
ELECTRONIC PUBLISHING, VOL. 8(2 & 3), 195–206 (JUNE & SEPTEMBER 1995)

Automatic generation of SGML content models
HELENA AHONEN

Department of Computer Science
University of Helsinki
P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland

e-mail: helena.ahonen@helsinki.fi

SUMMARY
We study the problem of automatic generation of a document type definition (DTD) for a set of
Standard Generalized Markup Language (SGML) documents. We present various situations
where we have tagged documents but no DTD, and discuss the requirements various applications
may have with respect to the generation process.We also present an automatic DTD generation
tool that can be adjusted for several tasks necessary in the applications. The method is also
demonstrated with some experimental cases.

KEY WORDS SGML Document type definitions Generation

1 INTRODUCTION

An SGML (Standard Generalized Markup Language) [1] document has bothtagging, i.e.
all its elements are marked with begin and end tags, and adocument type definition (DTD)
that describes the allowed structure of the document class to which the document belongs.
The basic components of a DTD areelement declarations that contain for each element
a content model which in turn specifies themodel group that defines the allowed content
of the element. A model group is constructed of simpler model groups,connectors, and
occurence indicators. The connectors —Sequence connector (","),And connector ("&"),
andOr connector ("|") — specify the order of elements, whereas the occurrence indicators
— Optional ("?"), Required and repeatable ("+"), andOptional and repeatable ("*") —
specify how many times an element may occur in the position.

There are, however, situations, where we have tagged documents, but no DTD is
available. For instance, we can convert documents from non-SGML environments by
replacing typographical tags with SGML tags, but there is no similar source for the DTD.
Creating a DTD manually is difficult, if the set of documents is large. Manual creation
may even be impossible, for instance, if an online application reuses the results of some
transformation process, the structureof which do not conform to any existing DTD. Clearly,
there is a need forautomatic DTD generation.

Automatic DTD generation has also been studied in [2,3,4,5], mostly in connection
with some specific situations. We try to give an overview of the various cases where the
need for a DTD may arise, and we also present our own method that has features adjustable
for these cases.

CCC 0894–3982/95/020195–12 Received 1 April 1996
 1995 by John Wiley & Sons, Ltd. Revised 23 June 1996

196 HELENA AHONEN

Assume we want to find a DTD for the following tagged dictionary entries [6].

<Entry><Headword>kaame/a</Headword> <Inflection>15</Inflection>
<Sense> kammottava, kamala, kauhea, karmea, pelottava </Sense>.
<Example_block> <Example>Kaamea onnettomuus, verityo. </Example>
<Example> Tuliaseet tekivat kaameaa jalkea. </Example>
<Example> Kertoa kaameita kummitusjuttuja. </Example>
</Example_block>
<Sense_structure> <Technical_field>Ark.</Technical_field>
<Example_block><Example>Kaamea hattu.</Example>
<Example> On kaamean kylma. </Example> </Example_block>
</Sense_structure> </Entry>

<Entry><Headword>kaameasti</Headword><Example_block>
<Example>Sireenit ulvoivat kaameasti.</Example>
</Example_block></Entry>

<Entry><Headword>kaameus</Headword><Inflection>40</Inflection>
<Example_block> <Example> Sodan kaameus.</Example>
</Example_block></Entry>

There are at least three trivial solutions for building the element declarations:

1. Find each element within the document, and allow it any content:

<!ELEMENT Entry ANY >
<!ELEMENT Headword ANY >
<!ELEMENT Inflection ANY >
<!ELEMENT Sense ANY >
<!ELEMENT Example_block ANY >
<!ELEMENT Example ANY >
<!ELEMENT Technical_field ANY >
<!ELEMENT Sense_structure ANY >

2. For each element find all the elements that appear within it, and form an optional and
repeatable model group:

<!ELEMENT Entry (Headword | Inflection | Sense
| Example_block
| Sense_structure)*>

<!ELEMENT Sense_structure (Technical_field
| Example_block)*>

<!ELEMENT Example_block (Example)*>
<!ELEMENT Headword #PCDATA >
<!ELEMENT Inflection #PCDATA >
...

3. De-facto grammar; take all the structures of the instances to be the DTD:

<!ELEMENT Entry ((Headword, Inflection, Sense,
Example_block, Sense_structure)
| (Headword, Example_block)

AUTOMATIC GENERATION OF SGML CONTENT MODELS 197

| (Headword, Inflection,
Example_block)) >

<!ELEMENT Sense_structure (Technical_field, Example_block) >
<!ELEMENT Example_block ((Example, Example, Example)

| (Example, Example) | Example) >

Solutions1 and 2 are usually overgeneralizing, while solution3 is too restrictive. A non-
trivial solution should find a good compromise between these two extremes and capture at
least some knowledge of the order of the elements, and whether the elements are optional,
required, or iterating, like in the following:

<!ELEMENT Entry (Headword, Inflection?, Sense?,
Example_block, Sense_structure?) >

<!ELEMENT Sense_structure (Technical_field, Example_block) >
<!ELEMENT Example_block (Example)* >

Of course, we can ask whether we need non-trivial DTDs in the first place, since tagged
documents may be used even without any DTD. For instance, we can make structured
queries that just specify a string inside some element. However, it is certainly difficult
for a user to get the most benefit from the structure, if s/he does not even know it. Many
application programs, like editors and transformation tools, require a DTD. A trivial DTD
may not be satisfying, if we, for example, have strong validation needs. In the next sections
we discuss further the ways in which we can utilize automatical DTD generation. We
also present the DTD generation tool we have implemented and show the results of some
experiments that illustrate the use of our method in some application areas.

2 APPLICATIONS OF AUTOMATIC DTD GENERATION

Automatic DTD generation can be used for many purposes. The actual needs of the ap-
plication determine how the generation has to be applied, and what kind of result we can
expect. The needs can be examined along the following dimensions:

Complexity of the structure. If the structure of the document instances is simple, auto-
matic DTD generation is easy and the quality of the result is good, i.e., we can easily
achieve all the requirements stated below. Hence, in the following, we assume that
the structure is somehow complex.

Time frame. We may have online applications that require immediate results. Sometimes
we need the result quickly, and sometimes, e.g., in a design process, we have more
time.

Need of completeness. The result either has to be a valid SGML DTD that is immediately
usable within an SGML application, or the result is used as a source of information
and hence may be a partial solution.

Need of rich structure. Some applications just need some DTD, thus a trivial solution that
loses most of the structure may be appropriate. If a trivial DTD is not adequate, there
is usually some tendency how much trivialization is preferred. If a DTD generation
is used mainly to gather some information of the documents, the more structure can
be discovered the better.

198 HELENA AHONEN

Need for readability. The resulting DTD may be used directly by some application pro-
gram, hence the machine-readable form is adequate. Instead, if the DTD has to be
understandable also by human users there are different requirements for readability.

Tagging can/cannot be modified. The source instances may be “given as such”, i.e., there
is either a fixed structure, or there is no time to modify the structure. On the other hand,
for instance in a design process, the DTD generation can be used to reveal problems
with the instance structures and tagging, which may be then updatedaccording to
the results.

Batch or interactive processing. Usually there is always first some kind of batch pro-
cessing, which is followed by an interactive session if necessary, and if there is time
and people for that.

In addition to the interactions already mentioned, these dimensions affecteach other
in several ways. The most important of these is: If the DTD has to be complete, and the
structure is complex, we cannot get both full structure and readability, i.e., there has to be
some trivialization. This is even emphasized, if the process has to be online, whereupon
the user cannot simplify the result interactively.

There are at least two cases where the other dimensions do not affect the result, in
addition to the first case mentioned, i.e., when the structure is simple. Clearly, if some
trivial solution is adequate, we can always form it quickly, it is complete and readable,
and there is no need to change the structure of instances. Similarly, if we do not require
completeness, a somehow partial solution should be easy to generate. In the following
sections we present applications that illustrate some combinations of the above-mentioned
dimensions.

2.1 DTDs for static documents

Some document collections are “given as such”, e.g. archives may have a very conventional
structure that cannot be modified. Hence there is no need for a design process in the conven-
tional sense, but the task is to find a DTD that makes it possible to use the documentation
in the best possible way with SGML application programs. Moreover, with this kind of
“historical” documents, which were never designed any grammar in mind, it may be very
interesting to see the exact structure found in the documents. Hence, the discovery of the
structure both has a meaning as such and gives extra information for various processing
needs.

The second case of static documents are documents that come from some external
source, e.g., messages imported to a company from outside. We may want to transform
these messages to our own format, and for the transformation we need some DTD for the
source documents.

2.2 Interactive design tool

Above we considered static documents. Quite in the contrary is the situation when we
are designing our own document collection, e.g., all the documentation needed within our
enterprise. In this case DTD creation is more or less similar to database design: modelling
of the application area is needed. Now automatic DTD generation can be used as one
design tool. If the planned documentation is based on existing documents, we can first

AUTOMATIC GENERATION OF SGML CONTENT MODELS 199

gather information from their structures and use it for evaluation and further design.
Assume we have used some non-SGML word processor for our documentation, and the

writers have been obliged to use some common styles in a rigid way. Whenever we then
want to convert the whole documentation to SGML, we might hope to get the DTD directly
from the style rules. However, people do not necessarily obey the rules very strictly, since
there is no way to make them obligatory. Therefore, when the documents are converted
into SGML, it is useful to check what the real structure actually is. All the deviations of the
rules might not be totally negative: there might be ways people have created to overcome
some unexpected situations in the design process. Hence, the automatic DTD generation
can reveal useful knowledge that can benefit the design of the new SGML documentation.

2.3 DTDs for different views and subdocuments

It is often wise to use some standard DTD. However, these DTDs are usually very large
and designed to cover many varying cases. If we then need a simpler DTD for some task or
a DTD for some subdocument, we can use automatic generation to find a DTD thataccepts
the selected documents. One example of this kind of DTD is an author DTD [7]: a DTD that
is given to the people that create documents. For instance, in our research project [8] we
have used ISO 12083 standard DTD for books [9] as a DTD for engineering text books. By
now we have converted existing non-SGML books to this DTD, but since the conversion
process is very tedious, the authors are recommended to use an SGML editor to create the
new books. Hence, we need now a simpler DTD that the writers can use. We can utilize
the already converted tagged textbooks to generate a DTD automatically, and check the
result against the standard DTD to make the obvious generalizations, like allowing more
than one author.

2.4 Online DTDs

We have studied in our research project [8] intelligent assembly of documents, which means
that the user can configure new, individualized documents from a collection of documents
and possibly also from external information sources. In document assembly, the basic op-
erations arequeries that return the selected fragments of documents, andconfiguration of
these fragments to form sensible documents. Hence, the assembled document is a trans-
formation of one or more existing documents. If, instead of simple printing of documents,
we want that the resulting documents are valid SGML documents that can be reused later,
possibly in assembling new documents, we need a complete DTD for them. Theseonline
DTDs have to be generated automatically. Of course, we can always use some trivial DTD,
but if we want to get the maximal use of the assembled document, it is better to find a
solution that is more structured.

We can form a DTD from the tagging of the assembled document, but this DTD may
be too restricted. We are going to study, how the source DTD and the transformations can
be used to generalize the target DTD in a suitable way.

3 AUTOMATIC DTD GENERATION

We have designed and implemented an automatic DTD generation tool (See [10] for a
preliminary version and [11] for a detailed presentation of the implementation) that is

200 HELENA AHONEN

adjustable according to the above mentioned dimensions. In a typical session, there is a
batch processing phase that produces the first complete candidate for a content model. The
content model is a generalization of the source instances, but usually rather complicated. If
the result is readable enough for the purpose of the application, there is no need for further
processing. Otherwise, the continuation depends on the situation.

If we have an online application but still need a readable result, there has to be some
further automatic generalization. This can be done by dividing the problem, e.g. with
isolatingsome model groups,trivializing the result, ordiscovering inclusions. These further
generalizations can be started every time after the basic part, or there may be some way
to measure the complexity of the result, whereupon exceeding some given complexity
threshold triggers the operations.

The above generalizations can be used even if we can afford interactive processing,
although they can be applied more intelligently, since the background knowledge of the
user can be utilized. For instance, we can try to discover inclusions automatically, but the
result is better if the user can evaluate the candidates found and select the actual inclusions
among them. If the automatic generation is used as a design tool, a useful operation is the
separation of common structures from exceptional ones that generates a content model for
both cases. This can give valuable information for the design process and may also cause
updates in some instances.

3.1 Generating unambiguous content models

The basic idea of our method is to form for each element a deterministic finite automaton
from the structures of the instances of this element, generalize these automata in a certain
way, and then convert the automata to regular expressions that are easily written as SGML
content models. The content models should be,according to the SGML standard,unam-
biguous in the following sense: A content model is ambiguous if an element or character
string occurring in the document instance can satisfy more than one primitive token in the
content model without look-ahead. An algorithm to check if a content model is unambigu-
ous has been presented in [12]. Our method generalizes an automaton until its language is
unambiguousaccording to the conditions given in [12].

3.2 Isolation of model groups

If the document structure is complicated, it is often useful to be able to introduce more
nesting in the structure than present in the instances. For example in the dictionary entries
seen in Figure2there are clearly elements that form the first part of the entry (e.g.Headword
(H), Inflection (I), Consonant gradation (CG)) and others that appear at the end (e.g.Sense
(S), Example (E), Technical field (TF)). Since both of these parts vary a lot, processing
them separately reduces the complexity of the content models remarkably. The separation
can be done byisolating a set of elements to form a new model group.

Consider the following element declaration:

<!ELEMENT Entry - - (Headword, Inflection,
((Technical_field |
Consonant_gradation,

Pronunciation_instructions?),
(Sense, Example)*, Reference? |

AUTOMATIC GENERATION OF SGML CONTENT MODELS 201

Pronunciation_Instructions,
(Technical_field, (Sense, Example)*,
Reference? | Baseword))) >

If the elements appearing with the headword and the elements at the end are isolated
we get the following simpler declarations:

<!ELEMENT Entry - - (%Headword_part, %Rest_of_the_entry?>
<!ENTITY % Headword_part "Headword, Inflection,

(Consonant_gradation,
Pronunciation_instructions? |
Pronunciation_instructions)? " >

<!ENTITY % Rest_of_the_entry "(Technical_field?,(Sense, Example)*,
Reference? | Baseword)" >

There are two ways in which the isolation of elements can be used in the structuring
process. Above the new model group is defined as a parameter entity that can then be
included in various other model groups as a kind of short-hand notation. Use of entities
does not affect the document instances, but if elements are formed instead of entities, also
the instances have to be updated. Then the isolation should generate a parser that can
convert original documents to contain the new structures. The second way could be useful,
if the isolation reveals that some essential structure is missing in the original documents.

The isolation process takes as input a set of elements (e.g.Headword, Inflection,
Consonant gradation, Pronunciation instructions above) and a name for the new model
group (Headword part). All the occurrences of the elements to be isolated are found and a
new model group is built for them. Finally the occurrences in the original model group are
replaced by the given new name.

In batch processing, or if the user does not have any knowledge on the structure, it is
useful if there is some way to discover the strongly related elements, i.e. the candidate sets
for isolation, automatically. In our method we apply clustering.

To compute the clusters of elements we have to define some distance function for a pair
of elements. The intuition behind our function is the following: elementsA andB are close
to each other if there isAB or BA in the instances and there are only few elementsC such
that AC, CA, BC, or CB appears. Also the number of timesAB appears in the examples
may be taken into account. Moreover, the distance between two clusters is the minimum
distance between their elements.

After finding the best clusters the method can either proceed automatically, and isolate
the elements of clusters as described above, or the clusters can first be presented to the
user for evaluation. Similarly, the method can either create the names for the new entities
or elements itself, or it can ask them from the user. Hence, the automatic isolation can be
applied both in batch and interactive processing.

3.3 Inclusions

If some element appears more than once with many other elements, this element may be
floating. Then it could be reasonable to interpret this element as an inclusion, since undis-
covered inclusions may reduce the readilibity of the resulting content model remarkably.
Examples of floating elements include footnotes, figures, and various cross-references.

202 HELENA AHONEN

To discover candidates for inclusions we simply count the number of elements that
appear next to each elementA. If the total number is greater than a given proportion of the
whole number of elements, thenA is considered an inclusion. After a possible check by the
user, the inclusion element has to be removed from the content model and inserted in the
set of inclusions.

3.4 Local trivialization

The whole generalization process attempts to find a solution somewhere in between the
exact set of instances and the trivial case that contains all the structures. Basic generalization
obtains some solution, but if it still contains too much variation, it can be further generalized.
Local trivialization attempts to find the most complicated substructures, and generalizes
them: if the complexity of some model group exceeds a given threshold, we form an
optional and repeatable model group of all the elements included. Consider the following
element declaration:

<!ELEMENT Entry - - (Headword,(Inflection,Consonant_gradation?)?,
Sense, ((Sense, (Technical_field | Example)?

| Example | Technical_field),
(Sense, (Technical_field | Example)?)*,
(Reference | Example))?) >

Here elementsSense, Example, andTechnical field appear in many combinations. If
we trivialize the substructure containing them, we obtain the following declaration:

<!ELEMENT Entry - - (Headword,(Inflection,Consonant_gradation?)?,
((Technical_field | Example | Sense)*,
Reference?)?) >

3.5 Common and exceptional cases

Frequency information, i.e. how many times a certain structure appears in the instances,
can be used for quantifying the importance of different types of structures for the element.
At the moment our method can produce one content model for the common cases and
one for exceptions, according to a given threshold. Thisknowledge can be used, e.g., for
discovering errors and rare cases in the structures, which may lead to modifications in
tagging, if that is allowed.

4 EXPERIMENTAL RESULTS

We have implemented the method described above, excluding the discovery of inclusions.
In this section we present some experiments that illustrate how our method can be used to
satisfy needs of varying applications.

AUTOMATIC GENERATION OF SGML CONTENT MODELS 203

4.1 Textbook

As mentioned earlier, we have converted one textbook into SGML and structured itaccord-
ing to our ISO 12083 -based DTD [9]. As we need a simpler DTD for the benefit of authors
of new books, we generated a DTD for the book we already have, and now we can use
this DTD as a basis for the author DTD. In Figure1 we can see all the non-trivial element
declarations resulted, i.e., the content models for all the elements seen on the right-hand
side but not on the left-hand side are#PCDATA.

Our method produces a complete DTD, although in this case it is not totally necessary.
After the basic generalization phase the method continued with local trivialization. It
trivialized some model groups that have large variation, e.g. a part of the declaration for
paragraph (P). All the processing was done without any interaction by the user.

4.2 Dictionary

Most challenging of our test cases has been the partA – K of a Finnish dictionary [6]. We
converted the typographical tags of the dictionary, which consists of about 16000 entries,
to structural tags, and obtained a set of 468 distinct structures. Every structure also received
a frequency, i.e., the number of entries that the structure covers. We chose 55 of the most
common structures (Figure2), which together covered 14791 entries.

The dictionary was not originally designed for computer use, and therefore the structures
of the entries have great variation. Even the editors cannot specify the desired structure for
an entry. Hence, there is a strong need to gather information from the existing structures
and use this knowledge to update instances to develop a more consistent structure. In this
point this case differs from some otherwise similar cases, e.g., discovering the structure of
ancient books or archives, where it is not desirable to change the structure.

Again,after thebasicgeneralization with local trivialization the result was the following:

<!ELEMENT EN - - (H, ((EX|TF|S)*, R? | I, ((EX|TF|S)*, R?
| CG, ((EX|TF|S)*, R? | (R,EX?) | PrF | (BW,EX)
| PaF, ((EX|TF|S)*, R?)?)? | (R,EX?)
| PI, (S | ((TF|EX|S)*, R?) | R)?
| PaF, ((EX|TF|S)*, R?)? | PrF
| II, ((TF|EX|S)*, R?)? | (BW,EX))? | (R,EX?)
| PrF | PI, (S | (TF|EX|S)*, R? | R)?)?) >

This time we used some background knowledge, i.e., that elementsH, I, CG, PI, and
II form the first part of each entry. Therefore we made one interactive isolation step and
obtained the following declaration:

<!ELEMENT EN - - (%HP,(((EX|TF|S)*, R?) | (R,EX?) | PrF | (BW,EX)
| (PaF, (EX|TF|S)*, R?)?))?) >

<!ENTITY % HP "(H, (I, (CG|PI|II)? | PI)?)" >

5 CONCLUSION

We have discussed the possible uses of automatic DTD generation tools, and which char-
acteristics are needed from such tools in the applications. We introduced seven dimensions

204 HELENA AHONEN

<!ELEMENT ANSWER - - (TITLE?, P, ((P, FIGGRP? | FIGGRP)
(P, FIGGRP?)*, FIGGRP?)?) >

<!ELEMENT APPENDIX - - (NO, TITLE, (P | (SECTION)*) >
<!ELEMENT APPMAT - - (APPENDIX)* >
<!ELEMENT AUTHGRP - - (AUTHOR, AUTHOR) >
<!ELEMENT AUTHOR - - (FNAME, SURNAME | SURNAME, FNAME) >
<!ELEMENT BACK - - (BIBLIST) >
<!ELEMENT BIBLIST - - (HEAD, (CITATION)*) >
<!ELEMENT BODY - - (CHAPTER)* >
<!ELEMENT BOOK - - (FRONT, BODY, APPMAT, BACK) >
<!ELEMENT CELL - - (P) >
<!ELEMENT CHAPTER - - (NO, TITLE, ((P)*, (EXAMPLE | FIGGRP)?)?,

(SECTION)*) >
<!ELEMENT CITATION - - (TITLE, (AUTHOR)*, (CORPAUTH)*, OTHINFO?,

DATE) >
<!ELEMENT CORPAUTH - - (ORGNAME, CITY?) >
<!ELEMENT DFORMULA - - (#PCDATA | FIGGRP, FIGGRP?) >
<!ELEMENT DOCUMENT - - (BOOK) >
<!ELEMENT EXAMPLE - - (P | TITLE, ((P | FIGGRP)*, ANSWER?)?) >
<!ELEMENT EXERC - - (NO?, ((P)*, (FIGGRP, P? | ANSWER)?)?) >
<!ELEMENT EXGROUP - - (TITLE?, ((EXERC)*, FIGGRP?)?) >
<!ELEMENT FIGGRP - - ((FIG)*, TITLE?) >
<!ELEMENT FOREWORD - - (TITLE, (P)*) >
<!ELEMENT FRONT - - (TITLEGRP, FIGGRP, AUTHGRP, FIGGRP,

FOREWORD, PREFACE) >
<!ELEMENT ITEM - - (P)* >
<!ELEMENT LIST - - (HEAD, ITEM, (HEAD, ITEM)* | (ITEM)*) >
<!ELEMENT P - - (#PCDATA | (DFORMULA | LIST | EMPH |

FORMULA | SUBSCR | SUPERSCR | FIGREF)*
(FIGGRP, FIGREF? | SECREF | SYMBOL)?
| FIGGRP | FORMREF | SECREF |
(SYMBOL, SYMBOL?) | TABLE) >

<!ELEMENT PREFACE - - (TITLE, (P)*) >
<!ELEMENT ROW - - (TSTUB?, CELL, CELL) >
<!ELEMENT SECTION - - (NO, TITLE, ((P | EXAMPLE | FIGGRP | LIST)*

(EXGROUP, (SUBSECT1)* | DFORMULA |
(SUBSECT1)*)? | (SUBSECT1)*)?) >

<!ELEMENT SUBSECT1 - - (NO, TITLE, ((P | FIGGRP | EXAMPLE)*,
EXGROUP?)?) >

<!ELEMENT TABLE - - (TBODY) >
<!ELEMENT TBODY - - (ROW)* >
<!ELEMENT TITLE - - (#PCDATA | (SUBSCR)*) >
<!ELEMENT TITLEGRP - - (TITLE) >
<!ELEMENT TSTUB - - (P) >

Figure 1. A DTD for one textbook

AUTOMATIC GENERATION OF SGML CONTENT MODELS 205

2470 EN→ H S 1787 EN→ H EX
1325 EN→ H 1122 EN→ H I S
1056 EN→ H S EX 1031 EN→ H I S EX
995 EN→ H TF S 574 EN→ H I CG S EX
549 EN→ H I TF S 387 EN→ H I EX
352 EN→ H I CG S 329 EN→ H R
258 EN→ H I TF S EX 232 EN→ H TF S EX
195 EN→ H TF 171 EN→ H I R
138 EN→ H I CG TF S 125 EN→ H I
117 EN→ H TF EX 100 EN→ H PrF
97 EN→ H I CG TF S EX 94 EN→ H I PI S
92 EN→ H EX S 85 EN→ H I CG R
84 EN→ H TF R 66 EN→ H I S EX TF EX
54 EN→ H I PaF S EX 53 EN→ H I TF R
51 EN→ H I CG S EX TF EX 47 EN→ H I CG PrF
46 EN→ H I CG BW EX 45 EN→ H I S EX TF S EX
44 EN→ H I PrF 44 EN→ H PI S
42 EN→ H I EX S 39 EN→ H TF EX S
34 EN→ H I PaF S 34 EN→ H I CG PaF S EX
34 EN→ H I PI TF S 31 EN→ H I S TF S
30 EN→ H I TF TF S 29 EN→ H I II TF S
29 EN→ H I S EX S 29 EN→ H I BW EX
28 EN→ H I CG S EX TF S EX 24 EN→ H I CG EX
24 EN→ H S EX S 22 EN→ H I R EX
22 EN→ H I PI R 22 EN→ H TF TF S
21 EN→ H R EX 21 EN→ H S TF S EX
21 EN→ H S EX TF EX 20 EN→ H I CG R EX
20 EN→ H EX TF S

Figure 2. Sample dictionary structures

that affect the process of DTD generation: complexity of the structure, the time frame, the
need of completeness, the need of readability, the need of rich structure, the possibility
to modify the tagging, and the possibility to utilize interactive processing. Every applica-
tion sets its own values for each of these dimensions, and thus determines how the DTD
generation can proceed and which kind of quality can be expected from the result.

We also presented a generation tool we have designed and implemented, which offers
features for several application areas. The tool produces unambiguous content models that
— after thebasic generalization phase — may be further processed with both interactiveand
batch operations. These operations include local trivialization of a model group, isolation
of model groups, discovery of inclusions, and separation of common and rare cases.

ACKNOWLEDGEMENTS

This work was partially supported by the Academy of Finland and TEKES.

206 HELENA AHONEN

REFERENCES

1. ‘Information Processing – Text and Office Systems – Standard Generalized Markup Lan-
guage (SGML)’, Technical Report ISO/IEC 8879, International Organization for Standardization
ISO/IEC, Geneva/New York, (1986).

2. Jinhua Chen, ‘Grammar generation and query processing for text databases’, Research proposal,
University of Waterloo, (January 1991).

3. Keith Shafer, ‘Automatic DTD creation via the GB-Engine and Fred’, Technical report, OCLC
Online Computer Library Center, Inc., 6565 Frantz Road, Dublin, Ohio 43017-3395, (1995).
Accessible at URL: http://www.oclc.org/fred/docs/papers/.

4. Sunniva M. K. Solstrand, ‘Automatisk generering av DTD fra SGML-kodet materiale’,
M.Sc.thesis, Institutt for informasjonsvitenskap, Universitetet i Bergen, (September1994).

5. Peter Fankhauser and Yi Xu, ‘Markitup! An incremental approach to document structure recog-
nition’, Electronic Publishing – Origination, Dissemination and Design, 6(4), 447–456, (1994).

6. Suomenkielen perussanakirja.Ensimmäinen osa (A–K), Valtion painatuskeskus,Helsinki,1990.
7. Eve Maler and Jeanne El Andaloussi,Developing SGML DTDs — from text to model to markup,

Prentice Hall PTR, 1996.
8. Helena Ahonen, Barbara Heikkinen, Oskari Heinonen,Jani Jaakkola, Pekka Kilpel¨ainen, Greger

Lindén, and Heikki Mannila, ‘Intelligent assembly of structured documents’, Report C–1996–40,
Department of Computer Science, University of Helsinki, (1996).

9. ISO, Information and documentation – Electronic manuscript preparation and markup, ISO
12083, 1994.

10. Helena Ahonen, Heikki Mannila, and Erja Nikunen, ‘Generating grammars for SGML tagged
texts lacking DTD’, inProceedings of the Workshop on Principles of Document Processing ’94.
Also to appear in Computer and Mathematical Modelling., eds., M. Murata and H. Gallaire,
(1994).

11. Helena Ahonen, ‘Generating grammars for structured documents using grammatical inference
methods’, PhD Thesis, Department of Computer Science, University of Helsinki, (1996). In
preparation.

12. Anne Brüggemann-Klein, ‘Unambiguity of extended regular expressions in SGML document
grammars’, inProceedings of ESA ’93, ed., Th. Lengauer, Lecture Notes in Computer Science
726, pp. 73–84. Springer–Verlag, (1993).

	SUMMARY
	1 INTRODUCTION
	2 APPLICATIONS OF AUTOMATIC DTD GENERATION
	2.1 DTDs for static documents
	2.2 Interactive design tool
	2.3 DTDs for different views and subdocuments
	2.4 Online DTDs

	3 AUTOMATIC DTD GENERATION
	3.1 Generating unambiguous content models
	3.2 Isolation of model groups
	3.3 Inclusions
	3.4 Local trivialization
	3.5 Common and exceptional cases

	4 EXPERIMENTAL RESULTS
	4.1 Textbook
	4.2 Dictionary

	5 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

