
specify the required article in the third filter.

More examples of the use of filters can be found in [18].

3 SYNDOC, A SYNTAX-DIRECTED DOCUMENT PROCESSING SYSTEM

Syntax-directed text processing in the SYNDOC environment [22,23] is based on the
syntax-directed translation defined in the theory of formal languages [24]. SYNDOC uses
context-free grammars and their parse trees in the input, update, retrieval, and output of
documents. Figure3 describes the architecture of the system depicting the processing
phases of structured documents according to one grammar.

The structure grammar defines the type for a set of documents and is called askeleton
grammar. It contains only nonterminal symbols, among them a special nonterminal for the
characters strings of the content. The creation of documents starts by defining a skeleton
grammar. On the basis of the skeleton grammar, input grammars are defined for the input and
output grammars for the output of documents. In an input grammar, the advice-information
for the user is given using terminals interleaved with nonterminals of the skeleton grammar.
In the output grammar, layout codes are those terminals which are added to the skeleton
grammar. From input and output grammars the system compiles the input and output
programs, respectively.

The input program is a syntax-directed editor which incrementally creates a parse tree
according to the skeleton grammar from the pieces of text written by the user. Documents
formatted for printing, viewing and for external representations are produced by the output
programs called output generators.

For the document retrieval, a filter defining the conditions for selected documents is
created from the skeleton grammar using a filter editor. The filtering engine compares the

FILTERING STRUCTURED DOCUMENTS 187

.

.

..
.

.

.

.

.

Tree displayer

Parse
tree
for G1

Filter

Indexed
parse
tree
for G1

Filter
editor

Input text

Compiler

Input editor

Compiler

Grammar editor

Parse tree
on display

on display
Formatted text

editor
Skeleton grammar

Grammar
G1

Indexer

Filtering engine

Output
grammar

Once for each document type

For each document

Printer ouput

LaTeX document

SGML document

for external
representations

grammar
Input

Output generator
for screen

Output generators

For a set of documents

Representation for
the parse tree

Figure 3. Architecture of SYNDOC

188 E. KUIKKA AND A. SALMINEN

filter to indexed parse trees which an indexer has created from parse trees. The selected
documents are then either edited using the input editor and viewed by the tree displayer, or
displayed or printed using user-defined output generators.

SYNDOC has an accompanying grammar-based document transformation system
called TRANSDOC [25,26] which makes parse tree transformations using various tree
transformation methods. Transformation definitions for different methods are created using
two skeleton grammars, either automatically or with user’s help. Automatic transformations
are made from one parse tree to another. In filtering it is possible that selected documents
are first transformed according to a new structure grammar and then displayed or printed
using the new structure.

4 RETRIEVAL BY FILTERING

The retrieval of documents in SYNDOC is based on the filtering approach and consists of
three activities that can be executed individually:

1. indexing to allow the user to index documents,
2. filter definition to allow the user to specify constraints, and
3. filtering to allow the user to compare a filter with indexed documents and to display

or print documents in a requested form.

Before the user can execute these activities, she or he must select a grammar which restricts
the amount of source documents in filtering. Indexing and filtering are applied only to
documents valid for the selected grammar from which the filter is derived. Conditions
in filters that do not conform to the selected grammar are not allowed. The grammar is
also used to inform the user of ambiguous constraints. We call this kind of approach a
syntax-directed filtering.

Filters are long-term definitions and are not used only during a search process. Also
indexed documents and retrieved documents may be saved for further purposes. All of
them can be used by the same and other users.

In SYNDOC, the search starts from the main menu using the menu itemRetrieval (Fig.
4). Other items of the main menu allow the user to create grammars as well as input, output
and transform documents.Retrieval selection opens a window which contains a field to
determine a skeleton grammar and buttons for different phases of the retrieval:Indexing,
Defining Filters, andFiltering. The user cannot continue the filtering process without first
defining the grammar. The aim is to compare the filter with all documents for the same
skeleton grammar in the working directory.

4.1 Indexing documents

Indexing of documents for a grammar starts from menu itemIndexing (Fig. 4). The user
indexes selected files or all files for the selected grammar in the working directory. If the
user indexes selected files, their names are provided via a document selection window
which lists all document files for the grammar in the working directory. The system uses an
index control file to direct indexing. User-defined control files may contain words which
are not indexed, as well as other control information (for example, the method used for
indexing). The index as an inverted list indicates occurrences of words and elements in

FILTERING STRUCTURED DOCUMENTS 189

the document and depicts the hierarchic structure of elements. For each document file a
separate index file is created.

Figure 4. Selecting documents for indexing

4.2 Defining filters

The user initiates the filter generation by giving file names for a grammar and filter, and
the name of a text type for the root of the filter (Fig.5). For an existing filter, only a name
of the file containing the filter definition is selected.

On thescreen,afilter is represented as a tablewith fivecolumns (Fig.5). The first column
(RESULT) is for annotations. The second column (TYPE) shows a template expressing the
hierarchical text structure. Columns three, four and five (CONTAINS, POSITION and
QUANTITY) are for constraints. A containment constraint is a type, a type preceded by =, a
character string, or a Boolean combination of them. Position constraints are of the formn1

or n1..n2 wheren1 andn2 are positive or negative integers. If both a containment constraint
q1 and a position constraintq2 has been associated with a typet, it denotes the property
t{q1&q2}.

The template of a filter is generated from its root type in a syntax-directed way from
the skeleton grammar. The user creates the template using the buttonsZoom, Unzoom,
Constraints, Results, AddFilter andDeleteFilter. By zooming, the user adds type occur-
rences on the right side of the production for the current text type. The system does not
allow illegal constraints. Also it is checked that a new annotation is distinct from the names
of text types of the grammar and from previous annotations of the filter.

The buttonsChild, Parent, Next Sister, Previous Sister, Down andUp allow the user
to move from a type to another in the tree and expand and define constraints and annotations
is any order. ButtonsSave, Exit andCancel are used in saving the created filter.

190 E. KUIKKA AND A. SALMINEN

Figure 5. Filter on the screen

4.3 Filtering

Comparing a filter to indexed documents is initiated by using theFiltering menu item (Fig.
6). The user selects the filter by its file name. Search can be carried out among selected
indexed documents or all indexed documents in the working directory. The comparison
test counts the documents for which the filter matches and informs the user how many
documents have been found (Fig.6).

The user defines the output form for selected documents using theDefine Output Form
(Fig. 6). The output for selected documents can be generated in four different forms: the
default form, input form, formatted form, and transformed and formatted form. The default
form shows documents in the form in which they are stored. The input form opens the input
editor and allows the user to edit the document. The layout form represents a formatted
form using a previewer. We have produced a formatted layout as ASCII text containing
line feeds between structure elements, and using Hypertext Markup Language (HTML) or

FILTERING STRUCTURED DOCUMENTS 191

Figure 6. Displaying the result of searching on the screen

the LATEX formatter. The transformed and formatted form allows the user to modify the
document structures and then format the transformed documents.

5 SYNDOC IMPLEMENTATION

SYNDOC has been implemented in SICStus Prolog (version 2.1 patch #9) [27] with the
Graphics Manager library to create the X-window user interface, and in Tcl (version 7.4)
and Tk toolkit (version 4.0) script languages [28]. The system runs in Sun workstations
within the unix operating system.

Themain aimof the implementation of the retrieval modulehas been thefilter generation
module and co-work with other modules. The indexing method is described by Burkowski
in [29]. The indices indicate occurrences of indexed words and as well as occurrences
of parts containing indexed words. Words of documents are numbered to identify their
positions. Other parts are identified using the position numbers of their first and last words.
The matching algorithm compares simple filters of a compound filter starting from the first
one. For each simple filter, the algorithm searches all indexed parts of a document for the
root text type of the filter and checks if the filter is true for one of them. The comparison of
children of the text typet in the filter is restricted to parts inside the parts which correspond
to typet. The algorithms and programs are described in detail in [23].

The current SYNDOC implementation is a prototype where documents are represented
by Prolog terms. In the implementation only short documents have been tested. The transfer
of the system to accept larger documents will be an area of our future research.

192 E. KUIKKA AND A. SALMINEN

6 CONCLUSIONS

In this paper we have presented a method to retrieve document files using the filtering
approach. The method is implemented in a syntax-directed document processing system
which uses a syntax-directed translation as a processing model and allows documents to
be represented as parse trees for a grammar, and created and formatted separately. In the
document retrieval, indexing, filter definition, and filtering consisting of editing, browsing
or viewing documents are made separately and not tightly connected to each other. The
output of various activities may be stored to files for further purposes.

The filtering system allows the user to group document files with the same structure
in the same dictionary (or many dictionaries if documents with the same structure need to
be processed as subsets) and then retrieve those documents only. Filters offer a graphical
way to define queries integrating structure and content conditions. Furthermore, the user
can use existing filters either for a new retrieval or as part of a new filter. Finally, the user
can define different kinds of layouts for selected documents for various purposes.

ACKNOWLEDGEMENTS

This work was financed by the Acadamy of Finland and supported by grants of the Saasta-
moinen Foundation, the Emil Aaltonen Foundation, and Jenny and Antti Wihuri Founda-
tion, which are gratefully acknowledged. The authors would like to thank Martti Penttonen,
Jorma Sajaniemi, Pekka Savolainen, Heikki Mannila, Pekka Kilpeläinen, Erja Nikunen,
Helena Ahonen and Frank Tompa for their comments and Jouni Mykkänen and Arto
Ryynänen for the programming work.

REFERENCES

1. N.J. Belkin and W.B. Croft, ‘Information filtering and retrieval: two sides of the same coin?’,
Communications of the ACM, 35, 29–38, (1992).

2. J. Jaakkola and P. Kilpel¨ainen, ‘Sgrep - a tool to search structured text’, Technical report,
Department of Computer Science, University of Helsinki, Finland, (1995). In preparation.

3. C.L.A. Clarke and G.V. Cormack, ‘The use of regular expression for searching text’, Technical
Report CS-95-07, University of Waterloo, Department of Computer Science, (1995).

4. EBT,DynaText Publisher Guide I & II, 1993.
5. I.A. Macleod, ‘Storage and retrieval of structured documents’,Information Processing & Man-

agement, 26(2), 197–208, (1990).
6. I.A. Macleod, B.T. Barnard, Hamilton D., and M. Levison, ‘SGML documents and non-linear text

retrieval’, inRIAO’91, Proceedings of the Conference on Intelligent Text and Image Handling,
pp. 226–244, (1991).

7. E. Bertino, F. Rabitti, and S. Gibbs, ‘Query processing in a multimedia document system’,ACM
Transactions on Office Information Systems, 6(1), 1–41, (1988).

8. S. Abiteboul, S. Cluet, and T. Milo, ‘Quering and updating the file’, inProceedings of the 19th
VLDB Conference, pp. 73–84, Dublin, Ireland, (1993).

9. S. Abiteboul, S. Cluet, and T. Milo, ‘A database interface for files update’, inSIGMOD Record,
San Jose, California, (1995).

10. M.P. Consens and T. Milo, ‘Optimizing queries on files’, inSIGMOD’94, Proceedings of the
1994 ACM SIGMOD International Conference on Management of Data, eds., R.T. Snodgrass
and M. Winslett, pp. 301–312, (1994). SIGMOD Record, Vol. 23, Issue 2, June 1994.

11. M.P. Consens and T. Milo, ‘Algebras for querying text regions’, inFourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1995, pp. 11–22, San
Jose, California, (1995).

FILTERING STRUCTURED DOCUMENTS 193

12. A. Loeffen, ‘Text databases: A survey of text models and systems’,SIGMOD RECORD, 23(1),
97–106, (1994).

13. R. Sacks-Davis,T. Arnold-Moore, and J. Zobel, ‘Database systems for structured documents’, in
InternationalSymposiumon AdvancedDatabaseTechnologiesand Their Integration (ADTI’94),
pp. 272–283, Nara, Japan, (1994).

14. R. Baeza-Yates and G. Navarro, ‘Integrating contents and structure in text retrieval’,SIGMOD
Record, 25(1), 67–79, (1996).

15. M.M. Zloof, ‘Query-by-example: a database language’,IBM System Journal, 16(4), 324–343,
(1977).

16. G.Özsoyoglu and H. Wang, ‘Example-based graphical database query languages’,Computer,
May, 25–38, (1993).

17. M.S. Neff, R.J. Byrd, and O.A. Rizk, ‘Creating and quering lexical data bases’, inProceedings
of the 2nd Conference on Applied Natural Language Processing ACL, pp. 84–92, (1988).

18. E. Kuikka and A. Salminen, ‘Two-dimensional filters for structured text’. To appear inInfor-
mation Processing & Management.

19. A. Salminen and C. Watters, ‘Two-level structure for textual databases to support hypertext
access’,Journal of the American Society for Information Science, 43(6), 432–447, (1992).

20. A. Salminen, J. Tague-Sutcliffe, and C. McClellan, ‘From text to hypertext by indexing’,ACM
Transactions on Information Systems, 13(1), 69–99, (1995).

21. A. Salminen and F.W. Tompa, ‘Grammars++ for modelling information in text’, Technical
report, UW Centre for the New OED and Text Research, University of Waterloo, Department
of Computer Science, (1995). In preparation.

22. E. Kuikka, M. Penttonen, and M.-K. V¨aisänen, ‘Theory and implementation of SYNDOC doc-
ument processing system’, inProceedings of the Second International Conference on Practical
Application of Prolog, pp. 311–327, London, UK, (April 1994).

23. E. Kuikka, J. Mykkänen, A. Ryyn¨anen, and A. Salminen, ‘Implementation of two-dimensional
filters for structured documents in SYNDOC environment’, Technical Report A-1995-4, De-
partment of Computer Science, University of Joensuu, (1995).

24. A.V. Aho and J.D. Ullman,The theory of parsing, translation, and compiling, Vol. I: Parsing,
Prentice-Hall, Inc., Englewood Cliffs, N.J., USA, 1972.

25. E. Kuikka and M. Penttonen, ‘Transformation of structured documents with the use of grammar’,
Electronic Publishing - Origination, Dissemination and Design, 6(4), 373–383, (1993).

26. E. Kuikka and M. Penttonen, ‘Transformation of structured documents’. Submitted forpubli-
cation.

27. Swedish Institute of Computer Science,SICStus Prolog User manual and SICStus Prolog
Library manual (Version 2.1), 1993.

28. J.K. Ousterhout, ‘Tcl and the tk toolkit’. Draft version of ISBN 0-201-63337-X, 1993.
29. F.J. Burkowski, ‘An algebra for hierarchically organized text-dominated databases’,Information

Processing & Management, 28(3), 333–348, (1992).

	SUMMARY
	1 INTRODUCTION
	2 TWO-DIMENSIONAL FILTERS FOR STRUCTURED TEXTS
	2.1 Grammars as definitions of text types
	2.2 Templates
	2.3 Filters

	3 SYNDOC, A SYNTAX-DIRECTED DOCUMENT PROCESSING SYSTEM
	4 RETRIEVAL BY FILTERING
	4.1 Indexing documents
	4.2 Defining filters
	4.3 Filtering

	5 SYNDOC IMPLEMENTATION
	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

