
ELECTRONIC PUBLISHING, VOL. 6(4), 349–360 (DECEMBER 1993)

A constraint-based editor for linguistic scholars
ROBERT A. MORRIS EDWARD M. BLACHMAN CHARLES MEYER

Department of Mathematics Member of the Technical Staff Department of English
and Computer Science Interleaf, Inc. University of Massachusetts

University of Massachusetts Boston, MA, USA Boston, MA 02125, USA
Boston, MA 02125, USA

e-mail: ram@cs.umb.edu

SUMMARY
A constraint-based interactive structure editor for use by linguists is described. Multiple, inter-
related constraint sets are supported. A novel search mechanism is introduced which modifies
itself locally dependent on document structure as the search progresses.

KEY WORDS Constraint-based Corpus linguistics Markup SGML ICE Text Encoding Initiative

1 INTRODUCTION

Corpus linguistics is a branch of linguistics in which the scholars analyse large collections
of electronic documents. For English there are many such corpora. The earliest and best
known is the Brown Corpus [1]. The Linguistic Data Consortium at the University of
Pennsylvania is collecting several hundred million words of English. The Text Encoding
Initiative (TEI) [2] is specifying SGML Document Type Definition standards for corpus
linguistics, which have already been put to use in the 100 million word British National
Corpus (BNC) [3]. The International Corpus of English (ICE) [4], of which one of us
(Meyer) leads the American effort, is collecting 1 million words of written and spoken
English from each of 15 countries.

To be useful for electronic analysis, documents once transcribed into electronic form
must have some conventional markup inserted to mark the boundaries of whatever linguistic
constructs are to be studied. Some of this markup, such as that implied by the natural
language parsing, can be inserted by parsing programs with, perhaps, a small amount of
human intervention to disambiguate the parse (cf. [5]). When the transcription is of spoken
language, the state of natural language parsing is inadequate to this task, and even for
written text some things do not yield to machine marking. For example, in order to support
correct analyses, mis-spellings may be corrected by a (human) corpus editor, and the corpus
must retain both the original and the ‘normalization’, both suitably marked.

Therefore, perhaps after initial machine markup a document must have markup added
by a human, typically with some linguistic training. This is a time consuming task, prone
to logical errors if done without adequate software. Our program supports the addition of
ICE markup in ways that make impossible the addition or deletion of markup in violation
of constraints defined by the markup scheme, while at the same time permitting the full
editing of the text itself. The constraints are deduced from a hierarchy we have placed on
the ICE markup (none is officially specified), but are easily changed.

CCC 0894–3982/93/040349–12 Received 15 August 1993
1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.

350 R. A. MORRIS, E. M. BLACHMAN AND C. MEYER

Editor constraints are familiar in the structured editor domain. For example, chapters
must not appear inside sections, paragraphs inside other paragraphs, etc. There are many
ways to specify the constraint graphs, including standardized schemes such as SGML, and
there are many familiar editors which are cognizant of those schemes. The most famous
is the Cornell Program Synthesizer. Many structured document preparation systems also
enforce constraints on their structural elements. We wish to describe the experiences we
had in building such an editor for linguists, and to describe what we believe to be some
novel features.

One particular difficulty, whose solution we describe below, is that ICE markup sup-
ports description of speech overlap in spoken transcriptions. The structure of this speech
synchrony information is more limited than in some schemes (see [6] for a survey), but the
result is that there are two overlapping but related constraint sets — one for the synchrony
and one for the linguistic structure.

2 THE CONSTRAINT REPRESENTATION

Our constraint graph is implemented as a set of named categories of tags. In the simplest
case, each category is associated with a list of permitted subcategories. For example, the
category named textblock (a document structuring construction) has members footnote,
marginalia, heading, paragraph and discourse-text and child categories utterance, quota-
tion and pause. The category quotation has children extra-corpus-text, textblock, quotation
and speech in the structure graph. The directed subgraph rooted at textblock is shown in
Figure 1, which implies we could have a document structure like:

paragraph
quote

paragraph
or

quote
paragraph

quote
but not

paragraph
paragraph

quote

A graph like that of Figure 1 or an equivalent finite state machine is frequently used to
parse a document for structural correctness. However, in traditional document processing,
a single parse tree is insufficient if one wishes to treat the document layout in the same
terms as its structure. A common approach for WYSIWYG editors is to deduce layout from
property lists and structure by a hierarchy of special objects throughout the document. Many
commercial systems, e.g., Interleaf, FrameMaker, and some desktop publishing systems
make such a distinction, as do such research systems as Quill [7] and Grif [8].

When layout and structure are to be treated similarly, the difficulty is that hierarchy
relations might overlap one another. For example, pages contain text and paragraphs contain
the same text, but in general, pages can’t contain paragraphs and, conversely, paragraphs
can’t contain pages. Our solution to problems of this sort is to introduce multiple rooted

A CONSTRAINT-BASED EDITOR 351

textblock

quotation

editorial±comment

utterance

Figure 1. Directed subgraph rooted at the textblock category

subgraphs for constraint sets, with each edge coloured to indicate to which constraint set
the subcategory relation belongs.

In ICE markup, the transcription of dialogues containing overlapping speech creates a
requirement for two such colors, one denoting the structure graph and one the synchrony
graph. ICE introduces two kinds of tags to deal with overlapping speech: one which denotes
the start and end of a zone in which overlap occurs, and one which denotes the start and
of end of a particular speaker’s participation in a particular episode of overlap. This latter
causes the turn boundary tag, which is used even in non-overlapping speech to indicate the
onset of each contribution of each speaker, to take on new meaning: namely a speaker’s
contribution to an episode of overlap may not cross a turn boundary. Correspondingly, note
that transcriptions with no overlaps do not require two graphs. Such a transcription, when
fully marked up, can have its structure described with a single parse tree.

In ICE markup, a small overlap might be marked like this:

<$A> I <{_> <[_> thought you might <[/> not

<$B> <[_> you thought I might what <[/> <{/>

<$A> Oh, never mind.

In this fragment, <$A> and <$B> identify speakers A and B, and the tags <{ > and <{/>
indicate the start and end of the collection of overlapping strings. The tags <[> and <[/>
indicate the start and end of particular overlapping strings. For more detail on complexities
not present in such a simple overlap, see our paper [6], For simplicity, we have omitted an
ICE tag required at each speaker turn boundary which includes a serial number to facilitate
text searches. Also, see below for the visually simpler way we present this overlap to users
of our system.

Aside from its root, only three categories lie in the synchrony graph, each containing
a single member. The first of these, overlapping-set, contains only the tag type also called
overlapping-set. Such tags mark the boundaries of a conversation with overlap. The speech
category contains the tag type called speaker-id. speech nodes lie in both the structure

352 R. A. MORRIS, E. M. BLACHMAN AND C. MEYER

textblock

quotation

editorial±comment

utterance

structure±root

speech

speech±root

overlapping±string

overlapping±set

Figure 2. A doubly rooted subgraph of the full category graph

graph and the synchrony graph (when it is present). Finally, the overlapping-stringcategory
contains only the tag type marking the boundaries of particular overlapping strings. It too
can lie in the structure graph, but in this graph its only child is the somewhat trivial category
editorial-comments. Although ICE distinguishes several types of editorial comments, they
all reflect the addition of text to that under analysis. They can appear virtually anywhere in
a document. See Figure 2 for a fragment of the category graph, which, however, contains
the entirety of the synchrony (‘red’ or dotted line) graph and its connections to the structure
(‘black’ or solid line) graph.

Categorizing tags in this fashion also has benefit for the user, who can internalize a
smaller set of objects than the entire ICE tag set. To enforce the hierarchy, the user is
never presented with a menu containing anything other than tags which meet the hierarchy
constraints. We accomplish this with the algorithm below. An element is a string that
contains at least a start-tag which identifies the element. Where the constraints allow the
element to have content, the start-tag can be followed in the string by a mixture of text
and other elements — which other elements can occur is dictated by the constraints —
followed finally by an ending tag. Some tags are self-closing, in which case the inner
content is empty. In SGML terms, to say that the inner content meets the constraints is to
say that it satisfies the content model of the element.

2.1 Algorithm for tag menu

Define a region as a substring of the tagged text. Regions are denoted by a left edge and a
right edge. Any point in the text is in fact also a 0-length region, denoted by left and right
edges that match that point.

1. In each graph, the parent of a region is the first start-tag to the left of the region
whose end-tag is to the right of the region, provided that the category of the start-tag
has subcategories in the graph of interest. If there is no such tag, the parent is nil.

A CONSTRAINT-BASED EDITOR 353

2. For each graph, consider for creation the subcategories of the category of the parent
in that graph. If the parent is nil, use the subcategories of the graph’s root. If the
region is non-nil, further winnow the set of categories by using only those that can
validly parent all top-level elements in the region.

3. For each category offered, generate a pullaside submenu listing all members of that
category.
In response to the choice made, the software drops a start-tag at the beginning of the
region and, unless the element can contain no content, a corresponding end-tag at
the end of the region. Where necessary, elements within the region are re-parented
to the new element.

In practice, a user does not tag an empty document whose text gets entered interactively,
but rather an unmarked text which has been produced by optical scanning, by transcription,
or obtained electronically. In this case, the user selects a string for tagging (our selection
mechanism forces this to contain only text and complete elements even if the user attempts
to select a partial element) and the above algorithm is applied.

3 REMARKS ON IMPLEMENTATION

We built our editor on top of Interleaf Release 5.3 software. This is a commercial, exten-
sible, object-oriented compound document editing system based on Lisp. The extension
facilities have been described elsewhere [9]. The user inserts tags which are chosen from a
hierarchical popup menu (an extension of the standard one), which appears when the appro-
priate mouse button is pressed. At each point in the document, only choices consistent with
the constraints and the current markup are offered, using the algorithm described above.
Taggers begin by initiating an Interleaf session. This gives them a desktop-metaphorical
view of their filesystem. They select a corpus text and open it; this gives them a view of
their text as a normal Interleaf document. The behavior of the editor is, in most respects,
identical to that of the standard Interleaf software; however, in areas where a tagger would
expect help (e.g., selection behavior and creation menus), the editor has been enhanced
along the lines described above. Eventually the tagging is finished, and the tagger saves the
document, at which point a new version of the corpus text is created, tagged according to
the tagger’s instructions.

One appeal for us of Interleaf software as a foundation is its extensibility. Document
objects, the objects which give them structure and the mechanism for dealing with content
and structure objects are available to the programmer in an object system with extensive
subclassing facilities. The starting point for altering or extending behaviors is the docu-
ment’s class. Each document has a default class, which is used unless the document instructs
otherwise when the system first notices it (typically at startup). We created a new document
subclass, which gave us a hook on which to hang the other changes we made.

Editing interfaces are controlled by editor objects, which manage various parts of the
user interaction, including menus and selection behavior. Our documents use specialized
subclasses of the generic document-, text- and table-editor classes, as each of those controls
a domain in which we implement changes.

To represent tags we use Interleaf’s ‘inline components’. These are named paragraph-
like objects which can appear in arbitrary positions in text and can have in them most
kinds of Interleaf document objects, including text, graphics, or other inline components.

354 R. A. MORRIS, E. M. BLACHMAN AND C. MEYER

Within those components, we add a mnemonic representation of the tag as plain text,
so that if the tags are (optionally) displayed, the user can understand the tagged structure.
However, these tags need special behavior. For example, the mnemonic text in them must be
uneditable, and their cut behavior is constrained. We subclass the native inline component
class to implement these behaviors. In order to support real-time computation of the context
sensitive menus, the hierarchy of tags is represented by Lisp data on the tags.

Finally, the constraint graphs are stored as a list associating category names and struc-
tures. Each category structure contains its list(s) of subcategory names, and a list of its
members; each of which is in fact a structure describing the element in more detail.

4 PROBLEMS ARISING FROM THE UNDERLYING SYSTEM

Originally based on the MIT Etude project [10], and first offered for sale in 1984, Interleaf
software was one of the earliest commercial WYSIWYG compound document systems. It
was externally object-oriented from the beginning, with a rigorous noun-verb model for its
user interface. However, it was not made fully extensible until the current major release
(5.x), first available in 1990.

Because the object programming subsystem was a late addition to a mature body of
code, it has quirks that betray the interactive assumptions underlying the substrate. Consider
searching, for example. In an interactive editor, it makes sense that each time a search is
successful, the user’s view of the document would be repositioned to show the object that
was found. It also makes sense in this context that the user’s view would give feedback
on the state of the document at the given point (cursor location, font data, and so on).
For our purposes, however, searching was just a way to build up information about the
document — something that needed to be done quickly and without affecting the user. When
we attempted to use the built-in search code, this clash of requirements made our initial
efforts quite . . .flashy. The builders were not unaware of the need to suppress these display
effects. However, the mechanisms they added to suppress display are neither complete
nor uniform across subsystems. They ultimately proved insufficient to suppress distracting
screen pyrotechnics in our case, so we rewrote the search code from scratch, abandoning
the native search primitive. The net result is no faster than the original — but because it
involves no screen redisplay, it’s no slower either, and it eliminated the distraction of the
earlier approach.

In other areas, the programming subsystem is incomplete. For instance, it does not
include a general persistent Lisp handle on document objects. While there is a cross-
referencing mechanism in the software, it is limited to page and autonumber references and
is not accessible for general objects. Therefore, we subclassed the standard document class
to provide a special open method which reconstructs the tag hierarchy transparently to the
user. As a Lisp object, every tag can be referenced and in Lisp every object has a print
representation. In the case of components, this is essentially a string representation of its
memory address. We store this name on the tag object so that it can be found at document
open time. (Searching the document for inline components is an inexpensive operation.)
Using the names, we recreate the links describing the hierarchy. At the same time, we
rename the object to correspond to its current internal name. This is done to prevent a name
collision should a new tag be created whose internal name happens to be the same as that
which the given tag had in a previous open incarnation of the document.

A CONSTRAINT-BASED EDITOR 355

Cutting and pasting reveal another area of incompleteness. It is not possible to access
or examine document objects on the Interleaf clipboard, but we need access to those
objects, because pasting an element must be permitted only if that element meets the
hierarchy constraints at the point of paste. Therefore, we introduced a ‘pseudo-clipboard’
(pcb), a more-or-less ordinary Interleaf document in a well-known location, and provided
our editor objects with special cut and paste methods which put the cut objects onto the
pcb instead of the system clipboard. Except during debugging, the pcb is normally an
invisible document, which aside from display and input behaves in all respects like any
other document. (However, when made visible for debugging purposes, cutting from an
ICE document has the startling effect of making the cut text appear in the pcb with no
further user interaction.) Because the pcb, like all open Interleaf documents, has its own
internal name space, we faced a similar issue to that described at document-open time.
When tags return to the document from the pcb after a paste operation, Lisp references
to internal Lisp objects (e.g., to the hierarchy parent of a tag, to its corresponding end-tag
if it is a start-tag, etc.) have been invalidated. (This would also happen with the native
clipboard.) Thus, if the paste code determines that an element may be pasted, after doing
so all its tags must have their references corrected in a manner similar to the corresponding
problem at document-open time. However, in this case, searches can be restricted to the
(usually small number of) tags in the text being pasted.

5 OVERLAPPING SPEECH AND TABLES

A characteristic of spontaneous dialogues is that speakers often overlap each other in time,
and the precise nature of these overlaps is of interest to linguists for a number of reasons.
For example, exactly how the floor is yielded may depend on what is being said and who
is saying it.

Linguists have attempted many representation schemes to assist with this task. Else-
where [6] we have characterized those schemes in two broad classes: those which are
representationally complete in the sense that the overlap is algorithmically determinable
from the representation and those which are visually faithful in the sense that it is easy
to see what the overlap is. We wanted a scheme with both attributes, so we settled on a
music-like notation, with vertical time axis.

Although some schemes support more precise timing indication, ICE markup demarks
only the onset and end of overlap. Therefore, we do not need as much information as would
be conveyed by music notation, and we found it adequate to use traditional tables, with
some information conveyed by rule thickness. This allowed us to base our implementation
on the Interleaf table package with only minimal modifications.

An example is in Appendix A. Each speaker’s turns are outlined with heavy rules. Each
overlapping string (in ICE terminology) is outlined with a normal rule. Speech proceeds
downward through the column, one column for each speaker. No reasonable table package
will have consequential limits on the number of rows or columns, but of course if there are
too many speakers reasonable display becomes impossible. In practice, there are seldom
more speakers — say four or five — than fit on a turned page.

Several interesting problems arose for us in dealing with the tabular representation we
chose. First, searching in Interleaf tables is row oriented, but in computing constraints we
must search the current graph in column order, throughout the turn of a given speaker.
Second, different things have to happen at the boundary of an overlapping string (i.e., a

356 R. A. MORRIS, E. M. BLACHMAN AND C. MEYER

table cell), at a turn boundary (i.e., a cell whose top or bottom rule is thickened) and at the
boundary of a table itself. To do this, we implemented a context sensitive search mechanism
we describe in the next section.

The Interleaf table editor is quite easy to manipulate, but at this writing, we have not
fully integrated the tabular representation shown in Appendix A with the tagging for speech
described above. There are some interesting UI issues about whether tag insertion should
be done on the fly as the table is interactively edited, on request of the user, upon exit from
the table, closing the document, or perhaps upon some other event. Our user experience
with the tabular representation is presently too limited to offer opinions on these questions.

6 CONTEXT SENSITIVE SEARCHING

Our solution to searching through a heterogeneous compound document consists of two
constructs: a context for the search and a continuation strategy.

The context of a point in the document is a list of search context predicates which
return true when applied to that point. These predicates come from a list, which includes
things like is-at-table-end, is-at-row-end, is at-column-end, etc. Our present list of possible
contexts is dedicated to searching in tables, but the mechanism can be used with any
predicate expressible in Lisp. (Typically such predicates would answer questions about the
given point in the document, but the mechanism is fully general.)

A continuation strategy is simply a Lisp function which accepts a point in the document
and a direction and returns a new position in the document at which processing should con-
tinue given the original point and direction. For example, the strategy table-continuation-
strategy returns a point in the first component of the next cell in the appropriate direction,
whereas table-exit-strategy returns a point outside the table (if there is one). Because a con-
text can have multiple predicates, arbitrarily complicated predicate logic can be performed
to select a continuation strategy from the context. In our searches column-wise through
tables this logic is very simple. However, one could imagine, say, selecting a particular
strategy if a document point is in an equation and is in a graphics frame and is inside a circle
containing the equation or is on an odd page . . . In general, the list of possible predicates
and the logic for selecting a search continuation strategy from a context should be regarded
as a property of a document or class of documents.

7 ICE, TEI, AND SGML

We started our project with the Text Encoding Initiative in mind, but as we focused on the
ICE we spent more time on the needs defined by their markup scheme and less on the more
daunting problem of general SGML solutions. ICE devised its own non-TEI (and therefore
non-SGML) markup because (a) they wanted to proceed while TEI’s work was still very
much in progress, and (b) there is a perception among linguists that SGML is difficult and
complex. However, some preliminary TEI-conformant DTDs for ICE markup have been
written, and some such DTD is likely to become an official part of the ICE effort.

Accordingly, while our system is not restricted to ICE markup, it is not a general
solution to the SGML tagging problem. In large part, this comes from our concept of
category, which, although useful in this context and perhaps beyond, is a semantic notion
that goes beyond what can be seen in most SGML applications.

A CONSTRAINT-BASED EDITOR 357

In SGML terms a category can be thought of as an ‘or-group’ of elements. Any constraint
on descendants (‘content model’) that allows one member of a category allows all of its
members; and all members share a content model that allows 0 or more occurrences, in any
order, of text or any member of the category’s child-categories.

However convenient we may have found categories, and however well they map to
ICE’s ideas regarding the markup of speech transcriptions, most SGML DTDs are not
‘categorical’:

• aside from EMPTY or text-only elements, few element types share identical content
models;

• sharing content models is rarely linked to interchangeability in the content models
of other elements; and

• most content models are more prescriptive than the ones described above in terms of
the order and number of elements needed for their satisfaction.

We expect that some part of our future work will be devoted to more robust SGML-
compatibility.

On the other hand, some of what we’ve done is near the frontiers of SGML work to
date. For instance, our notion of multiple graphs is basically the same as the SGML feature
CONCUR. The feature itself is controversial within the SGML community, but the issues
faced in grappling with it apply to any system that attempts to approach its functionality. In
particular, although the TEI chose not to use CONCUR for its model of speech transcription
markup, the scheme it chose presents the same problems to editing software as would a
CONCUR-based scheme. Also, we’ve encountered constraints in ICE markup that are not
easily expressible in SGML. For instance, overlapping stringsare found only within speaker
turns, but only when those speaker turns are themselves found inside a zone of overlap.
There is no straightforward way to express this kind of constraint in SGML, depending as
it does on both the parent and the grandparent of any given location in the text.

Meanwhile, the linguists’ perception of SGML as difficult and complex remains a
stumbling block to its acceptance in this community. Part of the answer here lies in software
like ours, which hides the syntactic complexity behind a task-oriented user interface.
Another future endeavor for us will be an interactive constraint generator — a tool whereby
linguists can develop tagging schemes to meet their needs without having to learn the
complexities of SGML’s DTD syntax.

8 FUTURES

We plan to implement these features next:

• TEI DTDs
In accordance with our initial goals, we plan to write software that accepts at
least some TEI DTDs and generates our internal constraint representation, which
is presently hand-generated. Although one of us (Blachman) has substantial SGML
experience, we do not know how difficult this will be.

• Interactive constraint generator
Although we believe TEI is likely to be widely adopted, many corpus linguists find
SGML daunting, complex and obscure. The TEI documentation itself is tens of

358 R. A. MORRIS, E. M. BLACHMAN AND C. MEYER

times longer than that of the admittedly often naı̈ve markup schemes invented by
linguists with little experience of electronic document processing. This has led to
TEI documentation which is precise and of high utility to computer scientists, but
opaque and shunned by many linguists already using their own schemes. We hope to
provide graphical tools by which a linguist can easily specify tag hierarchies which
would automatically generate our constraint representation. Ideally, such software
would in fact generate a TEI conformant DTD and, from that, our constraints.

• Automatic tagging, analysis tools
Some tagging can be done semi-automatically with relative success, leaving the
tagger to make only minor corrections. For example, sentence boundaries can con-
servatively be assumed to be any period-terminated text, leaving the user only to
correct mistagged abbreviations and perhaps some numerical text. We have already
written simple Lisp which traverses an Interleaf document and applies at every word
boundary an arbitrary Lisp function given as argument, and we believe this may be
sufficient for a lot of semi-automatic tagging.
The same function provides a base for building interactive or batch analysis tools. Any
linguistic question which can be answered by computations done at word boundaries
will yield to this approach. As a trivial example one can implement a word counter
in this way: the function is merely the incrementing at each word boundary of an
integer variable. We intend to investigate whether more interesting tools can be built
on this simple foundation.

9 SOME ABANDONED IDEAS

9.1 Incomplete elements

During most of our development, we were content to permit incomplete elements to exist
in the document, that is, to allow a start-tag without its corresponding end. Here we are not
referring to markup minimization in the cases where an end-tag is deducible from context.
Rather, we implemented separate facilities for dropping start-tags and end-tags, the latter
being offered only when there were start-tags with no corresponding end-tag. These are
not fundamentally different constraint calculations, and the added code was only about a
dozen lines. However, the complexities of computing reasonable cut and paste constraints
in the face of unclosed tags led us to always drop a corresponding end-tag when we drop a
start-tag, and to force each selection automatically to contain complete elements.

9.2 Milestones

Before we settled on the tabular representation of speech overlaps, we implemented a
milestone approach. The user could drop numbered tags to indicate specific points of
synchrony in each speaker’s turn in a dialogue transcription. Although the software support
was simple, it proved cumbersome for the tagger, who had no visual feedback to help
find the appropriate milestone. Since the position of the milestone tags was arbitrary and
determined by the amount of text between milestones, the tagger had to keep mental or
paper track of the milestone id corresponding to a particular point in time.

A CONSTRAINT-BASED EDITOR 359

10 SUMMARY

We have built a constraint-based interactive editor for linguistic markup which computes
legal markup by analysing the current state of the document markup and comparing it to a
constraint graph. To do this computation, we color the edges of multiple rooted constraint
sub-graphs and take particular care at nodes lying in several colored subgraphs. To support
searching through the document to verify constraints, we introduced a context-sensitive
search mechanism based on predicates which are evaluated as the search comes to the
boundaries of various pieces of the document structure.

REFERENCES

1. H. Kucera and W.N. Francis, Computational Analysis of Present-DayEnglish, Brown University
Press, 1967.

2. C.M. Sperberg-McQueen and L. Burnard, ‘Guidelines for electronic text encoding’, Technical
report, (1992). Available from the TEI Listserver (listserv@uicvm.bitnet).

3. G. Burnage and D. Dunlap, ‘Encoding the british national corpus’, 79–96, (1992).
4. S. Greenbaum, A New Corpus of English: ICE, 171–179, Lund University Press, 1980.
5. H. van Halteren and T. van den Heuvel, Linguistic Exploitation of Syntactic Databases, Rodopi,

1990.
6. C. Meyer, E.M. Blachman, and R.A. Morris, ‘Can you see whose speech is overlapping’, Visible

Language. to appear.
7. D.D. Chamberlin, ‘Managing Properties in a System of Cooperating Editors’, in Proceedings

of the International Conference on Electronic Publishing, Document Manipulation, and Typog-
raphy (EP90), ed., R. Furuta, volume 1, 31–46, Cambridge University Press, Cambridge, UK,
(September 1990).

8. V. Quint and I. Vatton, ‘Grif: an interactive system for structured document manipulation’, in
Proceedings of the International Conference on Text Processing and Document Manipulation
(EP86), ed., J.C. van Vliet, 200–213, Cambridge University Press, Cambridge, UK, (1986).

9. P.M. English, E. Jacobson, R.A. Morris, K.B. Mundy, S.D. Pelletier, T.A. Polucci, and H.D.
Scarbro, ‘An Extensible, Object-Oriented System for Active Documents’, in Proceedings of the
International Conference on Electronic Publishing, Document Manipulation, and Typography
(EP90), ed., R. Furuta, 263–276, Cambridge University Press, Cambridge, UK, (1990).

10. M. Hammer, R. Ilson, T. Anderson, E. Gilvert, M. Good, B. Naimir, L. Rosenstein, and
S. Schoichet, The implementation of Etude, an integrated and interactive document produc-
tion system, ACM Press, New York, 1981.

360 R. A. MORRIS, E. M. BLACHMAN AND C. MEYER

APPENDIX A: TABLE REPRESENTATION OF OVERLAPPING SPEECH

Bob Ed Chuck

����!�� �� %�!&��%� %��%� �

����%� �� � ����!�� ��'�� ���

�)"��%� �� *!&� $� ��� %��$

�!# � ��

������ (�� ���� �� "!(�#

����&#�� � �� �� �!&�� �%

�� �$�� %��� �� &$�#�"%�

�� ��'�� �� �!"*� (�%�� ��� ������ %��%�$� !%� �� "#!�+

����� �

��'�� �� �!"*� ��#�� � �� (�

�� � (!#�� ! � %��%�� �!� *!&

��'�� �%� (�%�

&%� �%� �$� � � !��� ! ��

� �

*!&�� �� ��� �%� �#� �

�� %�� �� (�� ���� ��%%�#

$%�#%� �#�$��

!!��� ��%�$� $%�#%�

��$�� ��%�$

��*�� ��#��$� ��&���� ��

��&���

��� (� %� %!� ���% ���� ��&���

%��� 	&�&$%� ��%�� ����+

�� ��� ��%�$� ��%� %!� (!#�

��� �&*$�� �!##*� ���� ��%��

��� ���� �� "!(�#� ����&#��

�!&� %!!�

��$�

	SUMMARY
	1 INTRODUCTION
	2 THE CONSTRAINT REPRESENTATION
	2.1 Algorithm for tag menu

	3 REMARKS ON IMPLEMENTATION
	4 PROBLEMS ARISING FROM THE UNDERLYING SYSTEM
	5 OVERLAPPING SPEECH AND TABLES
	6 CONTEXT SENSITIVE SEARCHING
	7 ICE, TEI, AND SGML
	8 FUTURES
	9 SOME ABANDONED IDEAS
	9.1 Incomplete elements
	9.2 Milestones

	10 SUMMARY
	REFERENCES
	A: TABLE REPRESENTATION OF OVERLAPPING SPEECH

