
ELECTRONIC PUBLISHING, VOL. 7(2), 55–74 (JUNE 1994)

Making structured documents active

VINCENT QUINT1 AND IRÈNE VATTON2

INRIA-IMAG
2, rue de Vignate
F-38610 Gières, France

SUMMARY
Active documents result from a combination of some specific features in documents and some
mechanisms in a document manipulation system. In this paper we present the possibilities
offered by a structured model of documents and a structured editor for making active docu-
ments. Several applications are described (annotations, electronic indexes, cooperative editing,
documents as user interfaces, etc.), which show how a document’s logical structure may be
exploited for developing a variety of active document applications.

KEY WORDS Active documents Structured documents Editors User interfaces Grif

1 INTRODUCTION

The structured approach to document representation allows new, more powerful applica-
tions [3], but it must be admitted that the first tools developed with the representation were
for the most common applications—editors and formatters such as Scribe [22] or LATEX
[16]. As an example, the first EP conference [26] was largely dedicated to structured doc-
uments, and almost all papers on that topic presented editors and/or formatters. Another
example is the ODA standard [14], which, in addition to the definition of the document
logical structure, considers only document formatting.3 This is not surprising: the first use
of computers for document processing was formatting, and the new approach was first
tested on the same type of application. But after this initial step, other applications have
been considered, taking advantage of the possibilities offered by an abstract representation
of documents.

Currently, applications involving a structured model of documents can be found in
many fields, such as databases, information retrieval or document recognition. In this
paper, we focus on applications that have a connection with document preparation and
editing, especially applications that extend the functionality offered by a document editor.
More specifically, we are interested in applications that transform passive documents into
active documents. There are many types of such applications, ranging from very simple
tools that only consider a document as input data, to sophisticated tools that transform

1 INRIA Rhône-Alpes.
2 CNRS-IMAG.
3 In that respect, SGML [10,13] is very different, as it does not consider any application. DSSSL [15], which

is designed for specifying applications working with SGML documents, puts a strong emphasis on formatting
issues, but takes also other applications into account, such as structure transformations or database feeding.

CCC 0894–3982/94/020055–20 Received 30 July 1993
1994 by John Wiley & Sons, Ltd. Revised 22 November 1993

© 1998 by University of Nottingham.



56 V. QUINT AND I. VATTON

the documents they process as well as their environment. We present here the experience
we have gained in developing active document applications based on the Grif structured
document editor [19]. We also present the basic mechanisms we have developed in Grif for
allowing it to handle active documents.

A number of active document systems have been described in the literature (see, for
instance, [4,5,8,25,27]). In this paper, we put the emphasis on the advantages that the
logical structure of documents, and specifically their generic structure, can bring to active
documents. The main idea is to relate activity to documents on a generic basis. This approach
implies not only that an editor be adapted to active documents, but also the document model
on which it is based.

The paper is organized as follows: the next section describes some document-centred
applications that have been developed with the Grif editor; it also explains why extensions
to the editor were necessary. These extensions are then presented in two other sections:
a section describes the extensions made in the document editor, and another section is
dedicated to issues related with generic structures. Finally, these developments are discussed
and compared with other active document systems.

2 DOCUMENT-CENTRED APPLICATIONS

According to the way documents interact with their environment, document-centred appli-
cations can be classified into two categories:

• The first category comprises applications that simply exploit the contents and the
structure of documents for producing other documents and data. The documents they
manipulate are called passive, as they only constitute the input of an application.

• Applications in the second category are interactive and react to user actions by
modifying the documents they process and/or by acting on their computing environ-
ment. Documents handled by these applications are called active, as they support
the interaction between the application and its user(s). Two sub-categories can be
distinguished in this category:

— Applications that only transform the documents they process, according to
their structure and contents and to external parameters or programs. These
applications can handle various types of documents and constitute extensions
to document production tools.

— Applications that process only documents of a given type and perform very
specific functions, thus transforming a document production environment into
a specialized tool acting on its computing environment.

Typical examples of applications belonging to the first category are translators or
comparison tools. Tools of that kind do not transform the original document, even if
comparators and translators produce new documents. Generally, they are not interactive
and are implemented on the basis of a parser. We have experimented with some of them, such
as a translator (from Grif to LATEX, troff or SGML for instance), a document comparator
and a static structure transformation tool [2]. They contribute to providing the user with a
richer environment for handling structured documents.

The second category is very broad, ranging from applications that only update docu-
ment contents to tools using the paradigm of documents as user interfaces [5]. All these



MAKING STRUCTURED DOCUMENTS ACTIVE 57

applications are based on (or include) an interactive editor; some are considered as exten-
sions to the editor, some others as a specialization of the editor.

A spelling checker [24] is the simplest active document application we have experi-
mented with. We have also developed an annotation tool, an electronic index [23] and a
cooperative editing system [7], as active document tools extending the editor functionality.

Among the applications that specialize an editor are form editors, spreadsheets, syntax-
driven editors for programming languages, etc.

Using an open-ended version of the Grif editor, we have developed both passive
and active document tools, which are presented in this section for bringing out their
requirements. These requirements have led to the definition of mechanisms that allow the
editor to support active document applications. As these applications are all associated in
some way with the Grif editor, this editor is presented first, but very briefly (more details
can be found in [19] and [9]).

2.1 The Grif structured editor

Grif is a structure-driven editor. Structure-driven editing is inspired by syntax-driven edit-
ing. A generic logical structure (also called a document type definition, DTD, in SGML
[13]) specifies the structure of a type of document and the editor uses that specification
for helping (or sometimes obliging) the user to produce a document that is an instance of
that type, i.e., with a logical structure consistent with the specification. With that approach,
a document is represented as a specific logical structure (also called abstract tree) that
organizes typed elements such as title, abstract, chapter, section, paragraph, note, etc. (ele-
ment types are not predefined, but specified in the generic structure). This specific structure
is mainly hierarchical, with additional relationships which represent nonhierarchical links
between elements, such as cross-references. With these links, a structured document may
also be considered as a hypertext [21].

The logical structure of a document not only contains elements, but also attributes. An
attribute is information associated with a logical element of a document that adds semantics
to that element. Like element types, attributes are defined in the generic structure, which
specifies their type (number, name, character string, list of values, reference, etc.) and the
type(s) of element with which they can be associated.

Grif generic logical structures are very close to SGML DTDs. The main differences are
the following:

• Grif allows one to define generic logical structures in a modular way. Instead of writ-
ing large generic logical structures describing all types of elements that can appear in
a document, the document designer can write several short generic logical structures,
these generic logical structures being assembled for producing documents. This fea-
ture, discussed in [20], is the basis of the generic structure extensions mechanism
presented in Section 4.

• Concurrent logical structure (Concur feature in SGML) are not allowed in Grif, but
modular generic structures and dynamic sharing of documents can be used instead
of this feature.

• Grif offers local and global attributes, when SGML only allows for local attributes. A
global attribute is equivalent to a local attribute that can be associated with all logical
elements defined in the generic logical structure. This feature is largely exploited by



58 V. QUINT AND I. VATTON

active document applications for adding specific information on previously defined
logical elements (for example, the access rights managed by the cooperative editing
system presented in Section 2.3.3).

As the logical structure of a Grif document is always consistent with the model of a
generic structure, it is possible to generically define the graphical aspect of documents:
presentation rules are associated with element types and the editor applies them to the
elements constituting the specific structure, thus producing the graphical aspect of the doc-
ument. Presentation rules are expressed in a declarative language, called P. They specify
such parameters as font, colour, spacing, line length, indention, justification, etc. Presen-
tation rules are gathered in presentation models. A presentation model contains all rules
necessary to specify the graphical aspect of all types of elements and attributes defined in
a generic logical structure. Several presentation models may be associated with a generic
logical structure; the graphical aspect of a type of document can be changed globally, just
by changing the current presentation model.

Presentation models also define different views, which present in different windows the
same logical structure with different graphical aspects. For instance, the table of contents
of a report is a view that shows only the elements of type SectionHeading and does not
use the same fonts and layout parameters as the main view. These views show a graphical
representation of documents that is very similar to a printed document: the abstract (logical)
structure is not directly seen by the user, who interacts with the editor through the views
displayed on the screen (see Figure 1).

With these basic functions, the services offered by Grif are not fundamentally different
from those offered by an editor-formatter based on a simpler document model. Nevertheless,
its high-level document model allows it to produce a more abstract representation of doc-
uments, what makes it possible to process these documents in various ways. Applications
presented below illustrate these capabilities offered by the document model.

2.2 Passive document applications

2.2.1 Document comparison

It is often necessary to compare two versions of a document in order to identify all changes
that have been made between these two versions. In Unix, for instance, thediff command
does that, but it can only process text files, i.e., documents that are made up of characters
and lines, and it identifies changes in terms of lines. In structured documents, however, the
notion of a line has no meaning: when two sections are exchanged in a document, many
lines are moved, but, from the user point of view, the only interesting information concerns
the logical elements of type Section. For that reason, a specific tool has been developed
that compares the logical structure and the contents of two versions of a Grif document and
that expresses the result in terms of the logical structure. It also links all logical elements of
the second version with the corresponding elements in the first version. These links allow
a user to see the corresponding elements in the two versions using the standard editing
commands: by clicking any element in the second version, the corresponding element is
highlighted in the first version.

The document comparator runs independently from the Grif editor: it reads two doc-
uments produced by the editor, compares their logical structures and their contents, and



MAKING STRUCTURED DOCUMENTS ACTIVE 59

produces a third document that is a copy of the second one, with specific attributes associ-
ated with all elements that are different from the first document. There is an attribute for
each type of change that the comparator can detect: change of contents, element deletion,
element creation, element move, etc. When the third document is printed or displayed by
the Grif editor, presentation rules associated with these attributes make all changes visible
to the user, under the form of revision bars, colours, etc.

Such a tool may have many applications. It can be used for comparing versions of
technical documents, but it can also be useful in the humanities, for researchers interested
in the evolution of electronic manuscripts [17].

2.2.2 Structure transformation

The document comparison tool takes care of changes in document instances, but generic
structures also can be modified. The problem then is that document instances that have been
produced with an old version of a generic structure are no longer consistent with the current
version. Another, similar problem is to move a document from one generic structure (say,
Report) to another (say, Book) that is not totally different, but that have different types of
elements and attributes, and different structural relationships between elements.

For addressing these problems, a structure transformation tool has been developed [2],
that compares two generic structures and produces transformation rules that are then applied
to document instances built according to the first generic structure, thus making them
consistent with the second generic structure. Due to that tool, generic structures can evolve
without detriment to existing documents, and documents can move from one generic
structure to another.

2.3 Active document applications

The previous tools are non-interactive applications. They accept document files as input and
produce document files as output. These tools represent only a subset of document-centred
applications. We present now a more representative set of document-centred applications,
those based on the concept of an active document. These applications have been devel-
oped independently of each other, but some of them can use the functionality offered
by others; for example the cooperative editing system can use annotations and electronic
index.

2.3.1 Annotations

While preparing a document or reading a paper written by someone else, people often
write comments or annotations in the margins. These comments are not really part of the
document, but they are clearly related to it, or more precisely to some specific passages of
it. Annotations may have an internal structure and they can improve the structure of the
document by relating different parts of it.

A specific tool has been developed for the Grif editor that allows users to write such
annotations and to use them for browsing through the document; in this way, the reader
can build his or her own hypertext on the document. The internal structure of an annotation
and the links between the main text and the annotations are represented and processed by
the Grif editor like any other structured part of a document.



60 V. QUINT AND I. VATTON

2.3.2 Electronic index

Another hypertext tool has been developed for helping users to make index tables and
to exploit them. This electronic index [23] allows the author to select the passages of
the document that he or she wants to be referred in the index. It also allows the user to
associate a descriptor with each passage. A descriptor specifies in which index tables the
corresponding passage must be referred to and what terms must represent that passage in
the index tables. The application sorts index entries alphabetically, merges those with the
same terms, and produces (or updates) the index tables, with links between the selected
passages of the main text, the corresponding descriptors and the corresponding index table
entries. Index tables are displayed (and printed) exactly as in a traditional book, but all
these links can then be exploited by the user for browsing through the document, as in a
hypertext, using the standard commands of the Grif editor. Figure 1 shows descriptors and
an index table added to a manual by the index application.

The structures needed by that tool are fairly complex. They must represent and identify
all entities involved in the application: selected passages of the main text, descriptors, index
tables with multi-level entries, and all sorts of links. In accordance with the basic principles
of the Grif editor, and for allowing the application to produce correct index tables, these
entities are defined by a generic logical structure.

Figure 1. A manual, its descriptors and index tables



MAKING STRUCTURED DOCUMENTS ACTIVE 61

2.3.3 Cooperative editing

The structured approach to document processing proves particularly advantageous for
large documents, such as technical documentation. Such documents are typically produced
by several writers working simultaneously. Access to the document base must then be
controlled, to avoid conflicts and inconsistencies. The problem of access control may be
seen as a database problem (see the approach presented in [11]), but, as we will see, it
also has something to do with editing. To address this issue, a distributed application has
been developed that controls several local instances of the editor, running on different
workstations, and that allows them to cooperate [7]. In this application, two main functions
are performed by two categories of users:

1. A document manager builds a skeleton of the documents to be produced and decides
who can access each part of the documents. Different access modes are available:
some users cannot even see some parts, other users can only see them, and other
users still are allowed to modify them. The document managers of a given document
have all these rights, plus the right to change the rights.

2. A technical writer can access any document, provided he or she has the right to see
at least one part of it. He or she can then load that document in the local editor and
manipulate it, according to the rights he or she owns for each part.

It is the cooperative application’s responsibility to dynamically control access rights of
different users and to inform each user about actions allowed on each part. The cooperative
application gives to each local editor only the parts the user can see (when the editor loads
a document) and accepts to store only the parts that the user is allowed to change (when
saving the document).

When a local editor allows its user to change some part of a document (which can be
as large as a chapter or as small as a paragraph), that part is write-protected in other local
editors as long as access rights do not change.

There is another approach to groupware, and especially to cooperative editing of doc-
uments, which considers that any user can change anything at any time: even the most
elementary change of a single character by a user is immediately reflected to all other users.
We decided to do it differently, because we have a high-level representation of documents,
and we can take advantage of the logical structure for controlling common tasks.

Information associated with that cooperative application must be present in documents,
while they are handled by a local editor: the parts on which the user has different rights must
be identified, and the rights themselves must be indicated for each part. This is achieved by
a special type of element that indicates the limit between two parts having different rights,
and by an attribute that represents the right that the user has for each part.

2.3.4 Syntax-driven editors

Another category of interactive application that needs editing services is represented by
syntax-driven editors for programming languages. The syntactic structure of a program is
very similar to the abstract tree handled by Grif. The grammar of a programming language
can be represented to a large extent as a generic structure, like the one used by Grif for
specifying document types. It is then worth considering the use of an editor like Grif for



62 V. QUINT AND I. VATTON

Figure 2. Several views of a Peplom program

building a program editor: by writing only a generic structure and a presentation model, a
developer can make an editor for a given language.

Obviously, the semantics of a program cannot be fully represented in a structured
document. Therefore, the editor should be controlled by an application that knows about
the language semantics. The application can then prevent the editor from performing actions
leading to incorrect programs or it can offer specific commands depending on the language
semantics.

Two such editors have been built on top of the Grif editor, by two different research
groups: one for the database programming language Peplom [1] (see an example in Figure 2)
and another for the real-time language Argos [18].

2.3.5 Filer

Another approach to active documents consists in considering a document as a user interface
tool (see [5], for instance): for controlling an application, a user manipulates a document
whose elements represent the objects handled by the application. When editing actions are
performed by the user on a document element, the application performs some functions
on the corresponding object. Conversely, when the internal objects are changed by the



MAKING STRUCTURED DOCUMENTS ACTIVE 63

application, the document is updated accordingly, in such a way that it reflects the current
state of the objects it represents.

We have used that metaphor for making a filer based on Grif. The objects managed by
the application are Unix files and the functions offered by the application are those provided
by the Unix commands mv, cp, rm, mkdir, etc. A special type of document, called Filer,
has been designed for representing files and directories. With that document type, the Grif
abstract tree represents the hierarchy of directories and files and the presentation rules show
that structure in an iconic form: as in many desktops, each file or directory is displayed as
an icon with a character string representing the file name.

When applied to a document of type Filer, the edit commands are interpreted as follows:
modifying a filename implies changing the name of the corresponding file (mv command),
deleting an icon implies deleting the file (rm), copying and pasting an icon implies copying
the file (cp), etc.

3 EDITOR MECHANISMS

For making the applications presented above possible, several mechanisms were needed in
the editor that were not available in the first version; they are presented in this section. As
the Grif editor is based on the generic structure of the documents it manipulates, extensions
to generic structures are also necessary; they are discussed in the next section.

The objective of the new mechanisms is to allow users of the Grif editor to develop
easily such applications as those presented in the previous section. In this respect, the
different types of applications presented at the beginning of this article have different
requirements:

• Passive document applications (export, structure conversion, document comparison)
do not require the participation of a human operator. They use only a subset of the
editor’s functionality: they are interested in abstract tree manipulations, but not in
presentation of documents.

• Active document applications manipulate documents interactively. They need to
drive the editor (that is the case with the cooperative editor and the syntax-driven
editors). They need all the functionality of the document editor, but they also need
to control it.

For meeting the requirements of all these applications, an editing toolkit and a special
mechanism called External Call Facility (ECF) have been added to the Grif editor.

3.1 Editing toolkit

The Grif editing toolkit is a comprehensive set of editing functions that can be used for
constructing applications. It allows application programs to perform the same operations
as a user working with the Grif editor.

The editing toolkit is accessed by applications through an API. Typically, the API
provides the application with functions for creating the skeleton of a new document of a
given type, for modifying the structure or the contents of existing documents, for extracting
information from documents, for opening and closing documents and views, etc. About
150 functions are available.



64 V. QUINT AND I. VATTON

The toolkit takes the form of two C libraries, called Kernel and Editor. Each library is
suited to a different type of application; each application uses only one of the two libraries,
the second library including the first one.

3.1.1 Kernel library

The Kernel library allows an application to handle the logical structure (abstract tree) and
the contents of structured documents in automatic mode. This subset of the toolkit does
not produce the graphical aspect of documents, nor does it provide any service for the user
interface. It is typically designed for applications performing automatic operations without
direct manipulation by a human user, i.e., passive document applications.

3.1.2 Editor library

The second library, called Editor, includes all functionality provided by the Kernel and
provides additional services for displaying the graphical aspect of documents. It also
contains the whole Grif editor with its user interface, and some functions for extending
this interface. All editing functions can be accessed both by the user and by application
programs. The Editor library is typically intended for interactive applications that handle
documents under the control of a user and that add new functionality to the editor, i.e.,
active document applications.

Functions in the Editor library that are also part of the Kernel have exactly the same
interface in both libraries. The only difference is that, in the case of the Kernel, they do not
display anything, and, in the case of the Editor, some of them (namely those modifying the
logical structure or the content of documents) automatically modify the pictures (the views)
displayed on the screen. The advantage is that applications do not worry about formatting
and display; they have only to handle the logical structure and the contents of documents.
Using the presentation models, the Editor library automatically takes charge of all problems
related to formatting and refreshing the pictures displayed on the screen.

As a consequence, application programs that have been developed for automatic pro-
cessing can be reused in the context of an interactive application without any change. This
facility is also useful for debugging: a program designed for running in automatic mode
shows all the actions it performs on documents, just by using a different library and making
very simple changes to the program.

The application has only two functions for controlling the display: when a number of
elementary changes have to be done in the same part of a document, the application asks the
toolkit to stop refreshing the screen before making the first change and it resumes redisplay
after the last change in the series. This avoids having each elementary change redisplayed
individually.

The Editor library is used by all active document applications: spelling checker, anno-
tation tool, electronic index, cooperative editor and syntax-driven editors.

3.2 External call facility

The API and the libraries are sufficient for passive document applications, like document
comparison or structure transformation, which keep control over the toolkit: the editing



MAKING STRUCTURED DOCUMENTS ACTIVE 65

functions are called by the application and nothing happens in the toolkit that is not explicitly
asked for by the application.

In active document applications, i.e., applications that are connected to the Grif editor,
control is shared between the user and the application: some editing actions are triggered
by the user, some other by the application. Then, an additional mechanism is required;
the application not only calls the editor through the API, but it is also activated by the
editor when the user performs some actions on the documents. This mechanism is called
the External Call Facility (ECF).

As an example, in a syntax-driven editor for a programming language, the application
must check the validity of identifiers: in a given scope, the same identifier should not be
defined twice, and an identifier must be declared before being used. The editor cannot
check that by itself, as the generic structure cannot express this kind of constraint. Then the
application needs to be notified by the editor every time an identifier is entered or modified
by the user. If the identifier is invalid, the application can then display a message for the
user and change the document through the API (e.g., by modifying the entered identifier or
by adding its declaration).

An application that extends the basic functions of the Grif editor or that controls it
needs also to dialogue with the user. It needs to be able to modify the standard menus of the
editor, by suppressing some commands (at least in some cases), by adding new commands,
or by replacing existing commands. Therefore the ECF comprises two parts: the one is in
charge of the dialogue, the other notifies the application when needed. The part concerning
the user interface is not discussed here.

3.2.1 Notifying the application

The mechanism for notifying applications is based on the document logical structure and
its generic specification. It allows an application to declare how and when the editor should
give it control. As seen from the editor, an application is a set of procedures (called actions)
that must be executed in certain conditions. As seen from the application, the Grif editor
provides a set of editing functions and generates events. An event occurs each time a change
is made to a document as a consequence of a user action. For instance, an event occurs
when the user selects an element, modifies a character string, associates an attribute with
an element, saves a document, opens a view, creates or deletes an element, etc. Each event
is associated with an object: logical element, attribute, document, view.

Whenever the user performs an editing command, two events are generated: one before
the command is actually performed by the editor (.Pre), the other when the editor has finished
performing the command (.Post). It is important to note that a single user command may
generate several pairs of events, eventually for several objects. For instance, when several
paragraphs are selected and the user calls the delete command, a pair of events ElemDelete
(.Pre and .Post) is generated for each selected paragraph. Another example is when the
user clicks a cross-reference in an article, for displaying the referred figure. This single
user action results in a pair of events ElemActivate concerning the cross-reference, a pair
of events ViewOpen concerning the Figure view (supposing that the presentation model
specifies that figures are presented in a different view, and that this view is not open yet),
and a pair of events ElemSelect concerning the Figure element. All these events are raised
separately and the corresponding actions are called one after the other.

With this mechanism, the application could receive a number of events, among which



66 V. QUINT AND I. VATTON

only a few are of interest. Therefore, events are filtered for each application. For each type
of document it manipulates, an application declares in what event it is interested, and more
specifically in what event associated with what type of object. This declaration is made in
a language called I. As an example, the abovementioned program editor is interested in the
event ElemTextModified associated with elements of type Identifier (assuming that this type
is defined in the generic structure of the documents processed by the application). The ap-
plication also specifies what action must be executed when this event occurs. Then the Grif
editor calls the desired action each time the event occurs for the type of element concerned.

Actions called on a .Pre event return a boolean value that indicates to the editor
whether it must perform the standard function or not. This allows an action to be substituted
to the normal editor command.

3.2.2 An example

The filer application presented above associates a document of type Filer to a Unix directory.
It uses the following generic logical structure, which specifies that a document of type Filer
contains a Title (the directory name) and a Body that is a sequence of elements of type File.
A File contains only a FileName and has an attribute called FileType that specifies its type
(only four types are defined in this example).

Filer = BEGIN
Title = TEXT;
Body = LIST OF (File);
END;

File (ATTR !FileType = Directory, Script, Document, Other)=
BEGIN
FileName = TEXT;
END;

No presentation model is given here, but a typical presentation model displays the Title
element centred on top of the window and each File element after the other. The FileType
attribute determines the icon representing a File element and the FileName element is
displayed below the icon.

The events in which the application is interested, and the corresponding actions, are
specified in language I by the following declaration, which is based on the previous generic
logical structure (this is specified by the first line):

APPLICATION Filer;
ELEMENTS

Filer:
DocSave.Pre: SaveFiler;

File:
ElemNew.Post: NewFile;
ElemActivate.Pre: OpenFile;
ElemSelect.Pre: SelectFile;
ElemPaste.Pre: CopyFile;
ElemDelete.Pre: RemoveFile;



MAKING STRUCTURED DOCUMENTS ACTIVE 67

FileName:
ElemTextModified.Pre: Pre_ChangeFileName;
ElemTextModified.Post: Post_ChangeFileName;

ATTRIBUTES
FileType:

AttrModify.Pre: ModifyFileType;

The line following the word File means that when the editor has created (event Elem-
New.Post) an element of type File, it must call the function NewFile in the application.
When this function is called, it receives the identifier of the new element. At that time, as
specified in the generic logical structure, the editor has also created a FileName element as
a child of the File element, and this element contains an empty character string (TEXT).
As the FileType attribute is mandatory (this is indicated by the character "!" in the generic
logical structure), the File element has this attribute with a value that has been chosen by
the user among the four possible values: the editor has prompted the user for that value.
Then the function NewFile can access the attribute value and generate in the empty string
a default file name terminated by a suffix that depends on the FileType attribute.

The line ElemActivate.Pre: OpenFile; means that when the user clicks a
File element, the editor must call the function OpenFile before doing anything else. This
function receives the identifier of the clicked element and can then access the contents of
its child, the FileName element. Then, depending on the value of the attribute FileType,
it activates the corresponding script, opens the document or displays the directory. In that
last case, the function creates a new document of type Filer, with one File element for each
file in the directory, and it initializes the FileName elements with the names of these files;
finally it opens a view for displaying that document.

As they are generated dynamically according to the state of the file system, Filer
documents do not need to be saved. That is the reason why the line DocSave.Pre:
SaveFiler; is associated with the element Filer. The action SaveFiler is called by the
Grif editor when the user wants to save a Filer document. Since Filer documents do not
need to be saved, this action only tells the editor not to save the document. An alternative
would be to deactivate the Save command for all documents of type Filer; this can be done
using the dialogue handling component of the ECF.

The two lines following the word FileName tell the editor that it must notify the
application when the user begins to edit the contents of a FileName element and after the
contents of a FileName element have been edited. The first action just copies the filename
in a variable and the second action actually changes the name of the corresponding file,
having the old name in the variable and the new one in the FileName element.

4 GENERIC STRUCTURE EXTENSIONS

Not only adequate mechanisms such as the API and the ECF are required in the Grif editor
by active documents, but specific features are also needed in the document model.

Most applications presented in this paper should be able to treat any type of document:
all documents are candidates for spelling correction, annotations or comparison of versions;
although a letter or a memo rarely contains an index, many types of document have index
tables; many may be edited simultaneously by several users. All these applications require
some element types or some attributes to be defined in the generic structure of the documents



68 V. QUINT AND I. VATTON

they process. That implies that almost all generic structures should be modified to contain
the definition of all element types and attributes required by all applications. This is
practically impossible, especially when considering that new applications can be added and
new document types can be created at any time.

In fact, experience has proved that it is impossible to design a correct document type in an
absolute way. The logical structure of a document is partly inherent in its type, but also partly
in the manipulations intended for that document. As an example, in a letter, it is clear that an
element of type Address must be defined, but if the letter has only to be edited and printed,
decomposing the address into lines is enough; if it is stored in a database and if one wants
to extract letters sent to a given person or to a given city, the structure of the address must
be refined, with such elements as RecipientName, City or ZipCode appearing explicitly.

4.1 Principles of generic structure extensions

For solving this problem, two levels must be distinguished in a generic structure: one is
independent of any application and only takes into account the intrinsic properties of the
document type itself; the other is related to the applications and considers the specific
requirements of each applications.

In accordance with that approach, generic structures defining document types are spec-
ified in Grif without paying attention to any particular application. These generic structures
are made extensible in such a way that they can accept the pieces of generic structure
needed by an application. These pieces of generic structure are called generic structure
extensions (GSE). Such an extension can occur dynamically: an existing document that
contains only the structural elements and attributes defined in the generic structure of its
type may need to be processed by a new application, which then requires an extension of its
generic structure (a GSE). It must also be possible to make several extensions to the same
generic structure, in order to allow a document to be processed by several applications at
the same time.

Dynamic GSEs make it possible to avoid associating to all documents the generic struc-
tures related to all applications: any documents should be allowed to use any application,
but many documents do not use any application at all, or use only a few of those available.

4.2 Implementation

A GSE can define the attributes and the elements required by a given application.

4.2.1 Attributes

In Grif, there are two categories of attributes: global attributes and local attributes. A global
attribute can be associated with any element belonging to an object built with the generic
structure where this attribute is defined. A local attribute can be associated only with certain
types of elements, explicitly indicated in the generic structure (see FileType in 3.2.2).

GSEs can define global attributes and local attributes as well. Global attributes defined in
a GSE are considered as if they were defined in the main generic structure of a document.
That is the case, for instance, for the attributes used by the document comparator: any
element in a document can have these attributes.

In a GSE, local attributes may be associated either with the root element (whatever its
name) defined by the main generic structure or to named elements. Each generic structure



MAKING STRUCTURED DOCUMENTS ACTIVE 69

defines a root element, and so local attributes for the root element can be defined in the
GSE without knowledge of the main generic structure to which the GSE is applied. But
if a local attribute is associated with a named element type, the GSE is not independent
of the main generic structure, as that type must be present in the generic structure; this
kind of extension is not as general as the other ones, but it has been considered useful
for certain applications. Of course, local attributes can also be associated with the element
types defined in the GSE itself.

An example of a local attribute associated with the root element of the main generic
structure is the attribute DocumentDictionary that indicates the name of a dictionary that
the spelling checker must use in addition to the general dictionary of each language: that
attribute allows users to have their own specialized vocabulary and to indicate on the root
element of a document what specialized vocabulary is used in that document.

4.2.2 Elements

A GSE can also define element types, and more specifically associated elements, units and
exceptions (in the SGML sense).

An associated element is an element that belongs to a document, but is not at a fixed
position in the document logical structure: it is not within the document, but it is associated
with it. Typical examples of associated elements are bibliographies, notes or figures: all
these elements may be interspersed in the main text, for instance at the bottom or top of
pages, but they can also be gathered at the end of the document.

A GSE can define new associated elements which are considered as if they were defined
in the main generic structure. That is the case of descriptors and index tables in the electronic
index application. Annotations are also defined as associated elements in a GSE.

Exceptions (in the SGML sense) may be defined in GSEs. Like attributes, they can be
associated with the root element type (whatever its name) or with named element types.
Exceptions are divided into two categories: inclusions and exclusions. An inclusion is an
element type that can occur anywhere within the subtree of an element having the type
with which the inclusion is associated. An exclusion is an element type that must not occur
within the subtree of an element having the type with which the exclusion is associated,
even if this element type is allowed by other type definitions.

Inclusions are used in the GSEs associated with the annotation and index applications.
A new type of element, a paired component (see next section), is defined in each of these
GSEs as an inclusion associated with the root type of the main generic structure. Then these
components can be inserted anywhere within any document that uses the GSE. They are
used for marking the part with which an annotation or a descriptor (and then an indexing
term) is associated (for more details, see [23]).

Inclusions are also used in the cooperative editor, in order to allow elements representing
the user rights to appear at any position in the logical structure of a shared document.

Other kinds of elements may be defined in a GSE, such as units for instance (see [20] for
more details about units). Only the most important are presented in this paper.

4.3 An example

The following GSE specifies all elements and attributes needed by the annotation appli-
cation (for the sake of clarity, some simplifications have been made; all keywords are in
uppercase):



70 V. QUINT AND I. VATTON

STRUCTURE EXTENSION ExtAnnotation;
EXTENS

ROOT + (Annotated_passage_delimiter);
STRUCT
Annotated_passage_delimiter (ATTR !Link_to_annotation =
REFERENCE(Annotation)) = PAIR;

ASSOC
Annotations = LIST OF (Annotation = TEXT);

This specification extends the root element (ROOT) of any document with an inclusion
(+): an element of type Annotated passage delimiter may be inserted anywhere
in the abstract tree of a document that uses the GSE. This element is defined as a paired
component (PAIR) and it has a mandatory (!) attribute called Link to annotation,
which is a reference to an element of type Annotation. Annotations are associated
elements (ASSOC): they are not part of the main document tree, but are related to it by
links. Each annotation contains a character string (TEXT).

This definition specifies a structure such as that of Figure 3, supposing that the main
generic structure of the document defines the types Section and Paragraph.

Annotation
tree Annotations

Annotation

TEXT TEXT

Annotation

Annotated
passage

delimiter i

Annotated
passage

delimiter j

Anotated
passage

delimiter j’

Annotated
passage

delimiter i’

Paragraph Paragraph

SectionMain tree

Paragraph

 

Link to annotation Link to annotation

Figure 3. Structure defined by GSEs

5 DISCUSSION AND EVALUATION

The previous sections have presented the editing tool kit, the External Call Facility and the
Generic Structure Extensions, which are the basic features for developing active document
applications in the Grif system. In this section, we discuss these features and we compare



MAKING STRUCTURED DOCUMENTS ACTIVE 71

them with previous work in the field. To carry out this evaluation, we use the criteria pro-
posed by Terry and Baker [25]: document model, activity specification, activity triggering,
and code location.

5.1 Document model

In Grif, the document model is very rich, representing a document in a structured way,
with a generic structure. Owing to generic structures, the logical structure of a document
is formally defined and is predictable. As we have seen in the example of the filer, the
application knows what elements are in the document and where they are. Using the concept
of generic structure extensions, the application designer can also specify and organize the
elements needed by the application and he or she can be sure that all documents, whatever
their type, will contain these elements. This makes very powerful activities possible, because
applications can work on sophisticated document structures. The index application is a good
example.

The generality of the document model allows many types of applications to be devel-
oped. As the model can describe textual documents, but also equations, tables or structured
graphics, activity can be associated with all these media, even when they are included
in complex documents. It is then possible to activate equations in the same way as in
CaminoReal [4]. Such an application is under development in the Euromath project.

Although it can represent such objects as graphics and equations, the Grif model is not
really multimedia: it has no provision yet for sound or video. So, the voice annotations
included in Scripted Documents [27] are not possible currently. The notion of script is not
available either.

The Grif document model clearly separates presentation from logical structure. This
allows application programs to handle only the logical structure and contents of documents
and to take advantage of the formatting capabilities of the Grif editor and of its presentation
models for handling the graphical aspect of documents.

In many systems, activity in documents is used for improving layout. That is the
case in Quill [6], and to a lesser extent in active Tioga documents [25], where tables of
contents are produced and maintained by active document techniques. That is not the case
in Grif, because many of these layout and presentation functions are considered as standard
functions and are performed by the editor itself, even for “inactive” documents. The P
language allows a document designer to specify in a declarative way how elements must be
numbered [12], what information should be displayed in various views (a table of contents
is simply a view of the document), how cross-references must be displayed and maintained,
etc.

5.2 Activity specification

Activity is specified at two different levels. At the first level, the declarative language I
is used to indicate what editing events concerning what elements are interesting for the
application, and what actions must be performed by the application when these events are
raised. The second level is constituted by the actions, which are procedures written (often
in C) by the application programmer.

There is no constraint on the computations that actions can perform. There is no
restriction on the language in which actions are written, provided that actions can be



72 V. QUINT AND I. VATTON

called from the C language. Actions can perform any function allowed by the surrounding
computing environment and they can also act on documents. They can transform the
structure and the contents of the document for which they work or any other document.
This widely extends the range of applications that can be built.

Activity is specified statically, and there is no way of extending an application at
run-time, as in Interleaf [8]. This is currently a limitation of active Grif documents.

5.3 Activity triggering

Activity may be triggered in a very flexible way. Activity invocation is not restricted to
explicit user actions, such as clicking a button or entering a command, as in many hypertext
systems. Although it is possible to add explicit commands to the Grif editor, most actions
are in fact executed as side-effects of ordinary editing commands.

An action can be associated with any element type, any attribute, any view, any docu-
ment, and it can be triggered on a large variety of editing events, not only when opening
a document or when displaying an element. This is different from CaminoReal [4] which
performs lazy evaluation of equations (equations are evaluated when they are displayed).

As all editing commands provided by the Grif editor can be called both by the user
through the user interface and by the application through the API, a distinction is made
between user-initiated edits and program-initiated edits, in such a way an application can
avoid receiving notifications for edits that it has triggered itself. This is different from
active Tioga documents [25], which notify all events, whatever their origin. The advantage
of distinguishing the origin of events is that an application can mask some events according
to their origin. For instance a syntax-driven editor that reacts to edits in identifiers does not
want to be notified when it changes an identifier itself.

Some deficiencies of the edit notification mechanism described by Terry and Baker [25]
are avoided in active Grif documents. An application receives each atomic edit separately
and it has access to the current document state at any time. Thus it can more easily
understand a sequence of atomic changes. This avoids the problems posed by a list of
changes that are presented to the application globally and that are difficult to interpret.

5.4 Code location

The code of an application is linked to the Grif editor, not to documents. An application is
simply a declaration of events and actions written in the I language and a set of functions
implementing the actions. Declarations of events and actions are compiled and the compiler
produces a module in C. That module and the modules implementing the actions are linked
with the Editor library. Thus, actions are clearly separated from documents and generic
logical structures. This allows active documents to continue to be accessed as ordinary
documents by users who do not use the application. This also allows the free activation and
deactivation of documents.

Adding activity to documents does not imply any change in the documents (actions are
in the editor) nor in their generic structures (required elements and attributes are defined
by GSEs).

Moreover, when an application such as the electronic index has transformed a document,
the elements added by that application remain in the document (passage descriptors, index
tables, hypertext links, etc.) and users of an ordinary Grif editor can use them, for navigating



MAKING STRUCTURED DOCUMENTS ACTIVE 73

through the document using the index tables for instance. But, without the application code,
they cannot update index tables.

Multiple applications can be associated with a single document type; a declaration of
events and actions is simply required for each application. A unique application can also
be associated with multiple document types. Multiple applications can be linked with the
Grif editor. A document can accept multiple GSEs, and then multiple activities. So, new
applications can be added at any time for any document type.

6 CONCLUSION

We have presented the features that have been added to the Grif editor to allow it to support
active documents. We have also described some applications built on these features. In
this presentation we have tried to show how a structured model of documents can help in
designing more powerful applications based on active documents.

It seems that the main differences between our system and other active document
systems previously described come from the document model, and more specifically from
the use of a generic structure. This is an advantage, but for taking all the benefits one can
expect from generic structures, not only extensions to the Grif editor have been necessary,
but also extensions to the generic structures themselves.

In associating activity with structured documents, we have explored the problems of
designing generic structures. We consider that the notion of a generic structure extension
(GSE) is useful for taking advantage of all possibilities offered by structured documents.

Some applications are presented in this paper. Others are under development, such as
the Euromath project, whose objective is to build an environment for mathematicians that
will allow a user to access several applications using Grif as the user interface. Among
these applications are algebra systems, electronic mail and document composition (for
producing TEX documents). This project is based on the concept of documents as user
interfaces presented by Bier and Goodisman [5].

The next step will consist in designing an applicative language that will allow a user to
dynamically develop new applications or to extend existing ones at run-time.

ACKNOWLEDGEMENTS

The authors would like to thank Jean Paoli, Lars Pedersen, Robert Puyol and all the
people from Grif SA who have participated in the fruitful discussions that have led to the
mechanisms and applications presented in this paper.

REFERENCES

1. M. Adiba, C. Collet, P. Dechamboux, and B. Defude, ‘Integrated Tools for Object-Oriented
Persistent Application Development’, Proc. DEXA 92 Conference, Valencia, September 1992.

2. E. Akpotsui and V. Quint, ‘Type Transformation in Structured Editing Systems’, Proceedings
of Electronic Publishing 1992, EP92, C. Vanoirbeek and G. Coray, eds, pp. 27–41, Cambridge
University Press, April 1992.

3. J. André, R. Furuta, and V. Quint, Structured Documents, Cambridge University Press, 1989.
4. D. Arnon, R. Beach, K. McIsaac, and C. Waldspruger, ‘CaminoReal: an Interactive Mathematical

Notebook’, Document Manipulation and Typography, EP88, J. C. van Vliet, ed., pp. 1–18,
Cambridge University Press, April 1988.



74 V. QUINT AND I. VATTON

5. E. Bier and A. Goodisman, ‘Documents as User Interfaces’, EP90, Proceedings of the Interna-
tional Conference on Electronic Publishing, Document Manipulation & Typography, R. Furuta,
ed., pp. 249–262, Cambridge University Press, September 1990.

6. D. Chamberlin, H. Hasselmeier, and D. Paris, ‘Defining Document Styles for WYSIWYG
Processing’, Document Manipulation and Typography, EP88, J. C. van Vliet, ed., pp. 121–137,
Cambridge University Press, April 1988.

7. D. Decouchant, V. Quint, M. Riveill, and I. Vatton, Griffon: A Cooperative, Structured, Dis-
tributed Document Editor, R.R. 20, Bull-IMAG, Grenoble, June 1993.

8. P. M. English et al., ‘An Extensible, Object-Oriented System for Active Documents’, EP90,
Proceedings of the International Conferenceon Electronic Publishing, Document Manipulation
& Typography, R. Furuta, ed., pp. 263–276, Cambridge University Press, September 1990.

9. R. Furuta, V. Quint, and J. André, ‘Interactively Editing Structured Documents’, Electronic
Publishing—Origination, Dissemination and Design, 1(1), 19–44, April 1988.

10. C. F. Goldfarb, The SGML Handbook, Clarendon Press, Oxford, 1990.
11. C. Hamon, Conception orientée objet d’une base de données éditoriale SGML, Thesis, University

of Nancy, France, December 1992.
12. M. Harrison and E. Munson, ‘Numbering document components’, Electronic Publishing—

Origination, Dissemination and Design, 4(1), 43–60, March 1991.
13. ISO, Information processing- Text and office systems - Standard Generalized Markup Language

(SGML), ISO 8879, 1986.
14. ISO, Information processing - Text and office systems - Office Document Architecture (ODA),

ISO 8613, 1989.
15. ISO/IEC, Information Technology - Text and office systems - Documents Style and Semantics

and Specification Langage (DSSSL), ISO/IEC DIS 10179, 1991.
16. L. Lamport, LATEX: A Document Preparation System, Addison-Wesley Publishing Company,

Reading, Massachusetts, 1986.
17. J.-L. Lebrave, ‘L’hypertexte et l’avant-texte’, Proceedingsof Electronic Publishing 1992, EP92,

C. Vanoirbeek and G. Coray, ed., pp. 233–246, Cambridge University Press, April 1992.
18. F. Maraninchi, ‘The Argos Language: Graphical Representation of Automata and Description

of Reactive Systems’, Proceedings of the IEEE Workshop on Visula Languages, Kobe, Japan,
October 1991.

19. V. Quint and I. Vatton, ‘Grif: an Interactive System for Structured Document Manipulation’,
Text Processing and Document Manipulation, Proceedings of the International Conference, J.
C. van Vliet, ed., pp. 200–213, Cambridge University Press, 1986.

20. V. Quint and I. Vatton, ‘Modularity in structured documents’, Woodman’89, J. André & J.
Bézivin, ed., pp. 170–177, Bigre (63-64), IRISA, Rennes, May 1989.

21. V. Quint and I. Vatton, ‘Combining Hypertext and Structured Documents in Grif’, Proceedings
of ECHT’92, D. Lucarella, ed., pp. 23–32, ACM Press, Milan, December 1992.

22. B. K. Reid, A Document Specification Language and its Compiler, PhD thesis, Carnegie-Mellon
University, October 1980.

23. H. Richy, ‘A Hypertext Electronic Index Based on the Structured Document Editor Grif’,
Electronic Publishing—Origination, Dissemination and Design, 7(1), 21–34, March 1994.

24. H. Richy, P. Frison, and E. Picheral, ‘Multilingual String-to-String Correction in Grif, a Struc-
tured Editor’, Proceedings of Electronic Publishing 1992, EP92, C. Vanoirbeek and G. Coray,
ed., pp. 183–198, Cambridge University Press, April 1992.

25. D. B. Terry and D. G. Baker, ‘Active Tioga Documents: an Exploration of Two Paradigms’,
Electronic Publishing—Origination, Dissemination and Design, 3(2), 105–122, May 1990.

26. J. C. van Vliet, editor, Text Processing and Document Manipulation, Proceedings of the Inter-
national Conference, Cambridge University Press, Cambridge, 1986.

27. P. Zellweger, ‘Active Paths through Multimedia Documents’, Document Manipulation and
Typography, J. C. van Vliet, ed., pp. 19–34, Cambridge University Press, April 1988.


	SUMMARY
	1 INTRODUCTION
	2 DOCUMENT-CENTRED APPLICATIONS
	2.1 The Grif structured editor
	2.2 Passive document applications
	2.2.1 Document comparison
	2.2.2 Structure transformation

	2.3 Active document applications
	2.3.1 Annotations
	2.3.2 Electronic index
	2.3.3 Cooperative editing
	2.3.4 Syntax-driven editors
	2.3.5 Filer


	3 EDITOR MECHANISMS
	3.1 Editing toolkit
	3.1.1 Kernel library
	3.1.2 Editor library

	3.2 External call facility
	3.2.1 Notifying the application
	3.2.2 An example


	4 GENERIC STRUCTURE EXTENSIONS
	4.1 Principles of generic structure extensions
	4.2 Implementation
	4.2.1 Attributes
	4.2.2 Elements

	4.3 An example

	5 DISCUSSION AND EVALUATION
	5.1 Document model
	5.2 Activity specification
	5.3 Activity triggering
	5.4 Code location

	6 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

