
ELECTRONIC PUBLISHING, VOL. 8(1), 15–29 (MARCH 1995)

Document transformation based on syntax-directed
tree translation
KAZUYA CHIBA AND MASAKI KYOJIMA

Fuji Xerox Co.,Ltd.
Systems and Communications Laboratory
430 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-01 JAPAN

SUMMARY
We present a description system for transformation of structured documents based on Context
Free Grammars (CFGs). The system caters to transformations between different document
class descriptions, and is presented mainly in terms of logical structure transformation. Two
requirements for transformation are proposed: the output document class must be explicitly
representable, and inconsistency must be avoidable. First, a grammar for document class
descriptions, called a T-CFG (Tree-preserving Context Free Grammar), is introduced, then
SDTT (Syntax-Directed Tree Translation) is given for a document transformation. The SDTT
transformation is formal, concise, and consistent with the above two requirements.

KEY WORDS Class-level document transformation Context Free Grammar Document transformation

Structured document Syntax-Directed Translation

1 INTRODUCTION

In this paper we present a description system for structured document transformation based
on Context Free Grammars (CFGs).

The structured documents considered here are similar to those in two international stan-
dards: the Open Document Architecture (ODA)[1] and the Standard Generalized Markup
Language (SGML)[2]. These documents have tree structures; in particular, only leaf nodes
are associated with contents such as texts, graphics, and mathematical expressions.

We use the term ‘document class’ in this paper in the same context as ‘document
type’ in SGML. Formally, a document class is a set of documents. For example, document
classes appearing in offices include business letters, invoices, and so on. A document class
description represents constraints on document structures. Any document in a class must
satisfy the constraints for that particular document class.

We define document transformation in terms of document class descriptions as follows:

1. The input document(s) to the transformation belongs to the input document class; the
output document(s) from the transformation belongs to the output document class.

2. The transformation is described using input and output document class descriptions.

Within this framework, we can consider various types of document transformation,
including transformation of layout structures and contents. However, we focus mainly on

CCC 0894–3982/95/010015–15 Received 22 June 1993
1995 by John Wiley & Sons, Ltd. Revised 22 June 1995

16 K. CHIBA AND M. KYOJIMA

<Word> <Word> <Word>

<Terms>

<Step> <Step> <Step>

<Procedure>

<Caution>

 <Cautions><Title> <Note>

 <Manual Entry> <Manual Entry>

 <Manual>

<Step> <Step> <Step>

<Procedure><Title> <Note>

 <Handy Manual Entry>

 <Handy Manual>

 <Handy Manual Entry>

↓

Figure 1. Transformation from a manual into a handy manual

transformation of logical structures because this illustrates the principles (and new layout
structures can be generated, provided that appropriate formatters exist). Figure 1 shows a
simple example of such a transformation: the transformation from the logical structure of
a manual into that of a handy manual. It is a common requirement in offices to generate
documents of one class from another. Our framework is applicable to doing this. Using
automated systems for generating documents help reduce office work [3].

Let us now look at some other approaches related to the transformation of document
logical structures. The Document Style Semantics and Specification Language (DSSSL)[4]
is one of these. Its intent is to add formatting semantics to SGML documents. We believe
DSSSL can also be used to describe transformations of logical structures. DSSSL speci-
fications can be considered as a set of constraints, namely associations, based on SGML
Document Type Definitions (DTD). An association relates an element in the input doc-
ument instance to an element in the output document instance. Developing an execution
mechanism for the descriptions of DSSSL, however, has not been accomplished. Moreover,
associations conforming to DSSSL are not always executable. For example, two mutually
inconsistent associations can exist.

Brown, et al., proposed a new description language [5], whose purpose is similar to that
of DSSSL. They use a regular right-hand part grammar as a document class description,
i.e., a DTD. In their description language, coordination was used to constrain structural
correspondence between elements specified by source (input) and result (output) document
class descriptions. We think that their descriptions of transformation look simpler and more
compact than the descriptions of DSSSL. However, an execution mechanism has not been
introduced. It is not clear whether their descriptions are always executable.

Akpotsui and Quint proposed a method where a comparator compares the old (input)
and new (output)generic structures (document class descriptions) and outputs rules for doc-

DOCUMENT TRANSFORMATION BASED ON SYNTAX-DIRECTED TREE TRANSLATION 17

ument instance conversion [6]. However, we cannot tell exactly its capability to transform
because an algorithm of the comparison is not shown.

Cole and Brown proposed a method to change the classes of objects in structured
documents during cut-and-paste editing [7]. Although their method can be considered one
type of transformation, it does not manipulate structures.

In contrast to these approaches, the approach by Güting, et al. [8], is algebraic; it is
similar to retrieving data from a relational database. They proposed the Nested Sequence of
Tuples (NST) algebra which is an extended relational algebra. In their approach, operations
are defined on schemata; in other words, document processing is described at the class
level. This algebra allows the description of various transformation. Since any operation
can be applied to a schema, their approach is quite capable of describing a transforma-
tion. Moreover, executing these descriptions is given, which would be simpler than the
approaches mentioned earlier.

However, an output schema, i.e. a schema for outputs from the transformation, is not
represented explicitly in the NST-algebra, unlike DSSSL or the approach of Brown, et al.
In DSSSL, an output document class is represented by a DTD in the same way that an
input document class is represented. If an output class is represented explicitly, it is easier
to describe the transformation with a pre-defined form.

Similarly, in the method of Furuta and Stotts [9], an output document class is not
represented explicitly; a transformation is specified by a sequence of operators, which are
used to construct the output grammar (class) from the given input grammar.

Considering the above work, we determined that our transformation description should
meet the following requirements:

� the output class must be explicitly representable;
� inconsistency must be avoidable: there is a well-defined syntax which guarantees that

if a transformation description satisfies the syntax, the transformation is executable
and outputs a document belonging to the output class.

In addition, we think that our transformation description should be formal and concise.
We now give an outline of our approach. We concentrate on transformation independent

of contents. In other words, we discuss mainly document structure transformation. For
convenience, hereinafter, by document transformation or simply transformation, we mean
document structure transformation. For our document class descriptions, we use CFGs.
For our structural transformation, we use a Syntax-Directed Translation (SDT)[10], a
CFG-based translation between strings with declarative descriptions. We also introduce a
string representation for document structures because CFGs and SDTs handle strings, not
trees. Next, we obtain grammar for document class descriptions, called a T-CFG (Tree-
preserving Context-Free Grammar), and a tree transformation for document transformation,
called an SDTT (Syntax-Directed Tree Translation). Finally, we apply SDTTs to document
transformation.

The rest of the paper is organized as follows: In Section 2, we first define a T-CFG
and an SDTT, and then explain the document transformation using SDTTs. To illustrate
its capability, we also show some examples of document transformation using SDTTs. In
Section 3, we discuss some features of our description, including comparisons. Finally,
in Section 4, we summarize our work and discuss areas that need further investigation in
future work.

18 K. CHIBA AND M. KYOJIMA

 a

 / ··· \

x1 ··· xn

Figure 2. The tree structure corresponding to a[x1 � � � xn]

2 DOCUMENT TRANSFORMATION USING SDTT

We define a T-CFG and an SDTT in Section 2.1. In Section 2.2, we apply SDTTs to document
transformation and show some examples. Hereinafter, the term ‘structure’ means ‘logical
structure’ unless otherwise stated, and notation related to SDTs follows [11].

2.1 T-CFG and SDTT

First, we give a string representation for a tree. We introduce two new special symbols,
‘[’ and ‘]’, and we define that string a[x1 � � �xn] corresponds to or is decoded into the tree
structure illustrated in Figure 2. For example, string a[b[cc]b[c]b[ccc]] corresponds to the
tree shown in Figure 3. We introduce T(A,B) to denote a set of strings which correspond
to trees whose leaf nodes belong to B and whose non-leaf nodes belong to A. T(A,B) is
defined as follows

Definition 1 Let A and B be sets of symbols, and ‘]’ and ‘]’ be new special symbols to
represent structures. A set of strings T(A,B) is defined inductively as follows:

1. If b 2 B, then b 2 T(A,B).
2. If a 2 A and x1, � � � ,xn 2 T(A,B), then a[x1 � � � xn] 2 T(A,B)(n � 0).

Next, we define a CFG and T�(A,B), a sequence of trees belonging to T(A,B).

Definition 2 (CFG) A CFG is a four-tuple G =< N,Σ,P,S > where

1. N is a finite set of nonterminals;
2. Σ is a finite set of terminals and N \ Σ = � ;
3. P is a finite set of productions of the form A !
 where A 2 Nand
 2 (N [Σ)�;
and
4. S 2 N is the starting symbol.

Definition 3 T�(A,B) � fx1 � � �xnjx1, � � � ,xn 2 T(A,B)g[f�g(n � 1). (� denotes an empty
string.)

Now we introduce T-CFGs as a subclass of CFGs. A T-CFG is a grammar which can
generate a string representing a tree. As discussed later, a T-CFG will correspond to a
document class description for tree-structured documents.

Definition 4 (T-CFG) A CFG G: < N,Σ [f‘]0,‘]0g,P,S > is called a T-CFG if, for every
production A !
 in the finite set of productions P,
 2 T�(Σ,N [Σ).

DOCUMENT TRANSFORMATION BASED ON SYNTAX-DIRECTED TREE TRANSLATION 19

c c c c c c

 b b b

 a

Figure 3. The tree corresponding to a[b[cc]b[c]b[ccc]]

An example of a T-CFG is G1 =< N,Σ [f‘]0,‘]0g,P,S > as follows.

N = f S,B,C g
Σ = f a,b,c g
P = f S ! a[B]

B ! Bb[C]
B ! b[C]
C ! Cc
C ! c g

G1 generates the trees such that the root node is a; node a has any number of children
nodes, b’s; and each b has any number of children nodes, c’s. Figure 3 shows a tree generated
by G1.

The following example is evidence that a T-CFG can generate a sequence of trees, not
just a single tree. Only the productions are shown.

S ! Sa[bc]
S ! a[bc]

We give Theorem 1 stating that a T-CFG generates nothing but a sequence of trees.

Theorem 1 Let L(G) be the language generated by a T-CFG

G =< N,Σ [f‘]0,‘]0g,P,S >

Then L(G) � T�(Σ,Σ).

Proof. The proof is given in the Appendix. 2

Here we consider the transformation description. By applying SDTs, translations be-
tween strings, to T-CFGs, we obtain SDTTs. Hence, an SDTT is a translation between
strings corresponding to underlying tree structures. Now, we will define an SDTT.

Definition 5 (SDTT) An SDTT is a five-tuple T =< N,Σ,∆,R,S > where

1. N is a finite set of nonterminals and N \ (Σ [∆) = �,
2. Σ is a finite set of symbols (the terminals of the input strings),
3. ∆ is a finite set of symbols (the terminals of the output strings),
4. R is a finite set of rules of the form A ! �,

and
5. S 2 N is the starting symbol.

20 K. CHIBA AND M. KYOJIMA

For each rule A ! �,
 , it must hold that A 2 N, � 2 T�(Σ,N [Σ),
 2 T�(∆,N [∆),
and the nonterminals in � must be a permutation of those in
 . Moreover, each instance of
a nonterminal in � has an associated instance of the same nonterminal in
 . For repeated
nonterminal symbols, superscripts are used as needed to indicate which nonterminals are
associated.

The T-CFG < N,Σ [f‘]0,‘]0g,Pi,S > is the input grammar of this SDTT where Pi =
fA ! �jA ! �,
 2 Rg; the T-CFG < N,∆[f‘]0,‘]0g,Po,S > is the output grammar of this
SDTT where Po = fA !
jA ! �,
 2 Rg.

The idea of an SDTT is to use the input grammar for derivations from the input string
and, simultaneously via the rules, use the output grammar for derivations from the output
string. An SDTT T defines a translation set.

Definition 6 (translation form) Let T =< N,Σ,∆,R,S > be an SDTT. �(T), the set of
translation forms of T, is defined as follows:

1. (S,S) 2 �(T) and the S’s are associated.
2. If (�0A�00,
0A
00) 2 �(T) with the A’s associated and A ! � ,
 2 R, then

(�0��00,
0

00) 2 � (T).

Definition 7 (translation set) Let T =< N,Σ,∆,R,S > be an SDTT, Gi be an input gram-
mar of T, and Go be an output grammar of T. The translation set of T is

� (T) = f(x,y)jx 2 L(Gi),y 2 L(Go),(x,y) 2 �(T)g

which is a subset of binary relation L(Gi)� L(Go).

We say a string�i is transformed into a string �o by an SDTT T if (�i,�o) 2 � (T). Note
that one string can be transformed into different forms by one SDTT. However, any string
in L(Gi) is transformed into at least one form, as stated in Theorem 2.

Theorem 2 Let T =< N,Σ,∆,R,S > be an SDTT, Gi be an input grammar of T, and Go be
an output grammar of T. Then, for any string x 2 L(Gi), there exists a string y 2 L(Go)
such that (x,y) 2 � (T).

Proof. The proof is given in the Appendix. 2

We now give an example of a transformation. This transformation inputs one of the
trees generated by T-CFG G1 described above, and outputs the tree in which the order of
occurrence of b’s is reversed. By this transformation, the tree in Figure 3 is transformed
into the tree in Figure 4 We can describe this transformation by the following SDTT T1:

T1 = < N,Σ,∆,R,S >
N = f S,B,C g
Σ = f a,b,c g
∆ = f a,b,c g
R = f S ! a[B], a[B]

B ! Bb[C], b[C]B
B ! b[C], b[C]
C ! Cc, Cc
C ! c, c g

DOCUMENT TRANSFORMATION BASED ON SYNTAX-DIRECTED TREE TRANSLATION 21

c c c c c c

 b b b

 a

Figure 4. An output tree of transformation T1

The input grammar of T1 is T-CFG G1. Input grammar always indicates the domain of
the transformation.

For the output side, the output grammar of T1 is the following T-CFG with the starting
symbol S.

S ! a[B]
B ! b[C]B
B ! b[C]
C ! Cc
C ! c

2.2 Document transformation using SDTT

In this section we give our document transformation description using SDTTs. First, by the
definitions given in Section 2.1, we model a document, a document class, and a document
transformation. Next, we give some examples to explain document transformation using
SDTTs, and to show its characteristics and capability to describe.

The documents which we model here are the structured documents mentioned in Section
1. An example is shown in Figure 5. Each node of a tree, called an object, has a name. In
Figure 5, a, b, d, e, and g are names of objects. In particular, each leaf node of a tree is
associated with a container of contents, called a content portion. In Figure 5, C1, C2, and
C3 are content portions.

We model such documents in the following way. We represent an object as a symbol,
and a document as a string � which corresponds to the tree structure of the document. For
example, the document shown in Figure 5 is represented as a[b[e]d[gg]]. Now we define a
document formally.

Definition 8 Let A and B be sets of symbols. A string � is called a document if � 2 T(A,B).

Next, we use T-CFGs to model document classes. We define that a T-CFG is a document
class description: if a T-CFG G generates a string� , the document� belongs to the document
class G.

A T-CFG can generate a sequence of trees as mentioned above. If a T-CFG G generates a
sequence of strings�1 � � ��n, the sequence of documents�1, � � � ,�n belongs to the document
class G. Here we extend the concept of document classes: a document class described by
a T-CFG is a set of sequences of documents, not just a set of single documents. However,
we mainly discuss single documents.

Finally, we consider document transformation using SDTTs. The transformation be-
tween documents can be described as the transformation between the strings corresponding

22 K. CHIBA AND M. KYOJIMA

C3C2C1

b

a

e

d

g g

Figure 5. An example of structured documents

to the underlying documents. We say a document �i is transformed into a document �o by
an SDTT T if (�i,�o) 2 � (T). SDTT can also transform multiple documents into multiple
documents all at one time, as mentioned above.

Now we show two examples of a document transformation using SDTTs.

Example 1

This example shows that an SDTT can divide repeated objects into small pieces. See
Figure 6. Words enclosed with brackets <> are symbols, for example < Name >. The
input document (a), or its string representation (c), is a participants list for a meeting.
This list is a sequence of the names and addresses of members. C1,C2, � � � ,C6 are content
portions.

Then, we explain the transformation. We divide the members into pairs. If the number
of members is odd, the last member becomes a singleton. The output document is (b), or its
string representation (d). Each content portion of a name or address in the input document
becomes the content portion of the corresponding name or address in the output document.

This transformation can be described using the following SDTT T2. Only the rules are
shown.

S ! < List > [PO], < PairList > [PO]
P ! M1M2P, < Pair > [M1M2]P
P ! �, �
O ! M, < Pair > [M]
O ! �, �
M ! < Member > [< Name >1< Address >2],

< Member > [< Name >1< Address >2]

We now describe notations for transferring content portions. The subscripts in the last
rule of SDTT T2 are such notations. Subscripts are added to terminal symbols in the rules to
indicate associations between a terminal symbol (an object) in the input document and that

DOCUMENT TRANSFORMATION BASED ON SYNTAX-DIRECTED TREE TRANSLATION 23

C4

<List>[<Member>[<Name><Address>]<Member>[<Name><Address>]
<Member>[<Name><Address>]]

<PairList>[<Pair>[<Member>[<Name><Address>]<Member>[<Name><Address>]]
<Pair>[<Member>[<Name><Address>]]]

<Member><Member><Member>

<List>

(a):

C1 C2 C3 C5 C6

<Address><Address>

<Name><Name>

<Address>

<Name>

(b):

(d):

(c):

<Member><Member><Member>

<Pair> <Pair>

<PairList>

C1 C2 C3 C4 C5 C6

<Address><Address>

<Name><Name>

<Address>

<Name>

Figure 6. An example of document transformation (Example 1)

in the output document; the associations are called terminal-associations. These subscripts
indicate that the content portion of an object should be transferred to the content portion
of another object which has the same subscript. Such subscripts can be omitted if there are
no repeated terminal symbols in the output part of a rule and each terminal symbol appears
only once in the input part.

Then, we explain the execution of our transformation description using this example.
First, from the input document, the corresponding string expression (c) in Figure 6 is
derived. The string is parsed by a CFG parser with the input grammar of the SDTT, and the
parsing tree (e) in Figure 7 is derived. Note that this parsing can be performed at worst in
O(n3) time in terms of the length of the input string [12]. Next, using the input parse tree
and the rules of the SDTT, the output parse tree (f) in Figure 7 is obtained. The terminal-
associations are shown by dotted lines in Figure 7. From the output string (d) in Figure
6 obtained from the output parse tree, the output tree structure is constructed. Finally, the
content portions in the input document are extracted, to form the output document (b) in
Figure 6. If this parsing fails, the execution stops and it is judged that the input document
does not belong to the input document class.

Example 2

This example shows that we can apply SDTTs to recursive transformation. See Figure 8.
Each section in the input document (i) has a title and has subsections or a body. Similarly,
each subsection can also have subsections. The input document class should be defined
recursively, as the ODA expression (iii).

Next, we describe the transformations which pick up titles from the input document.
We consider two cases: (a) to pick up titles as a flat sequence, and (b) to pick up titles
with the tree structure of the input document. For each case, we show the output document
(ii) (a) or (b) in Figure 8, and the SDTT, shown in Figure 8 (iv) (a) or (b), describing the
transformation.

24 K. CHIBA AND M. KYOJIMA

(e):

 [<Address>

<Member> <Name>]

 M M P

 [<Address>

<Member> <Name>]

 M
 ε

<List> [P O]

 M P]

 [<Address>

<Member> <Name>]

<Pair> [M]

 S

<PairList> [P O]

 S

(f):

 [<Address>

<Member> <Name>]

<Pair> [M

 ε

Figure 7. The input and the output parsing trees (for Example 1)

CHO

REP

(i):

<body><title>

<section>

<body><title>

<section>

<body><title>

<section><title>

<section>

<body><title>

<section><title>

<root>

<root>

<title> <title> <title> <title> <title>

<section><section>

<title>

<section><title>

<section>

<title>

<section><title>

<root>

<title> <title>

(b):

(ii) (a):

SEQ

bodysection

root

title

S→<root>[T], <root>[T]
T→<title>Z, <title>Z
T→<title><body>, <title>
Z→<section>[T]Z, TZ
Z→<section>[T], T

S→<root>[T], <root>[T]
T→<title>Z, <title>Z
T→<title><body>, <title>
Z→<section>[T]Z, <section>[T]Z
Z→<section>[T], <section>[T]

(iii):

(a) (b)(iv):

<title>

Figure 8. An example of document transformation (Example 2)

DOCUMENT TRANSFORMATION BASED ON SYNTAX-DIRECTED TREE TRANSLATION 25

3 DISCUSSION

In this section we discuss some features of our transformation description. First, we confirm
that our description meets the following two requirements mentioned in Section 1:

� the output class must be explicitly representable;
� inconsistency must be avoidable.

Our description satisfies the first requirement since the output grammar of the SDTT
indicates the output document class explicitly. It also satisfies the second requirement
because SDTTs are so well defined that we can syntactically check whether or not a
description is an SDTT. Furthermore, an SDTT always outputs a document belonging to
the output class as Theorem 2 states.

Here, we consider T-CFG’s capability to represent document classes. T-CFGs can
represent choice structures and recursive structures, none of which the NST data model
can represent. Thus, T-CFGs can represent generic structures specified by any complete
generator set of ODA. Similarly, T-CFGs can represent generic structures specified by any
content models excluding ‘exceptions’1 in DTDs of SGML, except structures introduced
by references. These characteristics are due to the fact that T-CFGs are based on CFGs.
Note that various existing techniques for CFGs can also be applied to T-CFGs.

Let us now look at other features of our transformation description. SDTT descriptions
are formal. Additionally, they are concise, especially compared with those of DSSSL. A
description of DSSSL is a set of associations; an example of an association is as follows:

Document=Body=Chapter=Para
! TDocument=TBody=TChapter=ContPort(new)

Concerning execution, we introduced an execution mechanism for SDTT descriptions,
in contrast to the two constraint-based approaches, i.e., DSSSL and the approach by Brown,
et al. In general, it is difficult to find answers that satisfy the constraints. In comparison,
the execution mechanism for SDTTs would be simpler.

Another characteristic of our document transformation is that a document structure
is different from a parse tree, unlike other grammar-based approaches such as [5]. For
example, the tree structure of document (a) in Figure 6 is quite different from parse tree
(e) in Figure 7 for the document. This characteristic makes our description more capable,
especially to describe transformations of repeated objects such as reversing their order,
dividing a sequence, and selecting the n-th object.

We have mentioned that SDTTs can transform multiple documents belonging to one
document class. We can also describe transformation of multiple documents belonging to
multiple document classes using SDTTs with little enhancement. For example, suppose
that some different document classes are represented by T-CFGs G1, � � � ,Gn whose starting
symbols are S1, � � � ,Sn, respectively. Then we can get one unified T-CFG G0 whose pro-
duction rules consist of S ! S1, � � � ,Sn and productions of G1, ... , and Gn, where some
nonterminals in productions of G1, � � � ,Gn are modified, so that each nonterminal appears
in only one of G1, � � � ,Gn.

1 T-CFGs can also represent AGG(‘&0) structures, by choice constructor (or group) of sequence constructor (or
group) permutations. For example, (a&b) is represented by (a,b)=(b,a).

26 K. CHIBA AND M. KYOJIMA

Moreover, an SDTT is symmetric with respect to input and output. We can obtain the
inverted SDTT by changing each rule A ! �,
 into A !
,� . This inverted SDTT is the
inverse transformation. Thus, we can use SDTTs to describe mutual conversion between
two forms, for example, the forms in Example 1. In general, SDTTs used in two directions
should be one-to-one transformations. The transformations in Example 2 are not one-to-one
transformations.

Although we have regarded SDTTs as transformations for documents having tree struc-
tures, we can also apply them to flat documents, i.e., documents consisting of a flat sequence
of objects. For example, even if a document r[ax[bcbc]ax[bc]ax[bcbcbc]] is replaced by a
flat document with the same contents r[abcbcabcabcbcbc], SDTTs transforming the docu-
ment change only slightly; the change is as slight as the difference between (a) and (b) in
Figure 8 (iv). In other words, the SDTT-based approach does not extensively depend on
hierarchical structures, as might be important from the point of view that the tree structure
in a structured document can be considered to be additional. We can also use SDTTs to
structure a flat document.

Next, we discuss SDTT’s capability to describe. As the above examples and the pre-
ceding discussion show, SDTTs can describe various transformations, some of which other
approaches cannot describe. However, we can list some transformations that SDTTs cannot
describe:

� duplication of substructures,
� transformation of or into tree structures whose string representation is not in a

context-free language, for example anbncn(fabc,aabbcc, � � �g),
� sorting, grouping, or joining, in the sense of [6], and so on.

Since we have concentrated on transformation independent of contents, the following
are also undescribable:

� contents-dependent transformation of structures,
� transformation between contents and structures, and
� transformation of contents.

We plan to extend our document transformation to currently undescribable transforma-
tions.

If one input document class description is already given, it is not very difficult to
describe an SDTT from the input class into a new class. However, if input and output
document class descriptions are given, describing an SDTT between the two classes may
cause difficulty because the two classes must be combined into one SDTT by hand.

4 CONCLUSIONS AND FUTURE WORK

We have proposed a transformation description for class-level transformation of document
logical structures. The given transformation description is formal, concise and consistent
with our requirements: the output document class must be explicitly representable, and
inconsistency must be avoidable. An execution mechanism for SDTT description has been
introduced that would be simpler than that of other constraint-based approaches such as
DSSSL. SDTTs can describe various transformations:

� transformation of or into multiple documents,
� various transformation of repeated objects,

DOCUMENT TRANSFORMATION BASED ON SYNTAX-DIRECTED TREE TRANSLATION 27

� recursive transformation,
� transformation including choices of substructures, and
� transformation from a flat document into a document with a hierarchical structure,

and so on.

Therefore, we think that this approach based on CFGs or SDTs is useful to describe
class-level document transformation.

We now describe some directions to extend our approach to currently undescribable
transformations. Attribute grammar [13] is probably suitable for describing transformations
between contents and structures. We think that an attribute value can represent information
of contents. For transformations which attribute grammar approaches cannot cover, vari-
ations of CFGs, currently existing or newly modified, may be needed. We may also need
to describe manipulation of contents, not content portion as a whole. For future work, it is
also important to characterize the transformations describable by SDTTs.

ACKNOWLEDGEMENTS

We would like to thank Yasunori Koda for his valuable comments on earlier versions of
this paper.

REFERENCES

1. ISO. Information processing - text and office systems - office document architecture (ODA) and
interchange format - ISO/IS 8613, 1988.

2. ISO. Information processing systems – text and office systems – standard generalized markup
language (SGML). ISO 8879, 1986.

3. M. Kyojima, N. Kamibayashi, and N. V. Gopal, ‘Document programming’, IPSJ SIG Notes(In
Japanese), (DPHI-23), (1989).

4. ISO. Information technology - text and office systems - document style semantics and specifi-
cation language(DSSSL) ISO/IEC DIS 10179, 1991.

5. A. L. Brown Jr., T. Wakayama, and H. A. Blair, ‘A reconstruction of context-dependent document
processing in SGML’, in Electronic Publishing ’92, pp. 1–25, Cambridge University Press,
(1992).

6. E. Akpotsui and V. Quint, ‘Type transformation in structured editing systems’, in Electronic
Publishing ’92, pp. 27–41, Cambridge University Press, (1992).

7. Fred Cole and Heather Brown, ‘Editing structured documents - problems and solutions’, Elec-
tronic Publishing Origination, Dissemination, and Design, 5(4), 209–216, (December 1992).

8. R. H. Guting, R. Zicari, and D. M. Choy, ‘An algebra for structured office documents’, ACM
Transactions on Office Information Systems, 7(4), 123–157, (1989).

9. R. Furuta and P. D. Stotts, ‘Specifying structured document transformations’, in Electronic
Publishing ’88, pp. 109–120, Cambridge University Press, (1988).

10. P. M. Lewis II and R. E. Stearns, ‘Syntax-directed transduction’, Journal of the ACM, 15(3),
465–488, (1968).

11. R. C. Gonzalez and M. G. Thomason, ‘Syntax-directed translations’, in syntactic pattern recog-
nition’, in Syntactic Pattern Recognition, pp. 57–60, Addison-Wesley Publishing Company,
(1978).

12. D. H. Younger, ‘Recognition and parsing of context-free languages in time n3’, Information and
Control, 10(2), 189–208, (1967).

13. D. E. Knuth, ‘Semantics of context-free languages’, Mathematical Systems Theory, 2(2), 127–
145, (1968).

28 K. CHIBA AND M. KYOJIMA

APPENDIX

We first define that)G is the derivation relation for a grammar G, and that)G� is the
reflexive-transitive closure of)G.

Proof of Theorem 1.

Before proving the theorem, we prove that S)G� x implies x 2 T�(Σ,N [Σ), where
S)G� x means that there exists a derivation S = x0)G x1)G � � �)G xn = x(n � 0).
This is proved by induction on n.

Suppose first that n = 0: no derivations is made. Since S 2 N, it holds that S 2
T�(Σ,N [Σ).

Next suppose that S)G� xn�1 implies xn�1 2 T�(Σ,N [Σ) for derivations of length
n� 1. Consider derivations of length n. Suppose that S)G� xn and let y be xn�1. Then, by
the induction hypothesis, y is a sequence of trees y1, � � � ,yj 2 T(Σ,N [Σ). The production
A !
 which is applied to y rewrites a nonterminal A in a tree, namely yk(1 � k � j), as

. We consider two cases:

1. If A = yk, then xn = y1 � � �yk�1
yk+1 � � � yj. Since
 2 T�(Σ,N [Σ), it holds that
xn 2 T�(Σ,N [Σ).

2. Otherwise, A appears in yk. Since a nonterminal in yk appears only as a leaf node
of the tree, by rewriting a nonterminal in the tree yk 2 T(Σ,N [Σ) as a sequence
of trees
 2 T�(Σ,N [Σ), the resultant tree is still in T(Σ,N [Σ). It thus holds that
xn 2 T�(Σ,N [Σ), proving our assertion.

We have proved that S)G� x implies x 2 T�(Σ,N [Σ). By the definition of L(G), for
any x 2 L(G), S)G� x and x 2 (Σ [f‘]0,‘]0g)�. Therefore we have that for any x 2 L(G),
x 2 T�(Σ,N [Σ) and x 2 (Σ[f‘]0,‘]0g)�. Hence L(G) � T�(Σ,N [Σ)\ (Σ[f‘]0,‘]0g)� =
T�(Σ,Σ).

Proof of Theorem 2.

Before proving the theorem, we prove that for any string x such that S)G�

i
x, that is,

S = x0)Gi x1)Gi � � �)Gi xn = x(n � 0), there exists a string y such that S)G�

o
y,

(x,y) 2 �(T), and the nonterminals in y is a permutation of those in x. This is proved by
induction on n.

Suppose first that n = 0. This means that x = S. Let y be S 2 N. It clearly holds that
S)G�

o
S, (S,S) 2 �(T), and the nonterminal in S is a permutation of that in S.

Next suppose that for any string xn�1 such that S)G�

i
xn�1 where the length of the

derivation is n � 1, there exists a string yn�1 such that S)G�

o
yn�1, (xn�1,yn�1) 2 �(T),

and the nonterminals in xn�1 is a permutation of those in yn�1. We consider deriva-
tions of length n. Suppose that xn�1)Gi xn. Hence we can write xn�1 and xn as fol-
lows: xn�1 = �0A�00, xn = �0��00, and A ! � ,
 2 R. By the induction hypothe-
sis, yn�1 contains an A associated with that in xn�1. Using this A, we can write yn�1

as yn�1 =
0A
00. Let yn be
0

00. Hence, yn�1)Go yn, showing that S)G�

o
yn.

Since (xn�1,yn�1) 2 �(T), we also have (xn ,yn) 2 �(T) by the definition of transla-
tion forms. Since nonterminals in yn�1 is a permutation of those in xn�1 and those in
 is a
permutation of those in � , nonterminals in yn is a permutation of those in xn. Therefore

DOCUMENT TRANSFORMATION BASED ON SYNTAX-DIRECTED TREE TRANSLATION 29

we have that for any string xn such that S)G�

i
xn where the length of the derivation is n,

there exists a string yn such that S)G�

o
yn, (xn,yn) 2 �(T), and the nonterminals in yn is a

permutation of those in xn.
We have proved that for any string x such that S)G�

i
x, there exists a string y such

that S)G�

o
y, (x,y) 2 �(T), and the nonterminals in y is a permutation of those in x. Since

x 2 L(Gi), x has no nonterminal. Hence neither does y, concluding that y 2 L(Go). Thus,
we also have that (x,y) 2 � (T) because (x,y) 2 �(T).

	SUMMARY
	1 INTRODUCTION
	2 DOCUMENT TRANSFORMATION USING SDTT
	2.1 T-CFG and SDTT
	2.2 Document transformation using SDTT
	Example 1
	Example 2

	3 DISCUSSION
	4 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX
	Proof of Theorem 1.
	Proof of Theorem 2.

