
ELECTRONIC PUBLISHING, VOL . 8(1), 1–13 (MARCH 1995)

Embedded or separate hypertext mark-up: is it
an issue?

P. J. BROWN AND HEATHER BROWN

Computing Laboratory
The University
Canterbury
Kent, CT2 7NF, UK

SUMMARY

Most hypertext systems used in the field embed some form of mark-up in each
hyperdocument in order to represent the hypertext structure. Indeed, more generally, most
document preparation systems use this approach. Hypertext researchers, on the other hand,
say that the structure of a hyperdocument should be separate from its content. This paper
investigates whether the two approaches, embedded v. separate, are really at odds with one
another, and describes a technology for combining some of the benefits of both.

KEY WORDS hypertext; mark-up; guide; WWW; CD-ROM; UNIX; microcosm; Hyper-G

1 INTRODUCTION

Mark-up of any document can either be embedded within the document or stored
separately. In the hypertext field, all the expert researchers will say that separate mark-up
is the only respectable approach—the structure should be separate from the content,
whereas virtually all the hypertext systems that are widely used in the field are based on
embedded mark-up. This paper examines whether the issue of embedded versus separate
mark-up really is an important one.

We will start with four background points—highly diverse in nature—which will
throw light on the central issue.

1.1 Background point 1: the experts and the masses

In any field the ‘experts’ despise the choice of the masses. At the time of writing the
best-selling book in the UK is a thriller by Dick Francis. If, however, you suggested to a
Professor of English Literature that he should replace his course on, say, the works of
T. S. Eliot by a course on the works of Dick Francis, you would be unlikely to get a reply
that treated you as an intelligent being.

The dichotomy between the experts and the masses applies in computing as much as
any other field. Try suggesting to a University Computer Science department that BASIC
be made the main programming language that is taught.

Thus the clash between the hypertext experts and the masses should not come as a
surprise. Note that in each field the expert’s choice requires more effort to understand:
sometimes, as in the T. S. Eliot case, it may be beyond the comprehension of many.

CCC 0894–3982/95/010001–13 Received 1 March 1995
 1995 by John Wiley & Sons, Ltd.



2 P. J. BROWN

1.2 Background point 2: is small still beautiful?

A lot of us feel that small-is-beautiful is a good guiding principle for computer software.
Indeed one of the reasons for the original success of UNIX was that it encompassed this
principle. The UNIX philosophy was (is?) that monolithic software tools are wrong.
Instead you should have a collection of small tools, each good at one particular task, that
are easy to connect together so that a set of tools can co-operate in performing a task. In
particular UNIX provides the pipe as a connecting mechanism, though pipes work at a
low level (an unstructured stream of bytes).

If this philosophy is applied to hypertext systems then hypertext systems should just
do hypertext. They should not, for example, offer clever editing facilities (pattern match-
ing and so on) since a specialist editor would do the job better. As a corollary, it should
be easy to switch between the hypertext system and the editor and in particular the editor
should be able to process the hypertext system’s data formats.

An extension of this point is the ‘ubiquitous hypertext’ feature we mention later.

1.3 Background point 3: confusing embedded mark-up with content

A recently postedtroff document reads: ‘submit your contribution in the following form:

.NH
Your title
.LP
...’

Devotees oftroff will recognize a familiar trap here: the content contains lines such as
.NH and .LP that aretroff mark-up lines. The author therefore needs to mark these lines
in a special way so that they are treated as content, not as mark-up.

The same point applies to any other embedded mark-up: unless the character set used
in the mark-up is separate from that used in the content, there is a danger of parts of the
content being mistaken for mark-up.

1.4 Background point 4: Knuth’s literate programming

Donald Knuth [1] has championed an approach to program documentation called ‘literate
programming’. In this approach the documentation of the program, with its embedded
mark-up, is itself embedded in the program, the idea being that you can use this compo-
site whole to produce a well-formatted and, one hopes, literate explanation of the pro-
gram. There are tools to extract a formatted document from the composite, and alterna-
tive tools to extract the program itself in a form that a compiler would accept.

Knuth’s idea can be generalized to cover other pairs of related texts, e.g. specification
and design. The essence is that by interleaving two (or more) related documents, you
make it easier to see the relationships between them.

On the face of it, Knuth is compounding the sin of embedding.

2 BASICS

These background points will come into play later. It is now time to start the basic expo-
sition of this paper by explaining some terminology, in particularmark-up andcontent.



EMBEDDED OR SEPARATE HYPERTEXT MARK-UP: IS IT AN ISSUE? 3

The mark-up delimits and describes the logical objects of the content. The content is the
underlying text, pictures, video, etc. Actually, the mark-up is sometimes concerned with
physical appearance, e.g. ‘switch to bold face’, but we shall concentrate on the logical
level here. Mark-up can be at several different levels:

(1) embedded positional mark-up: here the mark-up is embedded in the raw content at
the position it is to be applied. This is the most common form of mark-up: typical
items of mark-up say that a title begins/ends here, or the source of a hypertext link
begins/ends here. Since almost all forms of embedded mark-up are positional, we
will simply call thisembedded mark-up.

(2) separate positional mark-up: this is conceptually similar to (1), except that the
mark-up is stored in a file (or table, etc.) separate from the content. At its lowest
level this mark-up takes the form ‘in file XXX a title runs from byte 75 to byte 88,
the source of a link runs from 100 to 106, ... ’. Two possible elaborations are to use
higher-level objects than bytes (e.g. words for text), and to allow the same mark-up
to bring together several content files.

(3) (separate) calculated mark-up: at the next level the mark-up involves some (semi-)
intelligent processing of the content file, e.g. ‘search for tag XXX or string YYY,
and make this the start of a hypertext link’. HyTime [2], for example, supports a
particularly rich set of features of this nature. This form of mark-up is rarely used
at the moment, but might become more popular in the future: its disadvantage is
that it is not the sort of mark-up that an author can create behind the scenes by
creating logical objects using a WYSIWYG editor (e.g. by making the selected text
a link source), but needs to be created explicitly by an intelligent author. Its advan-
tage is that it is much less fragile, if the underlying content changes, than byte
offsets.

(4) generated mark-up: in this case there is no pre-existing mark-up, but a program is
run to create the mark-up for a given content file. The program could, for example,
try to identify titles in a raw text file, and insert appropriate mark-up round them.
Often such programs have associated tables. For example a table could specify a
set of words, and the job of the program could be to find all occurrences of these
words in the content file, and to turn each into some specified form of link. In all
cases the program is likely to generate mark-up of form (1) or (2) above, which can
then be used directly by an underlying hypertext system.

(5) dynamic generated mark-up: finally, we can carry (4) one stage further, and run the
program as the user views the document. For example when the user selects an
object on the screen (a word, a phrase, a picture) the program can then be run to see
if the object is, for example, the source of a link. (The program could do this by
searching tables and dictionaries to see if there is any further information about the
object, and, if there is, to link to this information.) Microcosm [3], with its Generic
links andCompute links, has excellent features of this nature. Overall the dynamic
approach has gone way beyond what we normally think of as mark-up, and, indeed,
way beyond the scope of this paper.

It is worth saying a bit more about what we have called calculated mark-up. If the
content is known to be in a form where logical objects within it can be identified, the way
is open for the calculated mark-up to recognize and use these logical objects.



4 P. J. BROWN

Examples where there is potential for the new mark-up to use knowledge about the
structure of the content are:

(a) a C program. Here logical objects such as functions can be identified. Mark-up on
top of a C program could therefore refer to the functions within it, e.g. the declara-
tion of function XXX could be made the object of a link.

(b) a PostScript program. The output from such program is divided into pages, and
thus calculated mark-up on top of it could identify and refer to pages.

(c) a document that is already marked-up in, say,troff. Here logical objects such as
titles should be visible.

(d) a WWW document, marked-up in HTML. Again, logical objects such as titles
should be visible. Interestingly, the new, separate, mark-up could also be HTML-
based. This would apply if an author wanted to add mark-up to some-one else’s
WWW page, e.g. ‘Add the following HTML after the title in WWW page ...’.
Moreover this process of augmentation could be carried to severallayers: one
author augmenting another’s augmentation—though in some applications this
could lead to corresponding layers of knotty copyright/ethical issues.

The general point that these examples bring out is that if mark-up is specially
designed for one sort of content, PostScript, say, then it can take advantage of its
knowledge of the logical nature of that content, and refer to the content in terms of its
logical objects using some form of calculated mark-up.

Finally, as an added complication, the mark-up can itself contain extra material that is
to be added to the content. Thus the mark-up may specify the name of an extra button
that is to be added to the underlying content.

3 ADVANTAGES OF SEPARATE MARK-UP

The case in favour of separate mark-up is certainly not just an academic one. Some solid
advantages are:

(1) Mark-up can be applied to a content file (we will use the term ‘file’ though in fact
there are many other possibilities, e.g. an item in a database) that the author cannot
change. Thus the content could be stored on a CD-ROM or in someone else’s file
system.

(2) The mark-up does not change the content. Thus separate mark-up can be applied to
a word processor document in a proprietary format, to an image or to a video.
Adding embedded mark-up in these cases would make the content unusable for its
intended purpose.

(3) Many alternative mark-ups can be built on top of the same content. An original
exponent of this is George Landow [4], with every one of his English Literature
students adding their own hypertext mark-up to act as a critique of some underlying
content. This work originally exploited some of the fine generality of
Intermedia [5], which supported separate mark-up.

(4) The content of the document can, within strict limits, change independently of the
mark-up. This applies especially if a high-level form of calculated mark-up is used.
Thus if the mark-up of a C program says ‘make the heading of function Y the desti-
nation of a link’, then the C program could change (provided that function Y
remained) without upsetting the mark-up. Brailsford [6] quotes the problems with



EMBEDDED OR SEPARATE HYPERTEXT MARK-UP: IS IT AN ISSUE? 5

embedded mark-up in such cases. He was working with Acrobat mark-up added to
journal pages. If mark-up is embedded into the content, and then a new version of
the content is issued, it is a desperate job to extract the mark-up from the original
content and re-embed it in the new content. Annoyingly, this tedious task is strictly
needless if the mark-up relates to logical objects in the content that have not
changed.

(5) Separate mark-up makes ‘ubiquitous hypertext’ possible. Instead of hypertext
being a facility only available within a specialist piece of software called a hyper-
text system, hypertext facilities can be made ubiquitously available, in the same
way that cut-and-paste is a ubiquitous feature in many environments. Thus in the
middle of a word processing session it should be possible to call up a hypertext
engine that causes objects within the word processor document to act as links. If,
when the word processor was originally written, its creators had no awareness that
hypertext facilities would be added later, then clearly the hypertext mark-up must
be separate. Microcosm, Hyper-G [7] and the PenPoint operating system [8] are
three pioneers of the approach. (Indeed one of Microcosm’s approaches is to build
on the ubiquity of cut-and-paste.)

Interestingly many of these advantages apply to mark-up in general, not just to hyper-
text mark-up. For example, if one had some raw text on a CD-ROM it would be useful to
be able to add separate mark-up that specified, e.g., titles, paragraphs, citations, etc.,
within it. This mark-up could then be used by a formatter.

4 DISADVANTAGES

The compensating disadvantages are just as solid:

(a) ‘One is simple, two is complex’: clearly havingtwo separate objects (mark-up and
content) to manipulate and to keep in synchronization with one another adds com-
plexity. This is a manifestation of our first background point: the experts’ choice
being the more difficult one.

(b) If the content is independently edited then the mark-up may become unusable, and
this is not obvious at the time the edit is done. There are, however, certain pallia-
tives to this. Firstly there could be an all-encompassing operating system that is
aware of the relationships between mark-up and content files, and keeps them in
synchronization or at least gives warnings if they drift apart. Secondly, the dangers
are less if calculated mark-up is used. Thirdly it may be possible, if all the parties
work together, to use a version control system to control change. Lastly traditional
mark-up can be abandoned in favour of the ‘generic’ mark-up found in
Microcosm—an instance of what we have called dynamic calculated mark-up
above. Unfortunately, however, none of these four palliatives comes close to pro-
viding a complete and general solution.

(c) As an extension to the previous point, if mark-up is embedded, anyone editing the
content is always aware of the mark-up. If, for example, they add extra material
they can decide where to put it relative to the boundaries the mark-up imposes, e.g.
whether it is part of some emphasized text or beyond the end. This applies what-
ever editor is chosen. The advantage is lost if separate mark-up is used.



6 P. J. BROWN

5 DOES IT MATTER?

The paper so far has presented a dichotomy between two opposing approaches. It is now
time to change tack and consider whether, indeed, the approaches are as opposite as they
seem. Can you combine the advantages of each?

The first point to make is that, to many users, the difference of approach is an
irrelevant detail. How many users (as distinct from authors) of WWW, for example,
know what its mark-up is like or whether it is stored separately from the content? In fact
it is not. Even authors do not need to be aware of the difference: if authors do their work
through a WYSIWYG interface they too are unaware of what the mark-up is like and
whether it is embedded. The main constituency that remains are those people who (a)
want to add mark-up to existing material that does not belong to them, or (b) want to use
the marked-up material with a tool other than the one that created the material. These
people need to know whether mark-up is embedded. They are currently a minority,
though you could argue that if good facilities were provided for such people their
numbers might grow.

6 BEST OF BOTH WORLDS?

We now move on to the question of whether, for those users to whom itdoes matter, the
advantages of separate and embedded mark-up can be combined. This can be done by
giving such users a choice, when they save a document they have created, of whether to
make the mark-up separate. Moreover the user should be able to change their mind and
convert from one form to the other, as the need arises. To be realistic the choice must be
confined to a choice between embedded mark-up and separate positional mark-up. We
must forgo the advantages of calculated mark-up, because of the difficulty of generating
such mark-up automatically from a lower-level form. To achieve our aim we propose
two simple software components, aJoiner and aSplitter. The Joiner takes two input files
and combines them into one, outputting the result. The Splitter is the complement of the
Joiner, splitting an input file into two separate output files. Clearly the Splitter needs a
policy to decide how the split is to be made. A policy of relevance here, when applied to
an input file with embedded mark-up, is to output the mark-up in one file and the rest (i.e.
the content) in the other, thus producing separate positional mark-up. Each different form
of mark-up will need its own policy. The Joiner will likewise need rules for joining its
two input files. A simple rule is to regard one input file as pure content and the other as a
set of edits to the content. Thus the second file might be a set of edits to insert mark-up
into the content. The policy of the Splitter is designed to fit with its complementary
Joiner. Thus for the sample Joiner quoted above, the policy of the Splitter would be to
extract the mark-up and output it as a set of edits to the content file. Indeed in this case
the Joiner might be a simple old-fashioned text editor with commands of the form
‘Insert ... at position ... ’.

The Joiner and Splitter are conceptually general tools, but, since each form of mark-
up will have its own policy, it will have its own version of a Joiner and Splitter. Thus a
Splitter designed for SGML mark-up would not work fortroff mark-up. Obviously the
world would be a better place if all tools shared a common style of mark-up, but this is
not so now, and probably never will be.



EMBEDDED OR SEPARATE HYPERTEXT MARK-UP: IS IT AN ISSUE? 7

For each style of mark-up the Joiner and Splitter should match in the sense that if you
split a file and joined it again you should end up with something identical, at least
semantically, with the original.

The Joiner and Splitter should basically be simple, but there is a potential complica-
tion illustrated by our Background Point 3: problems associated with content being mis-
taken for mark-up. Assume that we have some material stored on a CD-ROM and want
to add some mark-up to it. We use a Joiner so that the resultant output can be processed
by a tool that understands embedded mark-up. What happens if the material on the CD-
ROM already contains lines that look like mark-up? Such problems, though introducing
tedious extra complexity are, however, fortunately solvable in practice. Ideally the
Joiner and Splitter should be simple and fast enough to work on-the-fly, without any need
for caching.

Our scheme above involves splitting into two separate files. A further element of com-
plexity is introduced if we want to split into more than two separate files: this would be
needed if there were several independent sets of mark-up on the same content, and/or if a
single mark-up file brought together several content files. Rather than exploring this com-
plexity, however, we propose a system oflayers, whereby the output from a Joiner at a
top layer can be used as one of the inputs to a Joiner at a lower level, and so on through
as many layers as necessary. At the complementary splitting stage the Splitter would like-
wise feed its output to another Splitter, with a policy as to what is split off at each layer.
Figure 1 shows how the joining might be organized.

We will now proceed to give some practical details.

7 IMPLEMENTATION WITHIN THE Guide HYPERTEXT SYSTEM

A Joiner and Splitter have been implemented within the UNIX version of the Guide
hypertext system [9]. Guide uses embedded mark-up and the purpose of its Joiner and
Splitter is to remove some of the disadvantages of this. From its inception, Guide has had
facilities for generated mark-up: for example UNIX manual pages and othertroff docu-
ments can be automatically converted into Guide form on the fly, with titles converted
into buttons, ‘SEE ALSO’ items into links, etc. Hence the concept of having a program
send its output into Guide is well provided for.

Guide users create hypertext facilities in a WYSIWYG way, and the authors (and
users) are unaware of the underlying mark-up; the use of the Joiner and Splitter was
therefore designed to be behind the scenes so that the authors and users can retain their
blissful ignorance. All the author needs to do is to select an option, when it is needed, to
save mark-up separately. Behind the scenes this involves Guide’s Splitter, which has the
policy of producing a separate (positional) mark-up file, which we call thejoiner-edit-
file. The joiner-edit-file has a special comment line on the front, so that, if it is fed to
Guide, Guide knows that it should call up its Joiner. The initial comment line of the
joiner-edit-file also identifies the content file to be used (in fact there can be multiple con-
tent files, but we will suppress such detail here). The rest of the lines have the general
form:

Read N1 bytes from the content file
Insert the following: ...
Read N2 bytes from the content file
Insert the following: ...

(Thus the mark-up is, unfortunately, in terms of low-level byte offsets—something of a



8 P. J. BROWN

Content

Joiner

Higher level
mark−up

Software that takes
embedded mark−up

Joiner

Original mark−up

Figure 1. Two layers of mark-up

necessity, given that the content can be anything at all. If Guide were geared towards a
special form of content, which had known structure, it might be possible to go a little way
towards calculated mark-up.) The content can involve media other than text, but
currently mark-up can only be inserted within the textual parts.

The Joiner is a crude editor that processes edits of the above form, and as a result con-
verts back to the original form, with its embedded mark-up, and outputs this into Guide.

In fact the joiner-edit-file also contains a designator giving the policy by which it was
created (we will soon see that several possible policies may be available). When a user
comes to save a file, Guide by default saves it as embedded mark-up if the original input
file used embedded mark-up and with separate (positional) mark-up otherwise. In the
latter case the same policy is, by default, used as was found in the original input. Again,
the ordinary user does not need to know whether she is using embedded or separate
mark-up, but the user who cares can change the policy that is to be used on saving.

The joining and splitting described above apply both to files that are loaded when
Guide starts up and to files loaded as a result of following links.



EMBEDDED OR SEPARATE HYPERTEXT MARK-UP: IS IT AN ISSUE? 9

There are many cases when the user wants to go beyond the simple policy of just
splitting off the mark-up. In our CD-ROM example, the user may wish to add content to
the CD-ROM: extra text, button-names, icons, etc. Guide has a facility for the user to
define logical objects in the source file. These might be objects such as Title, Part-
number, Program-listing (when a piece of program is embedded in a document), etc. A
separate table specifies for each logical object, how it is to be displayed (e.g. using X font
and Y colours). These logical objects are, in fact, calledcontexts.

When saving a file, Guide uses the system of layers mentioned earlier. The default
policy on saving is to have everything in the same layer (i.e. content with embedded
mark-up), but other possible policies are to have a content layer and a mark-up layer
above it, or to go a stage further and to have many separate layers. It is the contexts that
provide the flexibility in assigning objects to layers, on top of a basic facility to specify
whether mark-up is, by default, in a separate layer or not.

To provide this flexibility, each context has an attribute (changeable at any time by the
user) which specifies what layer it and its content belong to. For example the user could
create a context calledAnnotation which had the attribute that everything within an
Annotation was saved at a mark-up layer, i.e. anAnnotation is an object at the mark-up
layer. Given this, the author can load one or more CD-ROM files, add someAnnotations
(and perhaps some ordinary Guide buttons too) and save the result so that everything
lying within an Annotation context plus the Guide mark-up go into a separate joiner-
edit-file that can be applied to the CD-ROM content.

As a refinement, another context could be defined, called, say,MetaAnnotation, which
allowed further annotations to be added and saved at a layer above the layer with the ori-
ginal annotations. We then have three layers:

(1) a content file.
(2) a set ofAnnotations and other mark-up on top of (1).
(3) a set ofMetaAnnotations on top of (2).

Any of the above three can be used independently: i.e. the user can ask for just the con-
tent, the content withAnnotations, etc., or the content with bothAnnotations and
MetaAnnotations.

Guide’s Joiner and Splitter can be used in UNIX pipes when Guide files need to be
communicated to other UNIX tools. As a refinement it is possible, in these cases, to
adjust the Splitter’s policy so that different logical objects can be selected. For example,
assume the user wants to extract the content layer, but minus any occurrences of aCom-
ment context that occurs at this layer, but instead including all occurrences of theAnnota-
tion context, which normally belong at a higher layer. This can be done by temporarily
adjusting the layer to which theComment and Annotation contexts belong, and then
doing a save, which passes the output to the next component in a pipe. (IndeedCom-
ments could be assigned to a null layer in this case.) This goes towards the kind of flexi-
bility we mentioned when discussing literate programming.

8 LESSONS FROM THE Guide IMPLEMENTATION

The lessons from the Guide implementation are:

g the Joiner and Splitter can be used to combine many of the advantages of separate
and embedded mark-up, though not the flexibility of calculated mark-up.



10 P. J. BROWN

g it helps, however, if the machinations of the Joiner and the Splitter are disguised
from the user. In particular it is an advantage that Guide automatically recognizes
whether an input file (a) involves embedded mark-up or (b) is a separate mark-up
file, and in case (b) automatically invokes the Joiner. We call thisautomatic mode
recognition. (If Guide’s internal workings had been based on separate rather than
embedded mark-up, its automatic mode recognition would have called the Splitter
whenever it found an input file with embedded mark-up, i.e. a special tool is
needed if the input style does not match what the hypertext system normally
expects.)

g further flexibility is gained when the author can create, using a WYSIWYG inter-
face, logical objects that relate to the Splitter’s policy, e.g.Annotations that belong
in the mark-up layer.

9 PIPES AT WORK

We will now return to the general case and look at how marked-up files can be used by
different systems, and how the Joiner and Splitter can help. Our discussion is based on a
UNIX environment where tools (ideally simple single-purpose ones) are connected
together using pipes. The discussion applies equally well, however, to any operating sys-
tem environment where tools can be connected together.

The simplest tool, as regards its input/output, is one where input goes in one end and
output comes out the other. Most UNIX tools are designed like this, so that they can be
fitted into pipes and more generally can use all UNIX’s input/output redirection mechan-
isms. With such tools it is a trivial matter to incorporate Joiners and Splitters: the pipe
mechanism is made for it.

With more complex tools the input file can link to other input files. We call this an
embedded-file-link. Embedded-file-links occur extremely frequently in hypertext
systems—indeed some people argue that they are the essence of hypertext—but they can
also occur with many formatters (a document that contains a request to include another),
programs (e.g.#include directives in C), etc.

10 ANALYSIS OF EMBEDDED-FILE-LINKS

Since embedded-file-links are at the core of many hypertext systems we will discuss
them in more detail. Let us assume that the user wishes to add mark-up to an existing file
F, which is referenced by embedded-file-links. We will also assume that the added
mark-up is for a hypertext system and that this hypertext system is based on embedded
mark-up—this is likely to be the most common situation in practice.

Two properties of F are relevant:

(a) is F writable by the user?
(b) does the user require embedded-file-links that reference F to be interpreted as refer-

ences to:
(b1) the original F
(b2) or to the marked-up version of F?

As examples of (b):

g the answer is likely to be (b1) if the reference to F is to include it in a C program. If



EMBEDDED OR SEPARATE HYPERTEXT MARK-UP: IS IT AN ISSUE? 11

the author has a separate mark-up file for F, to be used by a hypertext system, then
that is irrelevant to C.

g the answer is likely to be (b2) if the reference to F is within a system that uses the
extra mark-up. A particular example would be when the author has defined extra
mark-up to be applied to an existing WWW file F; if another WWW page is linked
to F, the user should see the newly marked-up version of F: that is the whole point
of the extra mark-up file.

(There may be cases where some embedded-file-links to F are to be interpreted as (b1)
in some environments and as (b2) in others, but we will continue our policy of ignoring
complications such as this in this paper.)

Case (b1) is easy. If, for example, a C program includes a file calledmylib.h, the
author can create a separate mark-up file called, say,mylib.mark. When the user wants to
view the file in its marked-up form he calls itmylib.mark. Ideally, if the hypertext system
works on embedded mark-up, it will have an automatic mode recognition capability that
automatically calls its Joiner behind the scenes to combine the two filesmylib.mark and
mylib.h. It is unlikely that there would be any existing hypertext links tomylib.h, but if
there were they would lead to the original, unmarked-up,mylib.h.

Case (b2) is easy only when F is writable. When it is writable, the original file F can
be moved to a new file FC, which will be treated as a content file, and a mark-up file,
which applies to FC, can be put in place of F. Thus F is now a mark-up file, which leads
indirectly to FC, the original content. If the hypertext system that deals with the mark-up
has automatic mode recognition, then, on seeing any reference to F it will treat is as a
mark-up file for FC.

The difficult case is case (b2) when F is not writable, because the trick of replacing F
is not applicable. What is needed, either within the hypertext system or within the operat-
ing system it runs under, is a general aliasing system. In its simplest form this takes the
form ‘use X in place of Y’, but an ideal, which is simple and more flexible, is to be able
to say to the hypertext system ‘whenever you load a file X, call the program P (which can
be specified by the user) with X as argument’. In the latter case the default version of P
will simply use the file X unchanged, but P could be a Joiner with an associated table
with entries of form ‘if the file is F, apply the Joiner to it using mark-up file FM, and out-
put the result’. Moreover this approach opens the way to a generic form of annotation:
program P could for example add an extra hypertext link on the front ofall files it
loaded.

If none of the forms of aliasing that we have mentioned is available in practice, sys-
tem hackers may be able to provide the equivalent by installing personal modifications to
the I/O libraries that open files, particularly if such libraries are dynamically linked.

11 AN EXAMPLE WITH A SEPARATE MARK-UP HYPERTEXT SYSTEM

Finally, let us balance our emphasis on hypertext systems that have embedded mark-up
with an example that assumes a hypertext system with separate mark-up.

Let us assume, therefore, that a hyperdocument is represented by one content file with
separate mark-up. We wish to do some complicated edits on this, and decide to use a spe-
cialized editor, not the hypertext system, to do the job. Assuming we have a Joiner and
Splitter that cater for the mark-up used in the hyperdocument, we apply the Joiner and



12 P. J. BROWN

send the resultant output, which is the hyperdocument with embedded mark-up, into the
editor. We then do the necessary editing, and when we come to save the result, we send
the editor’s output to the Splitter, thus getting back to the separate form we had before.

A few points about this exercise:

g writing the necessary Joiner and Splitter can range from easy to hard depending on
the nature of the mark-up.

g while we are using the editor the embedded mark-up will be evident—generally an
advantage, given that the existence of this mark-up would not otherwise be
apparent.

g in the final saved version the separate mark-up would automatically have been
adjusted to take care of the change in the content, thus removing one of the prob-
lems associated with separate mark-up. There would, however, be problems if
there were other separate mark-up files based on the original content.

g obviously the Joiner and Splitter are more complex if a single mark-up file can
reference several different content files.

g the technique is just as applicable to, say, sound and video files as to text files.
When editing a video file, for example, it might be useful to have some clue of the
existence of mark-up on top of it.

12 CONCLUSION

The paper has set out to prove that the issue of separate versus embedded mark-up is not
a central issue in hypertext. Most hypertext systems today are based on embedded mark-
up, but they can be made to work with separate positional mark-up by using the Joiner
and Splitter technology. Likewise systems based on separate positional mark-up can be
made to support an embedded form if this is required, e.g. for exporting to some other
tool that would like to see an embedded mark-up.

The big issue is not the nature of the mark-up but the facilities for integrating software
components. In any real-world situation the hypertext system needs to work with other
systems to provide a solution to a problem. The closer these systems fit together the
better the solution. Our Joiner/Splitter technology requires a relatively small degree of
integration. The real challenge is to proceed to a degree of integration where we never
need to distinguish between documents that are hyperdocuments and those that are not,
but where components work together to make hypertext ubiquitous, with any underlying
tools to change the formats of the information being invisible to users.

ACKNOWLEDGEMENTS

We are grateful to the anonymous(?) referees, especially to Wendy, for helpful com-
ments.

REFERENCES

1. D. E. Knuth, ‘Literate programming’,Computer Journal, 27(2), 97–111 (1984).
2. S. R. Newcomb, N. A. Kipp, and V. T. Newcomb, ‘The HyTime hypermedia/time-based docu-

ment structuring language’,Comm. ACM, 34(11), 67–83 (1991).



EMBEDDED OR SEPARATE HYPERTEXT MARK-UP: IS IT AN ISSUE? 13

3. H. C. Davis, W. Hall, I. Heath, G. J. Hill, and R. J. Wilkins, ‘Towards an integrated environ-
ment with open hypermedia systems’, inProceedings of the ACM Conference on Hypertext:
ECHT92, ACM Press, New York, 1992, pp. 181–190.

4. G. P. Landow,Hypertext: the convergence of contemporary critical theory and technology,
Johns Hopkins Press, Baltimore, MD., 1992.

5. N. Yankelovich, N. Meyrowitz, and A. van Dam, ‘Reading and writing the electronic book’,
IEEE Computer, 18(10), 15–30 (1985).

6. D. F. Brailsford, ‘CD-ROM Acrobat journals using networks’, inConference on Digital Media
and Electronic Publishing, Leeds University, 1994.

7. F. Kappe, H. Maurer, and N.Sherbakov, ‘Hyper-G—a universal hypermedia system’,Journal
of Educational Multimedia and Hypermedia, 2(1), 39–66 (1993).

8. R. Carr and P. Shafer,The power of PenPoint, Addison-Wesley, Reading, 1991.
9. P. J. Brown, ‘A hypertext system for UNIX’,Computing Systems, 2(1), 37–53 (1989).


	SUMMARY
	1 INTRODUCTION
	1.1 Background point 1: the experts and the masses
	1.2 Background point 2: is small still beautiful?
	1.3 Background point 3: confusing embedded mark-up with content
	1.4 Background point 4: Knuth's literate programming

	2 BASICS
	3 ADVANTAGES OF SEPARATE MARK-UP
	4 DISADVANTAGES
	5 DOES IT MATTER?
	6 BEST OF BOTH WORLDS?
	7 IMPLEMENTATION WITHIN THE Guide HYPERTEXT SYSTEM
	8 LESSONS FROM THE Guide IMPLEMENTATION
	9 PIPES AT WORK
	10 ANALYSIS OF EMBEDDED-FILE-LINKS
	11 AN EXAMPLE WITH A SEPARATE MARK-UP HYPERTEXT SYSTEM
	12 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

