
h

ELECTRONIC PUBLISHING, VOL . 8(1), 31–48 (MARCH 1995)

A process approach for providing hypermedia
services to existing, non-hypermedia
applications

CHARLES J. KACMAR

Department of Computer Science
Florida State University
203 Love, Mail Stop 4019,
Tallahassee, Florida 32306-4019
USA

email: kacmar@cs.fsu.edu

SUMMARY

Hypermedia has initiated an explosion of application development based on a navigational
model of information access. However, many thousands of existing applications continue to
operate successfully without hypermedia services, even if they could benefit from a
navigational paradigm. One of the reasons why developers of an existing application might
choose to ignore the benefits of hypermedia is the cost of converting the application. If this
cost could be minimized, would developers convert to or experiment with hypermedia? What
is the cost of conversion? How would a conversion impact the structure or data management
components of the application?

This paper discusses these issues from a developer’s perspective by presenting three
methods of retrofitting existing, non-hypermedia applications to provide hypermedia services.
Two methods are based on traditional hypermedia data models and architectures. The third
method, and focus of the paper, is an approach that is based on a process model of hyper-
media. This approach allows developers to experiment with hypermedia as an information
access paradigm without incurring the costs of a full conversion. Moreover, this approach
establishes an open environment, leading to application integration under a common frame-
work and allowing any application to participate. The basis of this approach is an auto-
nomous process that is completely external to the application. The facility monitors applica-
tion activity and provides first-generation hypermedia services to all or selected applications
running on a user’s display. Thus, even though an application provides no hypermedia ser-
vices itself, is not aware of and does not depend on a hypermedia model, it can operate as a
first-generation hypermedia application as a result of this facility. Implementation details,
benefits, and limitations of this approach are discussed.

KEY WORDS hypertext; hypermedia; retrofit; conversion; migration

1 INTRODUCTION

The popularity and use of hypermedia is a partial tribute to the usefulness and success of
the paradigm. It is, however, a common fact that many thousands of applications are not
based on a hypermedia model nor do they use a navigational paradigm to support infor-
mation access. Of these applications, some may benefit from hypermedia, some may not.
For those that may benefit, what is the cost of converting them to hypermedia and how
will such a conversion impact the structure and data management components of the

CCC 0894–3982/95/010031–18 Received 22 July 1994
 1995 by John Wiley & Sons, Ltd. Revised 24 January 1995



h

32 C. J. KACMAR

application? If a conversion is performed, will the benefits be as great as expected? How
will users respond to the changes in application behavior?

Answers to some of these questions can be achieved through paper and pencil activi-
ties that are modeled on hypermedia. Other answers will require deployment of a hyper-
media system within the user community. Prototype systems are an effective but interim
method of evaluating the use of hypermedia because they incur development costs and
may not reflect the full capabilities of the real application.

This paper discusses three methods of migrating (retrofitting) existing non-
hypermedia applications to provide hypermedia services. The incentive for this research
is provided by Puttress and Guimaraes [1] who advocate a seamless integration without
requiring major changes to the existing application.

The difficulty of converting an existing application to support a navigational paradigm
is dependent on the architecture of the existing application and the level of hypermedia
services that are needed. As we will show, if the architecture of the application is based
on a separable [2] or functional [3] interface model, the application can be retrofitted by
enhancing the interface component and augmenting it either with an internal or external
hypermedia engine [4–6]. If, however, the components of the application are tightly
interconnected or the services needed are highly complex, converting the application will
require extensive modification of several components. On the other hand, if hypermedia
functionality can be offloaded from the application to an external autonomous hyper-
media facility, retrofitting can be achieved with minimal modification of the application.
This approach, and focus of the paper, results in the ability to retrofit applications easily
and provides for an open, integrated hypermedia environment.

To illustrate the issues and importance of a retrofitting approach to hypermedia, con-
sider a graphical application that allows a user to browse through a sequence of scanned
images, such as maps or pages of a book. When the application is launched, the first
image appears. A user progresses through the pages in a forward or backward direction
by pressing either the ‘Next Page’ or ‘Previous Page’ buttons. Suppose the developers
and users decide that the application might be improved by allowing pages to be related
through links. That is, in the case of a collection of map images, this would allow a user
to navigate from a ‘high level’ map to subsequent and more detailed maps. In the case of
scanned images of book pages, it would allow a user to navigate across pages to refer-
ence material or related passages. The question becomes, what is required to add this
functionality to this application? More importantly, if the functionality is added to the
application but later it is determined that this functionality is not valuable, what is the
cost of removing it?

The remaining sections of this paper discuss three methods of migrating existing,
non-hypermedia applications to provide hypermedia services, with the focus of the paper
being on the third method. Section 2 presents a brief review of hypermedia data models
to provide an understanding of the objects that must be supported. Section 3 provides an
overview of two methods of retrofitting an existing application. These methods are based
on traditional hypermedia architectures. Section 4 presents a new mechanism for
retrofitting existing applications that results in an open and integrated application
environment. A model of the mechanism, implementation details, and procedure for con-
verting applications to utilize the mechanism are discussed. Section 5 presents some of
the concerns and constraints that guided the research, limitations of the mechanism, and
future research. Section 6 summarizes the paper.



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 33

2 MODELS AND IMPLEMENTATIONS

Two general philosophies, prescribed in the form of data and process models, dominate
the field of hypermedia. One philosophy is based on a static or passive model and is typi-
cal of first-generation hypermedia systems (see [7] and [8] for an overview of hyper-
media and a discussion of first-generation behavior). The other philosophy is based on an
active or process model. An active model incorporates all of the characteristics of a pas-
sive model and extends the static model by adding computation.

Computation allows the hypermedia system to dynamically determine the content of
nodes and objects, and to determine ‘on the fly,’ the existence of object
relationships [9–12]. A computational model of hypermedia provides significantly more
power to the application.1 However, to fully benefit from the capabilities of a computa-
tional model, applications must be designed and constructed with this model in mind so
that every component of the application can take full advantage of its power. Realisti-
cally, not all applications need computational capabilities. For example, if an application
only needs the ability to create and navigate simple links, computational services would
be unnecessary.

First-generation hypermedia data models

We categorize the data models of first-generation hypermedia systems into two
groups — attribute-value and anchor-link. An attribute-value model of hypermedia uses
attributes and values to maintain relationships among objects. For example, an attribute
such as FontFamily having a value of Helvetica would provide a font definition for a text
object. If this object also has a LinkDest attribute having a value of ND43, the object
could represent a link endpoint to destination node ND43. When an object can have an
attribute/value pair that holds the link destination to another document or object, we say
that the data model for the object ‘fits’ the attribute-value hypermedia data model.

Adding an attribute/value to an object, however, is not sufficient for classifying an
application as ‘hypermedia.’ Functionality (semantics) must be added to maintain the
link attribute and traverse the link (see [13] for a discussion of link semantics). From an
interface perspective, the user must be able to identify (by selection) the destination of
the link so that when they choose the object in conjunction with navigation (usually by
‘mousing’ on it), the application follows the link to the destination resulting in the display
of the destination objects. If a value is absent from the attribute, no link exists and hence
mousing on the object does not result in navigation.

Variations on the attribute-value model enhance the navigational aspects of a first-
generation system. For example, allowing multiple values for the attribute would provide
the user with a choice of link destinations. When an object having multiple destinations is
moused, a menu can be displayed to allow the user to select the destination appropriate to
the task. The Intermedia system offers this functionality [14, 15]. As another example,
HyperTIES [16, 17] uses a two-stage link traversal method. The user begins by selecting
the link to follow. This causes the system to display a short description, provided by the
author, which describes the contents of the destination node. At this point the user can

1 The term ‘application’ refers to the component of a system that controls activity and allows a user to view
application objects. Other major components of a system include the interface and back-end (storage
manager).



h

34 C. J. KACMAR

either follow the link to the destination, or break out of the navigation and resume normal
viewing.

The second most common model of hypermedia is the anchor-link model. This model
is based on anchors and links [7, 18]. An anchor associates an application object with a
link while a link associates two or more anchors. The anchor object contains the
identifiers of the application and link objects, thus relating the entities. A link object con-
tains anchor identifiers. The anchor-link model can be extended to allow multi-valued
relationships among objects, anchors, and links. This allows the association of an appli-
cation object with multiple anchors, and hence, multiple links, destinations, and destina-
tion objects.

3 PREVIOUS WORK

The data models form the basis of the data management characteristics of a hypermedia
system. To retrofit or migrate an existing application to a hypermedia domain, the appli-
cation is modified to support a data model and carry out the activities of hypermedia such
as link selection and navigation.

How an application is converted determines the depth of hypermedia activity that the
application can provide the user. In this section, we provide a brief overview of two
conversion methods that are based on traditional hypermedia system architectures. Both
methods involve modifying, building, or rebuilding some of the major components of an
application and for this reason are ‘costly’ in the sense that significant effort is needed to
realize either method.

The first strategy (see Figure 1(a)), developers must convert the interface and/or back-
end components to embed hypermedia functionality within these components. In the
second strategy (see Figure 1(b)), developers must modify the application to interact with
a process, external to the application, which handles the management of hypermedia
objects. Both strategies are highly effective, especially since applications can supply a
‘rich’ set of messages concerning their activity. This allows both strategies to support
second-generation hypermedia services. (See [10] for a discussion of second-generation
services.)

Referring to Figure 1(a), this retrofit strategy depends upon the the interface and appli-
cation components operating independently. Hypermedia functionality is embedded
within two supporting components of the application — the interface and a ‘backend’ or
storage manager component that is accessible to the interface component.

Retrofitting an application according to this architecture requires several conditions.
The interface must distinguish objects with links from those without and display link
markers appropriately. Bieber employs this strategy effectively in the MAX system by
analyzing display messages that pass between the interface and application components,
recognizing and acting on messages that involve objects with links [9, 19, 20]. The
advantage of this approach is that the interface can assume total responsibility for
displaying link markers, or it can interact with the application to allow the application to
display the link markers. The former approach minimizes interface/application interac-
tion while the latter approach enables the application to control its display [21].

Application objects must have a unique identity or attributes that allow them to be dis-
tinguished in some way. This is a common property of object-oriented or object-based
environments [22]. Whenever the application displays an object, the interface is provided



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 35

INTERFACE

COMPONENT

DATA MANAGEMENT (BACKEND) COMPONENT

Components to be Retrofitted for Hypermedia

APPLICATION COMPONENT

(a)

DATA MANAGEMENT

(BACKEND)

COMPONENT
FACILITY

HYPERMEDIA

COMPONENT

INTERFACE APPLICATION

COMPONENT

Components to be Retrofitted for Hypermedia
(b)

Figure 1. (a) Retrofit strategy 1. Hypermedia functionality is added to the interface and backend
components of an application; (b) Retrofit strategy 2. An external hypermedia engine provides

hypermedia services to the user through the interface component of the application

with the object’s identifier and uses this information to determine whether the object has
links. If a link exists, the object is displayed with or as a link marker.

The application must perform navigation by acting on a directive from the interface.
That is, when the user causes a navigational event to occur, the interface resolves the des-
tination (the application is unaware of this activity), producing a list of one or more
objects (e.g., document, file, object, etc.) to display. This information is passed to the
application upon which the application retrieves and displays the objects.

The application must accept a directive that contains the identifiers of the objects that
are to be displayed when a link is followed. There are several ways this can be supported.
A communication channel could be established between the interface and application to
transmit the request [23]. This implementation method is necessary if the application and
interface are physically independent components. Another approach is to handle a navi-
gational event as a normal interface event, like a button or key press. Bier [3] demon-
strates and discusses this type of architecture and interface/application interaction in the
context of a button interface. Using this approach, a navigational event would cause the



h

36 C. J. KACMAR

execution of a procedure within the body of the application. Parameters to the procedure
would identify the object on which the navigational event occurred.

The interface and application components must utilize the services of a data manager.
Although toolkit approaches [1, 24] can provide the necessary hypermedia behavior, the
application component becomes involved by calling on hypermedia functionality within
the toolkit. Thus, the interface is subordinate to the application, that is, the application’s
interface contains or interacts with a data manager that supports hypermedia objects. This
data manager can be different from the data manager for application objects, and in fact,
the application may have no knowledge of a hypermedia model or hypermedia services
at all. If two different data managers are used, integrity may be jeopardized whenever the
application performs an operation but does not inform the interface of the event. For
example, if the application deletes an object that is currently displayed and does not
inform the interface of the deletion, the link for the object will still exist. In fact, the user
can see the object and may be able to navigate links even though the object no longer
exists in the application’s data store. Bieber solves this problem by interrogating all mes-
sages that pass between the interface and application components [9, 19, 20].

The interface must be cognizant of application object structure and content so that link
markers are placed appropriately. Link markers must be placed in a reasonable proximity
to the object or the object itself must be displayed differently. This can be difficult, espe-
cially for complex or composite objects whose content may be based upon other objects.
Simple (flat) objects with regular shapes will present the least difficulty in link marker
placement for the interface.

Navigation is supported by the single directive from the interface to the application.
The communication channel is often one-way and does not allow the application to
benefit from other information in a hypertext. This limits the application (and user) from
obtaining information about object relationships, strength of relationships, or from deter-
mining an ordering of nodes from a given starting point by following a depth- or
breadth-first link traversal algorithm. Although these services could be added, they
require the application to have processing capabilities that are beyond a simple naviga-
tional model. Adding these capabilities would essentially require converting the applica-
tion into a full-fledged hypermedia system.

Further, the primary disadvantage of this strategy is that an open and integrated appli-
cation environment cannot be achieved. Since the application’s interface operates as an
independent entity, modifications for one application’s interface do not affect other appli-
cations unless the other applications also utilize that interface. In fact, even if all applica-
tion interfaces were modified to support this model, cross-application linking still would
be difficult due to the lack of an overall umbrella for inter-application linking.

The second retrofit strategy (see Figure 1(b)) is similar to the first except that the
hypermedia engine is external to the application and interface components. The interface
communicates with the hypermedia engine through services of the operating system or
windowing environment. Extensive work has occurred in developing hypermedia sys-
tems that could be used to retrofit existing applications according to this architecture.
Some of these efforts include the Sun Link Service [25], PROXHY [21], the HBx
and SPx systems [13, 26, ABC/DGS [27, 28], HyperForm [29], SEPIA [30, 31],
Microcosm [5, 32, 33], and Chimera [6].

To use any of these systems in a retrofitting situation, the application component is
modified or augmented to support some level of interaction with the hypermedia engine.



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 37

For example, Microcosm and ABC require that a custom menu be attached to an
application’s window. In the case of Microcosm, the menu is attached through macro
services provided by or added to the underlying application. ABC uses the window
hierarchy services of the X Window System [34] to automatically add a menu to the
application’s window, without any awareness of the menu by the underlying application.
Microcosm and ABC both depend upon selection or clipboard services of the windowing
environment to identify objects to which links should be attached.

Chimera, PROXHY, and the SPx suite of tools utilize services of the operating system
to support interaction between the application component and hypermedia engine. To
retrofit an existing application to use these systems, the application is enhanced to
interact with the hypermedia server and respond to server requests. Chimera depends
upon remote procedure call (RPC), PROXHY uses interprocess communication services
(sockets), and SPx uses interprocess communication services (sockets) contained within
the windowing environment.

In all cases, these approaches can minimize the interactions between the application
component and hypermedia engine thus reducing the extent of modification necessary to
retrofit an existing application with hypermedia services provided by their engines. This
also allows these facilities to support applications that cannot or do not need to be exten-
sively modified to provide some level of hypermedia activity. To illustrate, ABC can dis-
tribute and share an application window with other users without any intervention, parti-
cipation, or knowledge of this capability by the underlying application. This is accom-
plished by intercepting and distributing window system interface events to other displays.

As with the retrofit strategy shown in Figure 1(a), the behavior among the application,
interface, and hypermedia components is similar. The application component typically
accepts directives that cause a link marker to appear alongside an object or the object
itself to appear differently, and to identify the objects the application should display when
a link is followed. These directives are sent from the hypermedia engine to the applica-
tion component, possibly through the interface component.

4 PROCESS-BASED RETROFIT STRATEGY

The primary goal of this research was to investigate the ability to model and provide
hypermedia services to existing applications while minimizing the effort needed to
modify the application to support a navigational paradigm. Achieving this goal would
allow developers and users to experiment with hypermedia services without incurring
expensive application conversion costs. The term cost refers to the difficulty and extent
of modification that must be made to an application.

As discussed, the previous retrofit strategies depend upon one of two general condi-
tions: (1) the interface, application, and/or backend components are enhanced to display
link markers, interrogate hypermedia-related messages that pass among the components,
and act on navigational events, or (2) the interface and/or application components are
augmented through a set of customized macros or menus, anticipated by developers and
built into the application or within the operating environment. But, what if extensive
modification to the application or its interface cannot occur, such as in the case of a com-
mercial system? For example, reconsider the application that displays scanned images of
book pages or maps discussed in the Introduction. How can this application be enhanced
to support hypermedia?



h

38 C. J. KACMAR

We now present a third retrofit method, based on a process model of hypermedia and
on the premise that a very ‘sparse’ set of messages pass between the application and
hypermedia components. This retrofit strategy has an architecture that is similar to stra-
tegy #2 (Figure 1(b)) but differs in two major ways (1) it can be accomplished with no
modification or a trivial modification of the application component, and (2), it requires no
modification of the application’s backend or data store.2 This approach results in an
application that is completely unaware of interface and data management activities asso-
ciated with hypermedia, but behaves like a first-generation hypermedia system.

This retrofit strategy is based on an integration of the attribute-value and anchor-link
models, that is, the data model is based on the attribute-value model while the implemen-
tation is based on a process-oriented, anchor-link model. Characteristics of this approach
include: (1) links are maintained as attribute/value pairs; (2) navigation requests are
‘trapped’ by a process that manages the display of link markers; (3) link destinations are
resolved by the hypermedia engine; (4) the appearance and presence of a link marker is
determined and supported by a process that is external to all components of the applica-
tion; (5) data associated with anchors and links are managed by the hypermedia engine
and its backend; (6) the link destination is delivered to the application through the win-
dowing environment or through a file. In essence, the windowing system and window
manager comprise the destination anchor process in this process model architecture,
delivering the destination of the link to the application.

Other multi-application and process-based approaches are similar (also see earlier dis-
cussion under retrofit strategy 2) in that they externalize service (e.g., hypermedia engine,
event handler) and the application components. For example, nodes in Multicard [35] are
under the control of editors (applications) and applications must support the M2000 pro-
tocol in order to interact with the hypermedia component. This allows Multicard to sup-
port links within nodes as well as links between nodes. In contrast, no application com-
ponents actively participate in supporting hypermedia in this retrofit strategy. In fact, the
overall goal of this strategy is different in that the primary objective is to provide a
framework to allow developers to experiment with hypermedia as a possible access para-
digm for existing applications — not to provide a complete hypermedia environment.

Grif [36] and Hyperform [29] use event or notification services to inform users or
components of an application or activity within the operating environment. In Grif,
events can effect document management at multiple levels, for example, causing the
transformation of a document to another form or the deletion of a paragraph of text.
Hyperform uses notification to support collaboration, allowing a user to register and
receive specific events about specific objects. In each of these approaches, events pass in
to and out of component boundaries. This enables the application to support highly struc-
tured and complex processing, but also depends on the application component to handle
and generate events to continue work. Our assumption was that the application did not
and could not possess this level of event handling. Moreover, we assumed that the appli-
cation could not be modified, without significant effort, to achieve this level of interac-
tion. Hence, the only event delivered from the facility to the application is to display a
node.

The key to the architecture and operation of this retrofit strategy is the encapsulation
of hypermedia functionality into two components — the windowing environment and an

2 The software is available via anonymous ftp from ftp.cs.fsu.edu:/pub/hypertext/freckles.tar.Z. The software is
Sun Sparc 4 compatible and executes under the twm X Window System manager.



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 39

INTERFACE
FOR

HYPERMEDIA
FACILITY

USER INTERFACE

APPLICATION’S APPLICATION

COMPONENT

BACKEND

COMPONENT

BACKEND

COMPONENT
HYPERMEDIA

ENGINE

Figure 2. Retrofit strategy 3. Hypermedia services are supported by a separate entity (enclosed in
dashed region) which resides completely outside the application and which ‘taps’ into the
user←→application communication channel. This strategy depends on specific services of the win-

dow manager and windowing environment for support

external hypermedia facility. We use the term facility since this element interacts with the
window manager, contains or interacts with a hypermedia object manager or engine, and
uses services of the windowing environment or operating system to send a message to the
application component. No messages pass from application components to the facility.

The hypermedia facility is implemented as a separate, autonomous process and exe-
cutes simultaneously with application components and the window manager. The hyper-
media facility is completely autonomous and interacts directly with the user (see Figure
2). Although the autonomy and intent of the hypermedia facility are similar to the omnis-
cient monitor [37], this retrofit strategy differs significantly in that the hypermedia facility
has no knowledge of activity within an application and does not understand the
application’s data model.

The hypermedia facility monitors the activities in windows on the user’s workstation,
similar to the behavior of the facility that supports collaboration in the ABC system [28].
Either specific windows can be identified or the facility can be instructed to monitor all
windows. Whenever a window is opened, closed, or moved, the hypermedia facility is
notified of the event by the window manager. Thus, important aspects of this retrofit stra-
tegy are the windowing environment and window manager. The facility must interact
with the window manager in order to obtain information about the existence of windows,
specifically the title of a window, and the location of each window on the display. Win-
dow managers that cannot provide these services cannot be used with this facility.

The window title serves as the identifier for the window’s contents, allowing the
hypermedia facility to create and maintain links based on the value of the title string.
Applications can affect the granularity of links by changing the window title to reflect
different portions of nodes that are displayed. The title is used to determine if links exist
for the window by accessing a hypermedia data store. If links exist, the facility retrieves
the link information and displays link markers ‘on top of’ the application’s window,
attaching the links to the window as subwindows. The link markers appear as an integral
part of the application’s window and remain attached to the window even if the window
is moved by the user, application, or window manager. The position of a link marker is
determined by the user when it is created.

A separate menu, provided by the hypermedia facility and separate from the applica-
tion menus, allows the user to control the facility and manage links. The menu appears as
a typical menu on the display. Since the appearance and placement of the menu can be
tailored to coordinate with application displays, it is extremely easy to configure the



h

40 C. J. KACMAR

menu and execute the facility so that the user is not aware that two separate processes are
working together to support hypermedia services.

The hypermedia facility must be supported by a data manager. The objects necessary
to support the facility are attribute/value-based entities having a unique identifier. Any of
the previously mentioned external hypermedia engines/servers (HBx, SPx, SEPIA,
Microcosm, Multicard, and Ham [38] etc.) would be more than sufficient to support the
data management needs of the facility.

Prototype

A prototype of retrofit strategy #3 was implemented in the X Window System [34]
environment on Sun3 workstations using the twm window manager. The facility was
implemented in C and has been tested with applications written in C and C++. The appli-
cations provide text editing and image display services.

Upon startup, the facility obtains the name of the process driving each window and
the window’s title by interrogating internal data structures within the windowing environ-
ment. A resource file identifies the application windows that will be automatically and
continuously monitored. If an application’s window is listed in the resource file, the facil-
ity uses the value of the title as an object identifier (key) into the hypermedia data store.
If the window title identifies an ‘object’ in the store, links exist for that window; the links
are retrieved, and instantiated as subwindows on top of the existing application’s win-
dow. Link markers appear either as small unfilled rectangles (see Figure 3), as rectangles
containing the destination address/title (see Figure 4). Link markers are colored to distin-
guish them from other information on the display. For all applications, link markers
appear in the same style and color, and all link activities are consistent. This results in a
consistent presentation of the hypermedia model and interface activities to users and
applications.

Menu-based services

The menu for the hypermedia facility appears in the lower right of the display in Figures
3 and 4 (it can be positioned anywhere). It is used to support the following services:

g turn hypermedia facility ‘on’ or ‘off’;

g define the source and destination ends of a link;

g cancel a link — ignore link definition request;

g force an update on all link markers;

g change the appearance of link markers;

g move a link marker;

g forget the backtrack history;

g set and return to a bookmark;

g backtrack to the most recent node visited;

g shutdown the hypermedia facility (quit).

3 Sun is a trademark of Sun Microsystems, Inc.



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 41

Figure 3. Link markers appear as hollow rectangles and are visible in the upper left regions of the
building and floor plan images. The menu for the hypertext facility is in the lower right

Figure 4. Link markers may be set to display the destination of the link. Shown here is the version
of the facility that launches applications. An xterm application (left) is populated with links that
invoke various X applications. The facility uses the window title to associate these links with the
object — ‘XApps’. The xv application (center) is displaying a map of Florida that is populated with
links to subordinate maps. The links in this window invoke shell scripts that launch each of the
respective city maps. Notice that the window title in the xterm application is a single contiguous

string, while the window title format in the xv application consists of multiple segments



h

42 C. J. KACMAR

Hypermedia ‘on’ and ‘off’. The user can turn the hypermedia facility on and off for
selected windows on the display. These menu items can be used in lieu of identifying the
application windows that must be monitored through the startup file.

Define link ends. A link is defined by clicking the Begin-Link menu item. The user
then moves the cursor into the application window and clicks the mouse button at the
position at which the link marker should appear. The facility obtains (from the window
manager) the title of the window and location of the mouse click. These elements deter-
mine the placement of link markers when this window is displayed in the future. Once
the source end of the link has been defined, the user defines the destination linkend using
the same procedure. Links are bidirectional and span application boundaries.

Cancel a link. If the user creates a source end of a link but decides to not complete
the link (by creating a destination end), this menu item allows the user to cancel the link
request. The source end of the link is deleted and the link marker is removed from the
window.

Delete a link. The user mouses the menu item and then clicks on the link marker to be
deleted. The link associated with the link marker is removed from the hypertext, effec-
tively deleting the link and its anchors. An alternative implementation might delete only
one anchor.

Force update of the link markers. Occasionally, a link marker becomes obscured by
a subwindow of the application. Clicking this menu item causes the facility to refresh the
link marker display. This was not a planned feature of the facility but rather a way to get
around a (rare) conflict with the window manager.

Change link marker appearance. Link markers can be displayed in two ways — as
unfilled (hollow and colored) rectangles or as rectangles with the target window title
(destination) displayed. The user can toggle the format of the link marker display by
clicking on this menu item.

Link history, bookmarks, and backtracking. The hypermedia facility maintains a
history of nodes visited. The user can use this information to backtrack. The user can
instruct the facility to forget the history causing the current location to become the ‘root’
of navigation. Bookmarks can be dropped anywhere along the path. Clicking on the
Return-To-Bookmark menu item causes the user to return to the most recently set
bookmark — the bookmark is also removed. Of course, the operation of this bookmark
facility may differ from others.

Application modification

Only one requirement must be honored for an application to comply with this facility —
the application must accept a directive that identifies the objects to display after a link is
followed. Two methods can be used to transmit this directive into the application. No
messages flow from the application to the facility.

Method 1 — common file. The application monitors the file system for the existence
of a specially-named file. When a link is followed, the hypermedia facility creates the file
and writes the identities of the destination objects into it. The application reads the file,
‘navigates’ to the destination by displaying the objects, and then deletes the file. Mosaic
uses a similar approach in its common gateway interface [39]. Using this method, no
modification of the application is needed to participate in the retrofit strategy.



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 43

Method 2 — window property event. Three simple modifications must be made to
an application to use this method of interaction with the facility. As shown in Figure 5,
the modifications involve: (1) definition of an X window system data element; (2) initiali-
zation; and (3) event handling. Modification (3), event handling, is the most important
since it is the modification that allows the application to carry out navigation. The reader
can consult Chapter 12 of Jones [40] for details on the X elements and directives.

Data definition
Atom htnavigateatom;

Initialization
htnavigateatom =

XInternAtom(display, "HT_NAVIGATE", False);

Window event handle
case PropertyNotify:

if (event.xproperty.atom == htnavigateatom){
XGetWindowProperty(display, window,

htnavigateatom, 0, 8192, True, XA_STRING,
&returned_atom, &returned_format,
&returned_itemnos, &bytes_return,
&returned_value);

if (returned_value != NULL){
destination is in returned_value

}
}

Figure 5. The modifications that must be made to an application to comply with the retrofit strategy

In a traditional hypermedia system, a navigation event requires that the destination of
the link be resolved and the application component display the objects at the link destina-
tion. These activities are realized in retrofit strategy #3 through interactions between the
hypermedia facility and window system (the application and its components play a
minimal role). The hypermedia facility recognizes a navigational request when the user
clicks a mouse button in a link marker window, resolves the link destination, and notifies
the application process of a navigational request through an X window system property
event. The property event returns to the application the identifier of the link destination as
a character string. This value must be interpreted by the application, resulting in the
display of the objects that constitute the destination. Since all X applications must have
the functionality to handle events and display objects anyway, compliance with this
retrofit strategy requires only the simple modifications described above. In fact, any X-
compliant application can participate in hypermedia services since the behavior of the
facility is the same for all applications. This contributes to the open system architecture
and an integrated application environment.

5 ISSUES, DISCUSSION, AND FUTURE RESEARCH

Several secondary goals were investigated during the research. These include: to deter-
mine the limitations of the process-based retrofit strategy; to assess the ability to coordi-
nate and maintain the consistency of displays for multiple applications, and to identify
extensions of the facility.



h

44 C. J. KACMAR

Seamless, open, integrated architecture

The process architecture and operation of the facility achieves the goals of a seamless,
open, and integrated application environment in several ways. First, since the facility is
responsible for the management and display of link markers, all application windows are
populated with link markers in exactly the same way. Second, users define, activate, and
perform other link operations by interacting with the hypermedia facility through the
menu or link markers. Hence, the facility provides link services in a consistent manner
for all participating applications. Third, participation is not dependent on application
architecture or interface style. Of course, the application must meet the minimal condi-
tions for operation — by accepting the navigate directive from the facility following link
navigation. Fourth, links can be defined across application boundaries. Since the hyper-
media facility is external to all applications, link operations do not depend on application
data or activities.

Performance

One of our major concerns was performance. Since the hypermedia facility executes in
parallel with application processes and can serve more than one application at the same
time, we were concerned that either overall application performance would be impacted
or there would be significant delays in the removal and/or display of link markers. How-
ever, neither problem materialized.

The hypermedia facility is idle during application activity and becomes ‘active’ only
when certain interface events occur on an application’s window or when activity occurs
on the menu of the facility. Minimal resources are used during the sleeping period result-
ing in no degradation of application performance. The amount of work required to
remove link markers, evaluate the window title, and display new link markers is minimal.
In fact, link markers sometimes appear faster than the application can display its objects.
This is especially true and noticeable when the application is displaying a large image.
There is, however, a slight delay in removing link markers from a window following a
change in window contents.

Link identification

The window title plays a key role in this strategy, serving as the identifier of the
window’s contents. Application activities can conflict if (1) a link is followed from one
application to another and the destination specifies an object that is unknown to the target
application; or, (2) the title is formatted in a special way that requires decoding and the
target application is unable to decode the title. To avoid these problems, it is suggested
that all applications adopt a common method of formatting the title and identifying
objects. The xv application (see Figure 4, center window) is an application whose win-
dow title format conforms to this specification.

Link identification through the window title provides an opportunity for future
research if applications are responsive to the new format. For example, the applications
shown in Figures 3 and 4 use a structured window title format as follows:

application identifier : context : object identifier



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 45

This format allows the facility to identify the name of the application, object, and context
for this window. When a link is followed, applications can extract a context identifier,
which could be used to filter link markers during navigation. That is, if the source end of
the link is created in the context ‘smith’ and the destination is created in the context
‘jones,’ following a link would cause the application to switch contexts. Thus, in a very
simple fashion, applications could use the facility to support views over the information
space.

Link granularity

Currently, the granularity of a link endpoint is a node. This is appropriate and sufficient
for the example applications (map and page-image display) discussed throughout this
paper, but may not be sufficient for other applications. As discussed, the node-to-node
linking model is adequate for applications that use a data model where the granularity of
a node is equal to the size of a window. This approach is also effective for nodes larger
than a window, provided the application uses the window title to identify the object and
the current viewport within the node. Since most applications use the window title to
identify the current object being displayed, adding viewport information would require
minimal additional work.

The current prototype cannot support link markers for objects that are embedded
‘within’ a window because the presence or identities of objects within the window cannot
be determined and monitored using existing window managers. This also means that it is
not possible to use this facility in an application where the position of objects change,
such as an application that supports scrolling. These disadvantages may be solved in
future research. There are at least two approaches to this investigation. First, enhancing
the facility to ‘recognize’ objects in a node, using an object’s features to place link mark-
ers in close proximity. This approach would be based on work in object recognition and
image analysis for hypermedia environments [41]. Second, enhancing the window
manager and windowing system to allow applications to identify objects when they are
written to the display. This approach is based on previous work of the author in which
objects are identified at the interface level [4]. As long as each object has a unique iden-
tity and the window manager maintains a list of displayed objects with their positions, the
facility can interact with the window manager to determine the object to which a link end
should be associated.

Link semantics

The prototype currently supports bidirectional links. We realized during our research that
it would be possible to support other types of links. By allowing the user to specify the
link type when a link is created, links that launch applications, initiate events, or perform
other process-oriented activities could be defined. However, since links and link activity
are external to an application, the communication channel between the facility and the
application must be widened to support link types that effect activities that are internal to
an application. Such a modification is contrary to the intent of the facility.

We prototyped and experimented with a second version of the facility (see Figure 4)
where links are used to launch applications. Extending the facility to support this
behavior was simple. We also realized that the process-oriented model of the facility



h

46 C. J. KACMAR

could support computed destinations and dynamic creation of nodes (see [10] and [18] for
an explanation of these activities). Although the process approach would support parallel
or serial object display and composition, as in AHM [42], previous work has reported
difficulties in coordinating parallel activities across processes [21].

6 CONCLUSION

Existing applications can benefit from hypermedia services but the cost of converting
these applications to hypermedia can be expensive. Conversion normally requires
modification of the interface, application, backend components, and enhancement of the
application’s data store to maintain the objects that form associations. The goal of this
research was to provide developers with a model and method of experimenting with
hypermedia services, while minimizing the cost of conversion. This would allow
developers to assess the impact of hypermedia services on users, and if appropriate, plan
for full conversion of the application to support complete hypermedia activities.

This paper discussed three methods in which an application can be
converted/retrofitted to provide hypermedia services. Two of the methods are based on
traditional hypermedia architectures. We contend that retrofitting an application using
either of these approaches would be ‘costly’ in the sense that the application, the
application’s interface, or the storage manager must undergo modification to interact with
a hypermedia engine and to exchange and display information about objects and link
markers.

The third method, and focus of the paper, significantly reduces the cost of conversion
and is successful in achieving the goals of the research. This approach retrofits an appli-
cation without modifying the application’s interface or its storage manager. In fact,
depending on how the application is constructed, no modification may be necessary. The
method results in an open and integrated hypermedia environment in which links connect
applications and nodes within applications. The hypermedia engine and link marker
interface functionality are located completely outside the application, in a separate and
autonomous hypermedia process, providing consistent link marker appearance and link
behavior for all applications served by the facility.

ACKNOWLEDGEMENTS

The author would like to thank John Whitley for the initial implementation of the proto-
type, and John Schnase, Michael Bieber, Antoine Rizk, and the anonymous reviewers of
EP-odd for their excellent suggestions on previous drafts.

REFERENCES

1. J. Puttress and N. Guimaraes, ‘The toolkit approach to hypermedia’, in Hypertext: Concepts,
Systems and Applications, Proceedings of the European Conference on Hypertext, ed. A. Rizk,
N. Streitz, and J. Andre, Cambridge University Press, INRIA, France, November 1990,
pp. 25–37.

2. G. Cockton, ‘A new model for separable interactive systems’, Proceedings of the Second IFIP
Conference on Human-Computer Interaction — INTERACT ’87, Stuttgart, FRG (1986).

3. E. Bier, ‘EmbeddedButtons: documents as user interfaces’, Proceedings of the ACM



h

A PROCESS APPROACH FOR PROVIDING HYPERMEDIA SERVICES 47

Symposium on User Interface Software and Technology – UIST ’91, Hilton Head, SC, pp.
45–53 (1991).

4. C. Kacmar, ‘Supporting hypermedia services in the user interface’, Hypermedia, 5(2), 85–101
(1993).

5. H. Davis, S. Knight, and W. Hall, ‘Light hypermedia link services: a study of third party appli-
cation integration’, Proceedings of the 1994 European Conference on Hypermedia (ECHT),
Edinburgh, Scotland pp. 41–50 (1994).

6. K. Anderson, R. Taylor, and E. Whitehead, ‘Chimera: hypertext for heterogenous software
environments’, Proceedings of the 1994 European Conference on Hypermedia (ECHT), Edin-
burgh, Scotland pp. 94–107 (1994).

7. J. Conklin, ‘Hypertext: an introduction and survey’, IEEE Computer, 20(9), 17–41 (1987).
8. N. Meyrowitz, ‘The missing link: Why we’re all doing hypertext wrong’, in The Society of

Text: Hypertext, Hypermedia, and the Social Construction of Information, ed. E. Barrett, The
MIT Press, Cambridge, MA, 1989, pp. 107–114.

9. M. Bieber, hypertext interface"" ‘Issues in modeling a "dynamic" hypertext interface’,
Proceedings of the Hypertext ’91 Conference, San Antonio, TX, pp. 203–218 (1991).

10. F. Halasz, ‘Reflections on NoteCards: Seven issues for the next generation of hypermedia sys-
tems’, Commun. ACM, 31(7), 836–852 (1988).

11. J. Schnase and J. Leggett, ‘Computational hypertext in biological modeling’, Proceedings of
the Hypertext ’89 Conference, Pittsburgh, PA, pp. 181–197 (1989).

12. P. Stotts and R. Furuta, ‘Dynamic adaptation of hypertext structure’, Proceedings of the Hyper-
text ’91 Conference, San Antonio, TX, pp. 219–232 (1991).

13. J. Leggett and J. Schnase, ‘Viewing Dexter with open eyes’, Commun. ACM, 31(2), 81 (1994).
14. N. Meyrowitz, ‘Intermedia: the architecture and construction of an object-oriented hypermedia

system and applications framework’, Proceedings of the OOPSLA ’86 Conference, Portland,
OR, pp. 186–201 (1986).

15. N. Yankelovich, B. Haan, N. Meyrowitz, and S. Drucker, ‘Intermedia: the concept and the con-
struction of a seamless information environment’, IEEE Computer, 21(1), 81–96 (1988).

16. B. Shneiderman, ‘User interface design for the HyperTIES electronic encyclopedia’, Proceed-
ings of the Hypertext ’87 Conference, Chapel Hill, NC, pp. 189–194 (1987).

17. B. Shneiderman, C. Plaisant, R. Botafogo, D. Hopkins, and W. Weiland, ‘Designing to facili-
tate browsing: a look back at the Hyperties workstation browser’, Hypermedia, 3(2), 101–117
(1991).

18. F. Halasz and M. Schwartz, ‘The Dexter hypertext reference model’, Commun. ACM, 37(2),
30–39 (1994).

19. M. Bieber, ‘Automating hypermedia for decision support’, Hypermedia, 4(2), 83–110 (1992).
20. M. Bieber, ‘On integrating hypermedia into decision support and other information systems’,

Decision Support Systems 251–267 (1995).
21. C. Kacmar and J. Leggett, ‘PROXHY: a process-oriented extensible hypertext architecture’,

ACM Trans. on Inf. Syst. (4), 399–419 (1991).
22. S. Khoshafian and G. Copeland, ‘Object identity’, Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications — OOPSLA ’86, Sigplan
Notices (11), 406–416 (1986).

23. C. Fraser, ‘A generalized text editor’, Commun. ACM (3), 154–158 (1980).
24. M. Sherman, W. Hansen, M. McInerny, and T. Neuendorffer, ‘’, in Hypertext: Concepts, Sys-

tems and Applications, Proceedings of the European Conference on Hypertext, ed. A. Rizk, N.
Streitz, and J. Andre, Cambridge University Press, INRIA, France, November 1990, pp. 13–24.

25. A. Pearl, Proceedings of the Hypertext ’89 Conference, Pittsburgh, PA, pp. 137–146 (1989).
26. J. Schnase, J. Leggett, and D. Hicks, ‘’, Department of Computer Science Technical Report

No. TAMU 91-003, Texas A&M University, College Station, TX (1991).
27. D. Shackelford, J. Smith, and F. Smith, Hypertext ’93 Conference Proceedings, Seattle, WA,

pp. 1–13 (1993).
28. K. Jeffay, J. Lin, J. Menges, F. Smith, and J. Smith, CSCW ’92 Conference Proceedings,

Toronto, Canada, pp. 195–202 (1992).
29. U. Wiil and J. Leggett, European Conference on Hypertext (ECHT) ’92 Proceedings, Milan,

Italy 251–261 (1992).
30. H. Schutt and N. Streitz, ‘’, in Hypertext: Concepts, Systems and Applications, Proceedings of



h

48 C. J. KACMAR

the European Conference on Hypertext, ed. A. Rizk, N. Streitz, and J. Andre, Cambridge
University Press, INRIA, France, November 1990, pp. 95–108.

31. N. Streitz, J. Haake, J. Hannemann, A. Lemke, W. Schuler, H. Schutt, and M. Thuring,
Proceedings of the European Conference on Hypertext (ECHT ’92), Milan, Italy, pp. 11–22
(1992).

32. A. Fountain, W. Hall, I. Heath, and H. Davis, ‘’, in Hypertext: Concepts, Systems and Applica-
tions, Proceedings of the European Conference on Hypertext, ed. A. Rizk, N. Streitz, and J.
Andre, Cambridge University Press, INRIA, France, November 1990, pp. 298–311.

33. H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins, European Conference on Hypermedia
(ECHT) ’92 Proceedings, Milan, Italy, pp. 181–190 (1992).

34. R. Scheifler, J. Gettys, and R. Newman, , Digital Press, Bedford, MA, 1988.
35. A. Rizk and L. Sauter, Proceedings of the European Conference on Hypertext (ECHT) ’92,

Milan, Italy, pp. 4–10 (1992).
36. V. Quint and I. Vatton, ‘Making structured documents active’, Electronic Publishing, 7(2),

55–74 (1994).
37. P. Balasubramanian, T. Isakowitz, H. Johar, and E. Stohr, ‘Hyper model management sys-

tems’, Proceedings of the 25th Hawaii International Conference on System Sciences (HICSS),
Kauai, HI, pp. 462–472 (1992).

38. B. Campbell and J. Goodman, ‘HAM: a general-purpose hypertext abstract machine’, Com-
mun. ACM, 31(7), 856–861 (1988).

39. NCSA/Mosaic, Mosaic User’s Guide, Available from University of Illinois, Champaign, IL.,
1994.

40. O. Jones, Introduction to the X Window System, Prentice Hall, Englewood Cliffs, NJ, 1989.
41. K. Hirata, Y. Hara, N. Shibata, and F. Hirabayashi, ‘Media-based navigation for hypermedia

systems’, Hypertext ’93 Proceedings, Seattle, WA, pp. 159–173 (1993).
42. L. Hardman, D. Bulterman, and G. vanRossum, ‘The Amsterdam Hypermedia Model: adding

time and context to the Dexter model’, Commun. ACM, 37(2), 50–62 (1994).


	SUMMARY
	1 INTRODUCTION
	2 MODELS AND IMPLEMENTATIONS
	First-generation hypermedia data models

	3 PREVIOUS WORK
	4 PROCESS-BASED RETROFIT STRATEGY
	Prototype
	Menu-based services
	Application modification


	5 ISSUES, DISCUSSION, AND FUTURE RESEARCH
	Seamless, open, integrated architecture
	Performance
	Link identification
	Link granularity
	Link semantics

	6 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

