ELECTRONIC PUBLISHING, VOL. 7(3), 179-193 (DECEMBER 1994)

Using the MHEG standard in the hyper media
system Multicard

ANTOINE RIZK AND FRANCIS MALEZIEUX ALAIN LEGER
Euroclid, Promopole CCETT

12 Avenue des Prés 4 Rue du Clos Courtel
78180 Montigny-le-Bretonneux 35512 Cesson Sevigné
France France
SUMMARY

The MHEG standard will define a coded representation of multimedia and hyper mediainfor-
mation objects so asto facilitate exchange of hyper media applications over variousplatforms.
This standard has been developed entirely independently of existing architectures such as
Dexter and ‘Dexter like' systemssuch asMulticard, KM S[1] etc.

In order for the MHEG standard to succeed, it is important that existing hypermedia
systems and applications can be rendered MHEG compatible, rather than these applications
having to berewritten using new MHEG engines.

Thispaper providesa casestudy of how the MHEG standard could be adopted in one such
hyper media system, namely Multicard. Theaim isto highlight the similarities and differences
of the MHEG standard and Multicard and to providean idea of thework required in order for
such a system toread MHEG compatible streams. The paper startswith a brief description of
the Multicard system, the Dexter model and the MHEG standard.

KEY WORDS MHEG Multicard Hypermedia

1 INTRODUCTION

Theinternational standard being devel oped by the MultimediaHypermedia Experts Group
of 1S0, known as the MHEG standard [2-5], will define the representation and encoding
of multimediaand hypermedia objects to be interchanged within or across applications or
services, by any means of interchange including storage devices, telecommunications or
broadcast networks.

These objects, encoded using ASN.1 or SGML, will provide acommon base for other
CCITT recommendations and | SO standards, and for the many multimediaand hypermedia
applicationswhich will be devel oped in the futurein awiderange of domains. The MHEG
specification addresses the needs of minimal resource terminals and makes use of other
standards for the component text, image, graphic and other objects.

Multicard [6] is a complete hypermedia platform whose architecture is akin to that
of Dexter [7]. It comprises a set of hypermedia basic classes (nodes, links, groups...)
with their associated APl and persistent object storage, a scripting language, a multimedia
compositioneditor and acommunication protocol (M2000) that all owsany compliant editor
to be used with the contents of Multicard nodes.

The aim of thispaper is:

e to determine the internal representation of the MHEG classes in terms of Multicard
hypermediabasic classes;

CCC 0894-3982/94/030179-15 Received 15 May 1993
01994 by John Wiley & Sons, Ltd. Revised 15 October 1993

© 1998 by University of Nottingham.

180 A. RIZK, F. MALEZIEUX AND A. LEGER

o to determine how the MHEG attributes map into Multicard;
o to define the conversion structures from MHEG objects to Multicard ones and vice
versa,

The MHEG standard defines object classes that correspond to multimedia/hypermedia
information units, with the unique goal of favouring their exchange. It does not specify
how MHEG engines, interpreters or any kind of MHEG application should be designed
around these classes. Neither does it specify the internal representation of the classes. It is,
therefore, only with respect to exchanging instance objects of MHEG classes that we will
speak hereafter of conformance to MHEG.

The paper is structured as follows: Section 2 provides a brief overview of the MHEG
standard. Section 3 describes the Dexter model and Section 4 the Multicard architecture.
Section 5 is the actual comparison of Multicard and MHEG, and Section 6 is an example
transformation of a Multicard hypergraph into a MHEG structure.

2 THE MHEG STANDARD

The initial objectives of the MHEG standard—' Defining and providing abstractions for
multimedia and hypermedia applications —have been set forth in the following require-
ments:

e Provide abstractions suited to rea-time presentation: this real-time requirement is
fulfilled by multimedia synchronization functionalities.

e Provide abstractions suited to red-time interchange: this means interchange with
minimal buffering using normal speed data communication.

e Provide abstractions corresponding to a final form representation: the objects are
represented and coded with the aim of a direct presentation, without requiring an
additional processing of their structure.

2.1 MHEG: astandard which defines objects

The object-oriented approach was chosen for the design of the standard because it fits
the requirements of active, autonomous and reusabl e objects. The standard defines classes
of objects, the design of which relies on the analysis of their common behaviour and
the commonalities of properties between object categories. It provides a description of
each class, a precise definition of the representation of the MH objects, which are in-
stances of the classes, and a coded representation for the objects (base: ASN. 1, dternative:
SGML).

The MHEG standard makes a distinction between an interchanged object—which con-
tainsthe structural information, thisisthe origina reusable object—and a‘viewer’ of this
object, which corresponds to a specific ‘view’ of the object at the presentation time: the
viewer presentation does not affect the original object.

The object classes and their actual instances are represented through an inheritancetree
(seeFigure 1).

Directly derived from the inheritance tree, the ‘tool-box’ for the design of multimedia
and hypermedia applicationsis the following:

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 181

MH-OBJECT>
BEHAVIOUR>

ACTION

LINK

SCRIPT

COMPONENT>

CONTENT

INTERACTION>

SELECTION

| MODIFICATION

COMPOSITE

DESCRIPTOR

MACRO>
| MACRO DEF
MACRO USE

‘>" means that this object has the following sub-classes.
Only the instances of the classes in bold
type may be interchanged.

Figure 1. MHEG inheritancetree

1. Content class
It provides for the encapsulation of coded content data (i.e. an image, a piece of
sound, agraphic, etc.) associated with public or private decoding specifications.
It is the basic element on which spatio-tempora relations (link class), hypertext-
like relations (link class), and a set of actions are applied (action class), e.g. Run
Objectld 1022, Destroy ObjectID 14, etc.
2. Linkclass
It provides a generic linking mechanism for both multimediaand hypermedia appli-
cations.
Thelink classprovidesthefollowinginformationfor theinterchange of conditional
actionsto be applied to instances of any MHEG class and/or viewers:
e aset of one-way links;
e alist of triggering conditions;
e alist of actionsto be applied to the destination, if the previous conditions are
satisfied.
Thisisillustrated by Figure 2.
3. Action class
The standard providesthree types of actions than can be applied on MHEG objects:

e Actions that may affect the status of objects: this sort of action, such as
‘prepare’, ‘run’, ‘destroy’, will affect the state of the object to which they are
applied, for example an object with the state ‘not ready’ will become ready
after the completion of a successful ‘prepare action. The state transitions can
be used as a triggering condition to fire the link.

e Actions for the projection of objects: to define precisely the way the objects
haveto be presented. For example, ‘ set volume', ‘ set visiblesize', * set position
X,y', are some of them.

182 A. RIZK, F. MALEZIEUX AND A. LEGER

source destination
link
S D
Other Attachment
conditions point
Trigger Attachment applied to the
condition destination object, e.qg.
— attachment Point (x,y)
Attachment Point of — relative position (x1,y1)
the source object of the attachment point to the
source attachment point
— run 3 times

Figure 2. lllustration of link and actions

e Actions that may affect the interaction on objects: these actions are used to
modify specific interaction parameters of the interaction class. For example
the number of menu items, or those that are selectable at agiventime, or if the
content data of a content object is modifiable or not, etc.

4. Theinteraction class
Thisclass providesfor the support of the interaction with the user. It providesall the
toolsat the MHEG level to make the document ‘reactive’ to the user.

Nevertheless, MHEG does not define the ‘look and fedl’ of the multimediainter-
active presentations, neither does it propose to change or add concepts to those that
existintypical graphical user interfaces. Asthisstandard is generic and independent
of platform and implementation, it describes interaction at alogical level. It isfor
the using application to apply these mechanisms using its specific ‘look and fedl’.

5. The composite class
Thisclass mainly aggregates the preceding tools. It isacontainer used to interchange
aset of inter-related objects (spatio-temporad links, ‘ hypermedia’ links, and actions).

3 THE DEXTER MODEL

The Dexter model [8] is a reference model that was designed to serve as a basis for
interoperability and informati on exchange amongst applications. Although these objectives
were not achieved, the genera philosophy of Dexter was inspired by, and now reflects,
most classical hypertext systems.

The model (see Figure3) consists of three layers and two interfaces:

e The run-timelayer describes the interaction mechanisms of the hypermedia system
with the user.

e Thestoragelayer describesthenodes, and thelinks, aswell astheassociated rel ations
for constructing a hypergraph. In this layer, nodes are treated separately from their
contents.

e The within-component layer describes the node structure and contents.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 183

Runtime layer

Presentation Specifications

Storage layer DEXTER model

Anchoring

Within Component Layer

Figure 3. Layersof the DEXTER model

The DEXTER model focuses on the storage layer but underlines the importance of the
interfaces with the other two layers.

The first of these interfaces, anchoring, provides the mechanisms for anchoring the
linksin aportion of the contents. It is therefore essential for addressing link end-points.

The second interface, presentation specifications, provides the principal mechanisms
for specifying how nodes, links and contents could be presented for interaction with the
user.

The importance of DEXTER isthat it provides a decomposition of the essential com-
ponents of a hypertext system. Existing systems do not i mplement the exact specifications
provided by DEXTER but most of them relate to the model or to subcomponents of it.

4 THE MULTICARD ARCHITECTURE

The Multicard hypermedia system architecture, illustrated in Figure 4, is represented as a
set of components and interfaces. The architecture is based on the general model of front-
end and back-end subsystems. It has the following distinct layers: a set of hypermedia
basic classes that constitute the toolkit; hypermedia distributed persistent object storage;
an authoring/navigation tool; a communication protocol; and a series of compliant editors.

4.1 Hypermedia objects

The heart of the hypermedia toolkit is the representation of hypermedia objects (nodes,
groups, anchors and links, hypergraph, etc.) together with the associated interfaces to
applications, the scripting language and the editabl e objects. These hypermediaobjects are
implemented in C++. They can be accessed either from C++ or through a C binding. We
recount here, briefly, the specific features of these objects:

Nodes: In Multicard, there is a difference between node structure, which manages links
scripts, and the content of the node. Multicard manages the node structure, whereas
the contents of the node may be handled by different editors. The M 2000 protocol
between Multicard and the editors alows the opening and closing of documents,
retrieval of content portions, etc.

Anchors. Ananchor represents asensitive portion of the content of anode. The associated
anchor isthe hypermedia object that carries the links, scripts, and other hypermedia
properties. The sensitive portionis editor-dependent.

184 A. RIZK, F. MALEZIEUX AND A. LEGER

Authored
E é Applications
§ 8 :
M2000 Compliant §> g Hypermedia
Editors g < Authoring
Tool

>

P

Script
Interpreter

Hypermedia Objects

M 2000

Persistent Storage Platform

Figure 4. Multicard architecture

Groups. Groupsrepresent logical collectionsof nodes and other groups. Group hierarchy
can be of unlimited depth.

Links: Contrary to the usua usage of links in hypertext systems, linksin Multicard are
viewed as event/message communication channels between two end points. Various
messages can be sent through a link including, of course, the activation message
which will typicaly open and map the destination object. Link end-points can be
anchors, nodes or groups.

The Application Programming Interface (API) provides facilitiesto specific hyperme-
dia editors, tools, and genera applications for the creation, manipulation and deletion of
hypermediaobjects. The M2000 interface supportsinteraction between hypermediaobjects
and the relevant content-based editors.

4.2 Scriptinterpreter

Nodes, groups and anchors may have scriptsattached to them. Inthis sense scriptsare used
as away of extending the behaviour of instances of these objects. Scripts are event-driven
and can communi cate throughout the hypermediaappli cation using event/message passing.
The scripting language contains over 150 instructionsthat bring the API closer to the end-
user, and include specia instructionsfor manipulating editor contents, synchronizing with
the editor, definition of internal/external functions, etc.

4.3 Hypermedia persistent storage

Thisprovidesdistributed persistent storagefor hypermediabasi ¢ objectsand consistsof two
parts. The front-end supports access by the hypermedia basic class objects and guarantees
consistent behaviour independently of the actua storage management implemented by the
back-end. This approach enabl esthe storage mechani sm to beimplemented using rel ationa
or object-oriented databases [9,10] without affecting the toolkit interface.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 185

mMC
Editor

o
o . .
& Hypermedia objects Parser / Formatter
= MHEG
Storage interface
Net
MC Server MHEG Server

Figure5. MHEG application using the Multicard API

5 MULTICARD AND THE BASIC MHEG CONCEPTS

In this section we look at the principal concepts of the MHEG standard and try to position
Multicard with respect to these concepts. We will show that, asfar as essential concepts are
concerned, for the exchange of multimedia and hypermedia information, these concepts
are present in Multicard. As we have already mentioned, it isonly in view of exchanging
instance objects of MHEG classes that we speak here of conformance to MHEG. One
possible scenario for the integration of MHEG in Multicard is shown in Figure 5, whereby
an MHEG stream is parsed in input (or output by the formatter), and trandated into
Multicard hypermediabasic classes using the toolkit API.

5.1 Synchronization

MHEG recognizes four kinds of synchronization:

e At the script level, MHEG underlines the importance of scripting standards such as
the AVIs[11,12]. However, MHEG does not define such synchronization but rather
provides pointersin its classes to scripting standards.

e Conditional synchronization, in order to relate actions to events produced by other
actions, by the system or by the user.

e Synchronization in space/time, that alows objects to be composed within a space
with coordinated temporal behaviour.

e System synchronization, which is often intrinsic to the manipulated objects, as for
example is the case for MPEG objects that possess their own audio/video synchro-
nization. Thisform of synchronization isnot addressed in MHEG.

In Multicard, as in many other hypermedia systems, the scripting language is funda-
mental to the definition of instance behaviour. The scripting language is event-driven. As
such, scriptsare event handlersthat could only be activated on occurrence of certain events,
triggered by the system, the user, or by any other script activation.

This kind of scripting covers the first two types of synchronization above, namely
the script level and the conditional synchronization. Space/time synchronization is also

186 A. RIZK, F. MALEZIEUX AND A. LEGER

possible, but at a ‘loose’, non-real-time, level. Real-time space/time synchronization as
wdll as system synchronization are considered in Multicard as pertaining to the editor that
isresponsiblefor content manipulation.

As a consequence, synchronization relations, expressed by MHEG in links, composite
objects, interaction and action objects, are transated systematically into Multicard scripts.

52 Links
Two types of link exist in MHEG :

e The external reference links, provided as | SO 9070 identifiers.
e The specific inter-object links, provided for synchronization as well as for direct
access to objects.

Thefirst typeof link israther an ‘in stream’ identifier to an external, remote object. The
interpretation of thisis application-dependent, and might or might not mean a hypertext
goto link.

In Multicard, linksare objectsin themsel ves that correspond more closely to the second
type of link. Links will carry, through their source and destination anchors, scripts that
correspond to the actions defined in the behaviour of the MHEG link.

Aninstance of theMHEG link class consists, on theonehand, of an activation condition
and supplementary link invocation conditionsand, on the other hand, of a series of actions
to be carried out on one or more referenced objects. This series of actionsisdefined in an
object instance of the Action class.

A Multicard link is a message channel that has as a default action the activation of
the link destination. It is therefore necessary to use a link+script combination in order to
trand ate aninstance of an MHEG link. For each such link instance, we proceed in Multicard
in three steps:

e create alink from the source object to every destination object;

e create, on the source of thelink, the trigger handler responsible for the activation of
thelinks;

e create the action handler for each destination object.

5.3 Content/structure separation

MHEG, asin Multicard and Dexter, defines a strict separation of the container objects that
MHEG recognizes and the application that recognizes the content format. Being mainly
a non-processable format, MHEG does not define the interaction interface between the
content editor and the object management. Moreover, anchorsin MHEG are not defined as
subsets of the content format but rather as presentation objects (buttons etc.) that coincide
with specific contents.

54 Composition

Compositesareintroduced in MHEG in order to simplify the management and presentation
of sets of objects. Composite objectsin MHEG contain the component objects themselves

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 187

or references to them, as well as the relations that unite these objects. Composite objects
arerecursive.

Composite objectsin MHEG dways resolve finally to basic content objects.

In Multicard, asin Dexter, composites are sets of nodes/compositesat the abstract level.
This composition is used for managing large numbers of nodes rather than for multimedia
compositionat presentation time. Multimediacompositionis doneexclusively by theeditor
that manages the contents of the node. The content objects that the editor manipulates and
composes have no representation in the hypermediabasic classes.

Composition in MHEG covers these two fundamentally separate concepts in one, by
specifying the semantics of the composite in the associated actions. In order to trandate
an MHEG composite object to Multicard, an interpretation of the actions is required.
Depending on thisinterpretation, the composite is translated to a Multicard group (Dexter
composite of nodes) or to a node with MCEditor (Multicard’s multimedia composition
editor).

5.4.1 Thecontent class

An instance of the content class is assimilated to a node instancein Multicard. An instance
of the content class comprises principally:

e An attribute that describes the coding of the object (hook). Thisisinterpreted as the
creation of a corresponding editable object, and when the corresponding editor does
not exist, format conversion is attempted.

e Either data encapsulation or an attribute identification of contents. In the case of
data encapsulation, an editable object is created, whereas, in the case of externa
identification, Multicard has to rely on external services for the localization and
migration of the remote object.

5.4.2 Thesdection class

This class defines the usage of selection e ements such as menus, buttons and diders, as
wdll as dl GUI predefined widgets, for user interaction. A particular instance of thisclass
could also specify a particular selection.

In the first case, Multicard does not offer an equivalent mechanism, it smply relieson
the X-Window/Motif predefined widgets. In the second case, particular selection positions
correspond to anchors in Multicard that are attached to sensitive zones in the contents of
editable objects.

The response of selected elements is defined using the Multicard scripting language.

5.4.3 The modification class

Aninstance of thisclass simply specifies whether the content object it referstoismodifiable
or not. In Multicard thisis ssimply implemented as an additional attribute to the editable
object classes as well as hypermedia basic classes. It can be set/reset dynamicaly by
script.

188 A. RIZK, F. MALEZIEUX AND A. LEGER

MHEG Composite Multicard Node
Object Object EO EO
Object ~ Object I

EQ E.0

O

MHEG Composite

Multicard Group

Object Composite Group/Node

Node

) E.O E.O
P — > 100

E.O. = Editable Object

Figure 6. Composition in Multicard
5.4.4 The composite class

An instance of the composite class defines a set of links, the associated actions, and a set
of objects (or references to objects) on which these actions apply. A start up link specifies
the actions to be executed upon activation of the composite object.

In addition aviewer link is specified. Thisisused at activation of the composite object
and defines the projection of the object in space. In Multicard, thisviewer isdefined as a set
of parameters that are subsequently interpreted by a generic handler that sets the editable
object properties accordingly.

The representation of MHEG compositionin Multicard draws upon the group and node
classes. It is necessary to use both of these hypermedia classes as the MHEG compositeis
at the same time a composition of abstract node objectsin the Dexter sense and a physical
composition of content objectsin the multimediasense.

Multimediacompositionin Multicard can only be done using the M CEditor. Thiseditor
can only compose editabl e objectswithinthe contents of asinglenode. However, thenodeis
not acomposition object initsown right sinceit cannot contain other nodes. Moreover, the
composition object in Multicard can only compose other nodes or groups but not editable
objects.

Therefore, composition in Multicard is done by using both nodes and groups. During
trandation, an MHEG composite is trandated into a Multicard group if it contains other
composites, and to a Multicard nodeif it containsonly content objects. Figure 6 illustrates
how MHEG compositionis donein Multicard.

55 MHEG and Multicard classes

Figure 7 depicts the basic class hierarchy, both for MHEG and Multicard.
We note the following:

1. The notion of interaction objects does not exist in Multicard. An interaction object
in Multicard is an ActiveObject that possesses its script. The mapping between the
ActiveObject and a real presentation is done by attaching an anchor object on an
editable object such as selector and modifier.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 189

MHEG class hierarchy Multicard class hierarchy
MH -object HyperObject
Component BehaV|our Descnptor Macro ActiveObject Link Trail

/ \\\ Link Actlon Scnpt/ Macro Use

Content Comp05|te Interaction Macro Definifon LinkableObject Hypergraph

Anchor Groupltem
Select|on Modification

Node Group

Abstract super-classes are in italic

Figure 7. MHEG and Multicard class hierarchies

2. The script class does not exist as such in Multicard. Rather, ascript is an attributeto
the class ActiveObject.

3. Thedescriptor class does not exist in Multicard. It has to beinterpreted using scripts.
The notion of presentation attributes that exist in MHEG is, however, available
clearly in Dexter through the run-timeinterface layer.

4. Composition could not be mapped on aone-to-onebasis. Depending on the associ ated
actions, composition is mapped using Groupltem, Group and Node.

The following table illustrates, one by one, the mapping of MHEG concepts onto
Multicard ones.

MHEG Multicard

MH_Object Class HyperObject

Descriptor Class To be interpreted

Script Class Attribute Script of ActiveObject
Content Class Node

Composite Class Node, Group and Groupltem classes

Link and Action Classes Link and scripts associated to objects
(source and destination)
Interaction Class Anchor, editable objects and GUI

6 EXAMPLE: CONVERSION OF A MULTICARD STRUCTURE

Consider a small Multicard document whose hypergraph is represented as follows.

There are two possibleways for trand ating this structureto MHEG.

The first solutionisillustrated in Figure 9. This solution uses an MHEG link object to
map the Multicard group (which is a purely logical composition). Each node in Multicard
istrandated to an MHEG composite object. Navigational linksthat are used in Multicard
are mapped into MHEG links.

The second way of proceeding uses an MHEG composite object to map the Multicard
group (Figure 10). Depending on their complexity, nodes appear here in a single MHEG
composite.

A. RIZK, F. MALEZIEUX AND A. LEGER

Text

Audio button ‘next’ image graphic
button ‘end’ \ /
anchor 1 anchor 2 button ‘end’ anchor 3

Group

T

Node 1 Node 2 Node 3

Figure 8. Hypergraph of a small Multicard document

Link object (group)

v

Composite Objefct (node:-:l)

text : :

audio :

button ‘end” : :

button ‘next (nogle 2)' —\

: Link Object (D)
Link Object (ID) V
Composite Object (node 2)
image :

anchor ‘back (node 1)

anchor ‘next (node 3)’ \
Y Link Object (ID)
Composite Object (node 3) (———/

graphic
anchor ‘back (node 1)’
button ‘end’

Figure 9. Description with MHEG composites

\

/

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD

191

Composite(group)

All-object representation

attributes

interchange number = xy
° Composite start-up link:
destination: viewer "node 1", action: prepare
destination: viewer "node 2", action: prepare
destination: viewer "node 3", action: prepare

° Viewer start-up link:

destination:
destination:

destination

destination

viewer 1, action
viewer 2, action

:viewer 3, action
destination:

viewer 4, action

:viewer 5, action
destination:
destination:

viewer 6, action
viewer 7, action

: present "node 1"
: present "node 2"
: present "node 3"

: present "anchor 1"
: present "anchor 2"
: present "anchor 3"
: present "button next"

. Links:

destination: viewer 8, action: present "button end”

S: node 1, "button next",

Trigger: "button next" selected,

S: node 2, component "image", anchor 1,
Trigger: anchor 1 selected,

S: node 2, component "image", anchor 2,
Trigger: anchor 2 selected,

S: node 3, component "graphic”, anchor 3,
Trigger: anchor 3 selected,

. Viewers:

viewer "node 1" = component 1
viewer "node 2" = component 2
viewer "node 3" = component 3
viewer "anchor 1" = component 4
viewer "anchor 2" = component 5
viewer "anchor 3" = component 6

viewer "button next" = component 7
viewer "buttonend" = component 8

o Components:

etc. ...

component 1 = ref. to composite "node 1"
component 2 = ref. to composite "node 2"
component 3 = ref. to composite "node 3"
component 4

description of "anchor 1" (included)

component 5

D: viewer "node 2"
Action; go to
D: viewer "node 1"
Action: goto
D: viewer "node 3"
Action: goto
D: viewer "node 3"
Action: goto

Figure 10. Description with one global MHEG composite

192 A. RIZK, F. MALEZIEUX AND A. LEGER

7 CONCLUSIONS

Thispaper provided acase study of how the MHEG standard could be adopted inan existing
hypermediasystem, namely Multicard. To our knowledgethiswork issofar thefirst attempt
of itskind. Although the implementation of the full MHEG-Multicard converter isnot yet
compl ete, the concepts presented have been subject to specific validation tests.

From our evaluation of the MHEG standard, Multicard, and more generally Dexter, we
observethat athough MHEG has been thought out entirely independently of Dexter, asfar
as the fundamental concepts are concerned, the two models are extremely similar. We find
the presence of separation of contents from hypermedia structure, composition, links and
presentation specifications.

On the more detailed level, MHEG differs from Dexter on the following points. The
anchoring layer of Dexter is extremey weak in MHEG, due basically to MHEG being
an unprocessable form. The composition in MHEG can ded both with multimedia com-
position including space/time synchronization of objects, as well as the Dexter abstract
composition of nodes. As far as implementation of MHEG by an existing hypermedia
system, it is essential that the system possesses a powerful scripting language for the in-
terpretation of the many dynamic attributes, as well as for the interpretation of the MHEG
actions.

ACKNOWLEDGEMENTS

The authors wish to thank the 1SO-JTC1 SC29/WG12 (MHEG) members and CCITT
SGVIII (terminals and protocols) for their invauable work that made the present effort
possible. The constructive and sometimes provocative comments of Francoise Colditis
(MHEG convenor), Florence Bertrand and Roger Price (MHEG standard editors) are also
gratefully acknowledged. Multicard is developed by Bull and Euroclid mostly under the
Esprit project Multiworks. It is commercialized by Euroclid under licence from Bull SA..
The authorswish to thank the European Commission aswell asthe Bull team, Louis Salter,
Francois Thorel and Maria Ahedo.

REFERENCES

1. Akscyn, McCrackenand Yoder, ‘ Kms: adistributed hypermediasystem for managing knowledge
in organizations’, Communications of the ACM, 31(7), (July 1988).

2. ‘Information technology—coded representation of multimedia and hypermedia information
objects (MHEG)', Technical report, ISO/IEC JTC1/SC29/WG12, CD 13522-1.

3. Francoise Colaitis and Francis Kretz, ‘Coded representation of multimedia and hypermedia
information objects: towards the MHEG standard’, Signal Processing: Image Communication,
4,113-128, (1992).

4. Francoise Colditis and FrancisKretz, Standardizing multimediaand hypermediaobjects’, IEEE
CommunicationsMagazine, (May 1992).

5. Frangoise Colaitis and Florence Bertrand, The MHEG standard: principles and examples of
applications, Anaheim, CA, USA.

6. A. Rizk and L. Sauter, ‘Multicard; an open hypermedia system’, in Proceedings of the ACM
Conference ECHT 92, Milan, (1992).

7. F G.Halasz and M. Schwartz, ‘ The dexter hypertext reference model’, in Proceedingsof NIST
Hypertext Sandardization Wor kshop, Gaithersburg, MD, 1617 January 1990.

8. Franck Halasz and Mayer Schwartz, ‘ The dexter hypertext reference model’, in NIST Hypertext
Sandardization Workshop, Gaithersburg, MD, January, 1990.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 193

10.

11
12.
13.

B. Amman and M. Scholl, ‘Gram: a graph data model and query language’, in Proceedings of
the ACM ConferenceECHT' 92, Milan, (1992).

V. Christophides and B. Amman, Providing persistence to the hypermedia system multicard by
using the oodbms 02. To appear.

‘F740 description générale d’'un service avi’, Technical report.

‘T 170 description générale des systémes communicants pour les avis', Technical report.

Esprit Project Multiworks. Specification of the distributed implementation of Multicard on the
distributed Multiworks platform.

	SUMMARY
	1 INTRODUCTION
	2 THE MHEG STANDARD
	2.1 MHEG: a standard which defines objects

	3 THE DEXTER MODEL
	4 THE MULTICARD ARCHITECTURE
	4.1 Hypermedia objects
	4.2 Script interpreter
	4.3 Hypermedia persistent storage

	5 MULTICARD AND THE BASIC MHEG CONCEPTS
	5.1 Synchronization
	5.2 Links
	5.3 Content/structure separation
	5.4 Composition
	5.4.1 The content class
	5.4.2 The selection class
	5.4.3 The modification class
	5.4.4 The composite class

	5.5 MHEG and Multicard classes

	6 EXAMPLE: CONVERSION OF A MULTICARD STRUCTURE
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

