
ELECTRONIC PUBLISHING, VOL. 7(3), 179–193 (DECEMBER 1994)

Using the MHEG standard in the hypermedia
system Multicard
ANTOINE RIZK AND FRANCIS MALEZIEUX ALAIN LEGER

Euroclid, Promopole CCETT
12 Avenue des Prés 4 Rue du Clos Courtel
78180 Montigny-le-Bretonneux 35512 Cesson Sévigné
France France

SUMMARY
The MHEG standard will define a coded representation of multimedia and hypermedia infor-
mation objects so as to facilitate exchange of hypermedia applications over various platforms.
This standard has been developed entirely independently of existing architectures such as
Dexter and ‘Dexter like’ systems such as Multicard, KMS[1] etc.

In order for the MHEG standard to succeed, it is important that existing hypermedia
systems and applications can be rendered MHEG compatible, rather than these applications
having to be rewritten using new MHEG engines.

This paper provides a case study of how the MHEG standard could be adopted in one such
hypermedia system, namely Multicard. The aim is to highlight the similarities and differences
of the MHEG standard and Multicard and to provide an idea of the work required in order for
such a system to read MHEG compatible streams. The paper starts with a brief description of
the Multicard system, the Dexter model and the MHEG standard.

KEY WORDS MHEG Multicard Hypermedia

1 INTRODUCTION

The international standard being developed by the Multimedia Hypermedia Experts Group
of ISO, known as the MHEG standard [2–5], will define the representation and encoding
of multimedia and hypermedia objects to be interchanged within or across applications or
services, by any means of interchange including storage devices, telecommunications or
broadcast networks.

These objects, encoded using ASN.1 or SGML, will provide a common base for other
CCITT recommendations and ISO standards, and for the many multimedia and hypermedia
applications which will be developed in the future in a wide range of domains. The MHEG
specification addresses the needs of minimal resource terminals and makes use of other
standards for the component text, image, graphic and other objects.

Multicard [6] is a complete hypermedia platform whose architecture is akin to that
of Dexter [7]. It comprises a set of hypermedia basic classes (nodes, links, groups...)
with their associated API and persistent object storage, a scripting language, a multimedia
compositioneditor and a communication protocol (M2000) that allows any compliant editor
to be used with the contents of Multicard nodes.

The aim of this paper is:

• to determine the internal representation of the MHEG classes in terms of Multicard
hypermedia basic classes;

CCC 0894–3982/94/030179–15 Received 15 May 1993
1994 by John Wiley & Sons, Ltd. Revised 15 October 1993

© 1998 by University of Nottingham.

180 A. RIZK, F. MALEZIEUX AND A. LEGER

• to determine how the MHEG attributes map into Multicard;
• to define the conversion structures from MHEG objects to Multicard ones and vice

versa.

The MHEG standard defines object classes that correspond to multimedia/hypermedia
information units, with the unique goal of favouring their exchange. It does not specify
how MHEG engines, interpreters or any kind of MHEG application should be designed
around these classes. Neither does it specify the internal representation of the classes. It is,
therefore, only with respect to exchanging instance objects of MHEG classes that we will
speak hereafter of conformance to MHEG.

The paper is structured as follows: Section 2 provides a brief overview of the MHEG
standard. Section 3 describes the Dexter model and Section 4 the Multicard architecture.
Section 5 is the actual comparison of Multicard and MHEG, and Section 6 is an example
transformation of a Multicard hypergraph into a MHEG structure.

2 THE MHEG STANDARD

The initial objectives of the MHEG standard—‘Defining and providing abstractions for
multimedia and hypermedia applications’—have been set forth in the following require-
ments:

• Provide abstractions suited to real-time presentation: this real-time requirement is
fulfilled by multimedia synchronization functionalities.

• Provide abstractions suited to real-time interchange: this means interchange with
minimal buffering using normal speed data communication.

• Provide abstractions corresponding to a final form representation: the objects are
represented and coded with the aim of a direct presentation, without requiring an
additional processing of their structure.

2.1 MHEG: a standard which defines objects

The object-oriented approach was chosen for the design of the standard because it fits
the requirements of active, autonomous and reusable objects. The standard defines classes
of objects, the design of which relies on the analysis of their common behaviour and
the commonalities of properties between object categories. It provides a description of
each class, a precise definition of the representation of the MH objects, which are in-
stances of the classes, and a coded representation for the objects (base: ASN.1, alternative:
SGML).

The MHEG standard makes a distinction between an interchanged object—which con-
tains the structural information, this is the original reusable object—and a ‘viewer’ of this
object, which corresponds to a specific ‘view’ of the object at the presentation time: the
viewer presentation does not affect the original object.

The object classes and their actual instances are represented through an inheritance tree
(see Figure 1).

Directly derived from the inheritance tree, the ‘tool-box’ for the design of multimedia
and hypermedia applications is the following:

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 181

MH-OBJECT>
BEHAVIOUR>

COMPONENT>

INTERACTION>

MACRO>

ACTION
LINK
SCRIPT

CONTENT

SELECTION
MODIFICATION

COMPOSITE
DESCRIPTOR

MACRO DEF
MACRO USE

‘>’ means that this object has the following sub-classes.
Only the instances of the classes in bold
type may be interchanged.

Figure 1. MHEG inheritance tree

1. Content class
It provides for the encapsulation of coded content data (i.e. an image, a piece of
sound, a graphic, etc.) associated with public or private decoding specifications.
It is the basic element on which spatio-temporal relations (link class), hypertext-
like relations (link class), and a set of actions are applied (action class), e.g. Run
ObjectId 1022, Destroy ObjectID 14, etc.

2. Link class
It provides a generic linking mechanism for both multimedia and hypermedia appli-
cations.

The link class provides the following information for the interchange of conditional
actions to be applied to instances of any MHEG class and/or viewers:
• a set of one-way links;
• a list of triggering conditions;
• a list of actions to be applied to the destination, if the previous conditions are

satisfied.
This is illustrated by Figure 2.

3. Action class
The standard provides three types of actions than can be applied on MHEG objects:

• Actions that may affect the status of objects: this sort of action, such as
‘prepare’, ‘run’, ‘destroy’, will affect the state of the object to which they are
applied, for example an object with the state ‘not ready’ will become ready
after the completion of a successful ‘prepare’ action. The state transitions can
be used as a triggering condition to fire the link.
• Actions for the projection of objects: to define precisely the way the objects

have to be presented. For example, ‘set volume’, ‘set visible size’, ‘set position
x,y’, are some of them.

182 A. RIZK, F. MALEZIEUX AND A. LEGER

S D

Attachment Point of
the source object

Trigger
condition

Other
conditions

link

Attachment
point

Attachment applied to the
destination object, e.g.
— attachment Point (x,y)
— relative position (x1,y1)
 of the attachment point to the
 source attachment point
— run 3 times

source destination

Figure 2. Illustration of link and actions

• Actions that may affect the interaction on objects: these actions are used to
modify specific interaction parameters of the interaction class. For example
the number of menu items, or those that are selectable at a given time, or if the
content data of a content object is modifiable or not, etc.

4. The interaction class
This class provides for the support of the interaction with the user. It provides all the
tools at the MHEG level to make the document ‘reactive’ to the user.

Nevertheless, MHEG does not define the ‘look and feel’ of the multimedia inter-
active presentations, neither does it propose to change or add concepts to those that
exist in typical graphical user interfaces. As this standard is generic and independent
of platform and implementation, it describes interaction at a logical level. It is for
the using application to apply these mechanisms using its specific ‘look and feel’.

5. The composite class
This class mainly aggregates the preceding tools. It is a container used to interchange
a set of inter-related objects (spatio-temporal links, ‘hypermedia’ links, and actions).

3 THE DEXTER MODEL

The Dexter model [8] is a reference model that was designed to serve as a basis for
interoperabilityand information exchange amongst applications. Although these objectives
were not achieved, the general philosophy of Dexter was inspired by, and now reflects,
most classical hypertext systems.

The model (see Figure3) consists of three layers and two interfaces:

• The run-time layer describes the interaction mechanisms of the hypermedia system
with the user.

• The storage layer describes the nodes, and the links, as well as the associated relations
for constructing a hypergraph. In this layer, nodes are treated separately from their
contents.

• The within-component layer describes the node structure and contents.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 183

DEXTER model

Presentation Specifications

Within Component Layer

Runtime layer

Storage layer

Anchoring

Figure 3. Layers of the DEXTER model

The DEXTER model focuses on the storage layer but underlines the importance of the
interfaces with the other two layers.

The first of these interfaces, anchoring, provides the mechanisms for anchoring the
links in a portion of the contents. It is therefore essential for addressing link end-points.

The second interface, presentation specifications, provides the principal mechanisms
for specifying how nodes, links and contents could be presented for interaction with the
user.

The importance of DEXTER is that it provides a decomposition of the essential com-
ponents of a hypertext system. Existing systems do not implement the exact specifications
provided by DEXTER but most of them relate to the model or to subcomponents of it.

4 THE MULTICARD ARCHITECTURE

The Multicard hypermedia system architecture, illustrated in Figure 4, is represented as a
set of components and interfaces. The architecture is based on the general model of front-
end and back-end subsystems. It has the following distinct layers: a set of hypermedia
basic classes that constitute the toolkit; hypermedia distributed persistent object storage;
an authoring/navigation tool; a communication protocol; and a series of compliant editors.

4.1 Hypermedia objects

The heart of the hypermedia toolkit is the representation of hypermedia objects (nodes,
groups, anchors and links, hypergraph, etc.) together with the associated interfaces to
applications, the scripting language and the editable objects. These hypermedia objects are
implemented in C++. They can be accessed either from C++ or through a C binding. We
recount here, briefly, the specific features of these objects:

Nodes: In Multicard, there is a difference between node structure, which manages links
scripts, and the content of the node. Multicard manages the node structure, whereas
the contents of the node may be handled by different editors. The M2000 protocol
between Multicard and the editors allows the opening and closing of documents,
retrieval of content portions, etc.

Anchors: An anchor represents a sensitive portion of the content of a node. The associated
anchor is the hypermedia object that carries the links, scripts, and other hypermedia
properties. The sensitive portion is editor-dependent.

184 A. RIZK, F. MALEZIEUX AND A. LEGER

P
ro

gr
am

m
ed

A
pp

lic
at

io
ns

Authored

Applications

Hypermedia

Authoring

Tool

Hypermedia Objects

M
 2

00
0

S
cr

ip
t

In
te

rp
re

te
r

API

MC
Editor

Raphael

Emacs

M2000 Compliant

Editors

NET

Persistent Storage Platform

Figure 4. Multicard architecture

Groups: Groups represent logical collections of nodes and other groups. Group hierarchy
can be of unlimited depth.

Links: Contrary to the usual usage of links in hypertext systems, links in Multicard are
viewed as event/message communication channels between two end points. Various
messages can be sent through a link including, of course, the activation message
which will typically open and map the destination object. Link end-points can be
anchors, nodes or groups.

The Application Programming Interface (API) provides facilities to specific hyperme-
dia editors, tools, and general applications for the creation, manipulation and deletion of
hypermedia objects. The M2000 interface supports interaction between hypermedia objects
and the relevant content-based editors.

4.2 Script interpreter

Nodes, groups and anchors may have scripts attached to them. In this sense scripts are used
as a way of extending the behaviour of instances of these objects. Scripts are event-driven
and can communicate throughout the hypermedia application using event/message passing.
The scripting language contains over 150 instructions that bring the API closer to the end-
user, and include special instructions for manipulating editor contents, synchronizing with
the editor, definition of internal/external functions, etc.

4.3 Hypermedia persistent storage

This provides distributedpersistent storage for hypermedia basic objects and consists of two
parts. The front-end supports access by the hypermedia basic class objects and guarantees
consistent behaviour independently of the actual storage management implemented by the
back-end. This approach enables the storage mechanism to be implemented using relational
or object-oriented databases [9,10] without affecting the toolkit interface.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 185

Hypermedia objects

Storage interface

Parser / Formatter

MHEG

MHEG ServerMC Server

MC

Editor

M
 2

00
0

Net

API

Figure 5. MHEG application using the Multicard API

5 MULTICARD AND THE BASIC MHEG CONCEPTS

In this section we look at the principal concepts of the MHEG standard and try to position
Multicard with respect to these concepts. We will show that, as far as essential concepts are
concerned, for the exchange of multimedia and hypermedia information, these concepts
are present in Multicard. As we have already mentioned, it is only in view of exchanging
instance objects of MHEG classes that we speak here of conformance to MHEG. One
possible scenario for the integration of MHEG in Multicard is shown in Figure 5, whereby
an MHEG stream is parsed in input (or output by the formatter), and translated into
Multicard hypermedia basic classes using the toolkit API.

5.1 Synchronization

MHEG recognizes four kinds of synchronization:

• At the script level, MHEG underlines the importance of scripting standards such as
the AVIs [11,12]. However, MHEG does not define such synchronization but rather
provides pointers in its classes to scripting standards.

• Conditional synchronization, in order to relate actions to events produced by other
actions, by the system or by the user.

• Synchronization in space/time, that allows objects to be composed within a space
with coordinated temporal behaviour.

• System synchronization, which is often intrinsic to the manipulated objects, as for
example is the case for MPEG objects that possess their own audio/video synchro-
nization. This form of synchronization is not addressed in MHEG.

In Multicard, as in many other hypermedia systems, the scripting language is funda-
mental to the definition of instance behaviour. The scripting language is event-driven. As
such, scripts are event handlers that could only be activated on occurrence of certain events,
triggered by the system, the user, or by any other script activation.

This kind of scripting covers the first two types of synchronization above, namely
the script level and the conditional synchronization. Space/time synchronization is also

186 A. RIZK, F. MALEZIEUX AND A. LEGER

possible, but at a ‘loose’, non-real-time, level. Real-time space/time synchronization as
well as system synchronization are considered in Multicard as pertaining to the editor that
is responsible for content manipulation.

As a consequence, synchronization relations, expressed by MHEG in links, composite
objects, interaction and action objects, are translated systematically into Multicard scripts.

5.2 Links

Two types of link exist in MHEG :

• The external reference links, provided as ISO 9070 identifiers.
• The specific inter-object links, provided for synchronization as well as for direct

access to objects.

The first type of link is rather an ‘in stream’ identifier to an external, remote object. The
interpretation of this is application-dependent, and might or might not mean a hypertext
goto link.

In Multicard, links are objects in themselves that correspond more closely to the second
type of link. Links will carry, through their source and destination anchors, scripts that
correspond to the actions defined in the behaviour of the MHEG link.

An instance of the MHEG link class consists, on the one hand, of an activation condition
and supplementary link invocation conditions and, on the other hand, of a series of actions
to be carried out on one or more referenced objects. This series of actions is defined in an
object instance of the Action class.

A Multicard link is a message channel that has as a default action the activation of
the link destination. It is therefore necessary to use a link+script combination in order to
translate an instance of an MHEG link. For each such link instance, we proceed in Multicard
in three steps:

• create a link from the source object to every destination object;
• create, on the source of the link, the trigger handler responsible for the activation of

the links;
• create the action handler for each destination object.

5.3 Content/structure separation

MHEG, as in Multicard and Dexter, defines a strict separation of the container objects that
MHEG recognizes and the application that recognizes the content format. Being mainly
a non-processable format, MHEG does not define the interaction interface between the
content editor and the object management. Moreover, anchors in MHEG are not defined as
subsets of the content format but rather as presentation objects (buttons etc.) that coincide
with specific contents.

5.4 Composition

Composites are introduced in MHEG in order to simplify the management and presentation
of sets of objects. Composite objects in MHEG contain the component objects themselves

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 187

or references to them, as well as the relations that unite these objects. Composite objects
are recursive.

Composite objects in MHEG always resolve finally to basic content objects.
In Multicard, as in Dexter, composites are sets of nodes/composites at the abstract level.

This composition is used for managing large numbers of nodes rather than for multimedia
composition at presentation time. Multimedia composition is done exclusively by the editor
that manages the contents of the node. The content objects that the editor manipulates and
composes have no representation in the hypermedia basic classes.

Composition in MHEG covers these two fundamentally separate concepts in one, by
specifying the semantics of the composite in the associated actions. In order to translate
an MHEG composite object to Multicard, an interpretation of the actions is required.
Depending on this interpretation, the composite is translated to a Multicard group (Dexter
composite of nodes) or to a node with MCEditor (Multicard’s multimedia composition
editor).

5.4.1 The content class

An instance of the content class is assimilated to a node instance in Multicard. An instance
of the content class comprises principally:

• An attribute that describes the coding of the object (hook). This is interpreted as the
creation of a corresponding editable object, and when the corresponding editor does
not exist, format conversion is attempted.

• Either data encapsulation or an attribute identification of contents. In the case of
data encapsulation, an editable object is created, whereas, in the case of external
identification, Multicard has to rely on external services for the localization and
migration of the remote object.

5.4.2 The selection class

This class defines the usage of selection elements such as menus, buttons and sliders, as
well as all GUI predefined widgets, for user interaction. A particular instance of this class
could also specify a particular selection.

In the first case, Multicard does not offer an equivalent mechanism, it simply relies on
the X-Window/Motif predefined widgets. In the second case, particular selection positions
correspond to anchors in Multicard that are attached to sensitive zones in the contents of
editable objects.

The response of selected elements is defined using the Multicard scripting language.

5.4.3 The modification class

An instance of this class simply specifies whether the content object it refers to is modifiable
or not. In Multicard this is simply implemented as an additional attribute to the editable
object classes as well as hypermedia basic classes. It can be set/reset dynamically by
script.

188 A. RIZK, F. MALEZIEUX AND A. LEGER

Object

Object

Composite

ObjectObject

Object Object

Multicard Node

 E.O E.O

 E.O E.O

Multicard Group

 E.O E.O

Node
Group/Node

MHEG Composite

MHEG Composite

E.O. = Editable Object

Figure 6. Composition in Multicard

5.4.4 The composite class

An instance of the composite class defines a set of links, the associated actions, and a set
of objects (or references to objects) on which these actions apply. A start up link specifies
the actions to be executed upon activation of the composite object.

In addition a viewer link is specified. This is used at activation of the composite object
and defines the projection of the object in space. In Multicard, this viewer is defined as a set
of parameters that are subsequently interpreted by a generic handler that sets the editable
object properties accordingly.

The representation of MHEG composition in Multicard draws upon the group and node
classes. It is necessary to use both of these hypermedia classes as the MHEG composite is
at the same time a composition of abstract node objects in the Dexter sense and a physical
composition of content objects in the multimedia sense.

Multimedia composition in Multicard can only be done using the MCEditor. This editor
can only compose editable objects within the contents of a single node. However, the node is
not a composition object in its own right since it cannot contain other nodes. Moreover, the
composition object in Multicard can only compose other nodes or groups but not editable
objects.

Therefore, composition in Multicard is done by using both nodes and groups. During
translation, an MHEG composite is translated into a Multicard group if it contains other
composites, and to a Multicard node if it contains only content objects. Figure 6 illustrates
how MHEG composition is done in Multicard.

5.5 MHEG and Multicard classes

Figure 7 depicts the basic class hierarchy, both for MHEG and Multicard.
We note the following:

1. The notion of interaction objects does not exist in Multicard. An interaction object
in Multicard is an ActiveObject that possesses its script. The mapping between the
ActiveObject and a real presentation is done by attaching an anchor object on an
editable object such as selector and modifier.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 189

MH-object

Component

Link Action Script

Descriptor

Content Composite Interaction

MHEG class hierarchy

HyperObject

ActiveObject Link Trail

LinkableObject Hypergraph

Anchor GroupItem

Group

Multicard class hierarchy

Node

Abstract super-classes are in italic

Selection Modification

Behaviour Macro

Macro Definition

Macro Use

Figure 7. MHEG and Multicard class hierarchies

2. The script class does not exist as such in Multicard. Rather, a script is an attribute to
the class ActiveObject.

3. The descriptor class does not exist in Multicard. It has to be interpreted using scripts.
The notion of presentation attributes that exist in MHEG is, however, available
clearly in Dexter through the run-time interface layer.

4. Composition could not be mapped on a one-to-one basis. Depending on the associated
actions, composition is mapped using GroupItem, Group and Node.

The following table illustrates, one by one, the mapping of MHEG concepts onto
Multicard ones.

MHEG Multicard
MH Object Class HyperObject
Descriptor Class To be interpreted
Script Class Attribute Script of ActiveObject
Content Class Node
Composite Class Node, Group and GroupItem classes
Link and Action Classes Link and scripts associated to objects

(source and destination)
Interaction Class Anchor, editable objects and GUI

6 EXAMPLE: CONVERSION OF A MULTICARD STRUCTURE

Consider a small Multicard document whose hypergraph is represented as follows.
There are two possible ways for translating this structure to MHEG.
The first solution is illustrated in Figure 9. This solution uses an MHEG link object to

map the Multicard group (which is a purely logical composition). Each node in Multicard
is translated to an MHEG composite object. Navigational links that are used in Multicard
are mapped into MHEG links.

The second way of proceeding uses an MHEG composite object to map the Multicard
group (Figure 10). Depending on their complexity, nodes appear here in a single MHEG
composite.

190 A. RIZK, F. MALEZIEUX AND A. LEGER

Group

Node 2Node 1

Text

Audio

button ‘end’

button ‘next’ image

anchor 1 anchor 2 button ‘end’ anchor 3

graphic

Node 3

Figure 8. Hypergraph of a small Multicard document

Link object (group)

Link Object (ID)

Link Object (ID)

Link Object (ID)

Composite Object (node 1)

text

audio

button ‘end’

button ‘next (node 2)’

Composite Object (node 2)

image

anchor ‘back (node 1)’

anchor ‘next (node 3)’

Composite Object (node 3)

graphic

anchor ‘back (node 1)’

button ‘end’

Figure 9. Description with MHEG composites

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 191

Composite(group)
All-object representation
attributes
interchange number = xy
• Composite start-up link:

destination: viewer "node 1", action: prepare
destination: viewer "node 2", action: prepare
destination: viewer "node 3", action: prepare

• Viewer start-up link:
destination: viewer 1, action: present "node 1"
destination: viewer 2, action: present "node 2"
destination: viewer 3, action: present "node 3"
destination: viewer 4, action: present "anchor 1"
destination: viewer 5, action: present "anchor 2"
destination: viewer 6, action: present "anchor 3"
destination: viewer 7, action: present "button next"
destination: viewer 8, action: present "button end"

• Links:
S: node 1, "button next", D: viewer "node 2"
Trigger: "button next" selected, Action: go to
S: node 2, component "image", anchor 1, D: viewer "node 1"
Trigger: anchor 1 selected, Action: go to
S: node 2, component "image", anchor 2, D: viewer "node 3"
Trigger: anchor 2 selected, Action: go to
S: node 3, component "graphic", anchor 3, D: viewer "node 3"
Trigger: anchor 3 selected, Action: go to

• Viewers:
viewer "node 1" = component 1
viewer "node 2" = component 2
viewer "node 3" = component 3
viewer "anchor 1" = component 4
viewer "anchor 2" = component 5
viewer "anchor 3" = component 6
viewer "button next" = component 7
viewer "button end" = component 8

• Components:
component 1 = ref. to composite "node 1"
component 2 = ref. to composite "node 2"
component 3 = ref. to composite "node 3"
component 4

description of "anchor 1" (included)
component 5

etc. . . .

Figure 10. Description with one global MHEG composite

192 A. RIZK, F. MALEZIEUX AND A. LEGER

7 CONCLUSIONS

This paper provided a case study of how the MHEG standard could be adopted in an existing
hypermedia system, namely Multicard. To our knowledge this work is so far the first attempt
of its kind. Although the implementation of the full MHEG–Multicard converter is not yet
complete, the concepts presented have been subject to specific validation tests.

From our evaluation of the MHEG standard, Multicard, and more generally Dexter, we
observe that although MHEG has been thought out entirely independently of Dexter, as far
as the fundamental concepts are concerned, the two models are extremely similar. We find
the presence of separation of contents from hypermedia structure, composition, links and
presentation specifications.

On the more detailed level, MHEG differs from Dexter on the following points. The
anchoring layer of Dexter is extremely weak in MHEG, due basically to MHEG being
an unprocessable form. The composition in MHEG can deal both with multimedia com-
position including space/time synchronization of objects, as well as the Dexter abstract
composition of nodes. As far as implementation of MHEG by an existing hypermedia
system, it is essential that the system possesses a powerful scripting language for the in-
terpretation of the many dynamic attributes, as well as for the interpretation of the MHEG
actions.

ACKNOWLEDGEMENTS

The authors wish to thank the ISO-JTC1 SC29/WG12 (MHEG) members and CCITT
SGVIII (terminals and protocols) for their invaluable work that made the present effort
possible. The constructive and sometimes provocative comments of Françoise Colaı̈tis
(MHEG convenor), Florence Bertrand and Roger Price (MHEG standard editors) are also
gratefully acknowledged. Multicard is developed by Bull and Euroclid mostly under the
Esprit project Multiworks. It is commercialized by Euroclid under licence from Bull S.A..
The authors wish to thank the European Commission as well as the Bull team, Louis Salter,
François Thorel and Maria Ahedo.

REFERENCES

1. Akscyn, McCracken and Yoder, ‘Kms: a distributed hypermedia system for managing knowledge
in organizations’, Communications of the ACM, 31(7), (July 1988).

2. ‘Information technology—coded representation of multimedia and hypermedia information
objects (MHEG)’, Technical report, ISO/IEC JTC1/SC29/WG12, CD 13522-1.

3. Françoise Colaı̈tis and Francis Kretz, ‘Coded representation of multimedia and hypermedia
information objects: towards the MHEG standard’, Signal Processing: Image Communication,
4, 113–128, (1992).

4. Françoise Colaı̈tis and Francis Kretz, ‘Standardizing multimedia and hypermedia objects’, IEEE
Communications Magazine, (May 1992).

5. Françoise Colaı̈tis and Florence Bertrand, The MHEG standard: principles and examples of
applications, Anaheim, CA, USA.

6. A. Rizk and L. Sauter, ‘Multicard; an open hypermedia system’, in Proceedings of the ACM
Conference ECHT’92, Milan, (1992).

7. F. G. Halasz and M. Schwartz, ‘The dexter hypertext reference model’, in Proceedings of NIST
Hypertext Standardization Workshop, Gaithersburg, MD, 16–17 January 1990.

8. Franck Halasz and Mayer Schwartz, ‘The dexter hypertext reference model’, in NIST Hypertext
Standardization Workshop, Gaithersburg, MD, January, 1990.

USING THE MHEG STANDARD IN THE HYPERMEDIA SYSTEM MULTICARD 193

9. B. Amman and M. Scholl, ‘Gram: a graph data model and query language’, in Proceedings of
the ACM Conference ECHT’92, Milan, (1992).

10. V. Christophides and B. Amman, Providing persistence to the hypermedia system multicard by
using the oodbms o2. To appear.

11. ‘F740 description générale d’un service avi’, Technical report.
12. ‘T170 description générale des systèmes communicants pour les avis’, Technical report.
13. Esprit Project Multiworks. Specification of the distributed implementation of Multicard on the

distributed Multiworks platform.

	SUMMARY
	1 INTRODUCTION
	2 THE MHEG STANDARD
	2.1 MHEG: a standard which defines objects

	3 THE DEXTER MODEL
	4 THE MULTICARD ARCHITECTURE
	4.1 Hypermedia objects
	4.2 Script interpreter
	4.3 Hypermedia persistent storage

	5 MULTICARD AND THE BASIC MHEG CONCEPTS
	5.1 Synchronization
	5.2 Links
	5.3 Content/structure separation
	5.4 Composition
	5.4.1 The content class
	5.4.2 The selection class
	5.4.3 The modification class
	5.4.4 The composite class

	5.5 MHEG and Multicard classes

	6 EXAMPLE: CONVERSION OF A MULTICARD STRUCTURE
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

