
ELECTRONIC PUBLISHING, VOL. 6(4), 373–383 (DECEMBER 1993)

Transformation of structured documents with the
use of grammar
EILA KUIKKA MARTTI PENTTONEN

University of Kuopio University of Joensuu
P. O. Box 1627 P. O. Box 111
SF–70211 Kuopio, Finland SF–80101 Joensuu, Finland

email: kuikka@cs.uku.fi email: penttonen@cs.joensuu.fi

SUMMARY
In structured text processing systems the need for transformation of document instances is
obvious if the structure definition of the document type changes. This article presents a trans-
formation method with the use of an extended syntax-directed translation schema and its
implementation to certain modifications in a syntax-directed document processing system cre-
ated by the authors. The method uses grammars to define both the structure of documents and
transformation between structures.

KEY WORDS Type transformations Structured documents Syntax-directed translation schema

1 INTRODUCTION

One of the difficulties encountered in structured document processing systems is how to
transform the corresponding existing document instances whenever a user has to change the
generic structure definition of these documents. So far only few studies and implementations
concerning these static structure transformations of documents have been carried out. These
modifications are employed in a range of documents with similar structure. In References
[1,2], and [3] transformations can be considered as type transformations because they
define a new form for elements of the structure for future processing of the document. In
References [4,5], and [6] transformations group all the existing elements of the document
in a new way and they add new elements to the structure for the use of the layout or
view processing of this document. Another group of structure modifications are dynamic
transformations that occur when the structured editing only changes a document instance,
not its generic structure. They can be perceived as a structured editing of a single document.

The aim of our research is to develop a syntax-directed document processing system
that uses grammars and their parse trees for inputting, updating, and outputting as well
as storing and retrieving documents. The system is meant to be declarative in the sense
that the user is asked only to define what he wants and does not have to know how to
achieve it. Hence, the system should support the user as much as possible. In the research
carried out so far as well as in the development of the whole system, the target has been to
focus on the principle of the grammar-based processing as far as possible throughout the
implementation without any ad hoc extensions. In the first part of the study, a prototype of a
syntax-directed document processing system was designed and tested (see Reference [7]).

CCC 0894–3982/93/040373–11 Received 15 August 1993
1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.

374 E. KUIKKA AND M. PENTTONEN

Its aim was to input and output structured documents with the use of grammars and a
syntax-directed translation schema.

The present report describes the initial step in the study: how static structure modi-
fications such as type transformations should be made in the syntax-directed document
processing system mentioned in the previous paragraph. On the basis of the examination
of a range of documents in a variety of environments, for example articles in different
journals and letters in sample offices, it has been observed that the following modifications
of document instances are most commonly found: reordering of elements, adding a new
element, deleting or renaming an element, and changing features of elements. More com-
plex transformations, such as relocating a nonterminal in a parse tree or adding a layer to
and removing a layer from a parse tree are also required as well as grouping elements in
a new way. The methods based on pair grammars and rewrite rules (see Reference [1]),
coordinate grammars (see References [4] and [5]), attribute grammars (see Reference [6])
or tree operations (see Reference [3]) have been used for complex modifications. This
report is restricted only to the simpler modifications; the implementation of more complex
transformations is the next step in our research.

2 SYNDOC: SYNTAX-DIRECTED DOCUMENT PROCESSING SYSTEM

The prototype of the syntax-directed document processing system, called SYNDOC and
created by the authors, uses modified context-free grammars similar to grammars in Ref-
erence [8] to define the hierarchical logical structure of a class of structured documents.
Nonterminals of the grammar represent the elements of the document, whereas terminals
comprise the content of the document. In addition to BNF of the context-free grammar, it
is possible to define whether an optional element in the structure appears once or not at all
and also to define two kinds of iterations. In one of the iterations, elements appear zero or
more times while in the other one or more times. Grouping of elements as in grammars of
Reference [8] is possible with the use of an additional nonterminal.

The processing of the document is implemented with the use of a syntax-directed
translation schema. A grammar, the input grammar in this case, is used in the input phase
of the text to expand incrementally the parse tree of the document. Another grammar, the
output grammar, is used to generate the layout of the document. These two grammars are
coordinated. They have the same nonterminals arranged in the same order. Many output
grammars can be defined for one input grammar, which makes it possible to get different
kinds of output of the same document.

At present, the internal as well as the external representation of the document is the
parse tree for the input grammar. Because the implementation of SYNDOC is made in
Prolog, the parse tree of the document is represented by a Prolog term whose nesting
structure describes the hierarchy of the document structure.

3 DEFINITION OF THE STRUCTURE TRANSFORMATION

The aim of the study reported in this article was to implement static structure transformations
with the use of the idea of compiling with a syntax-directed translation schema (Figure 1).
First, the old and new input grammars are compared to form a translation grammar. The
process would need the user’s interruption only when the user renames nonterminals. The
order of rules of the translation grammar is coordinated by the old input grammar which

TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 375

Grammar NewGrammar

Translation grammar

Document NewDocument

�
�

�
�

�
�

�
�

�
�

�
�

- �

�-

?

?

?

Comparator

Generator

Compiler

Figure 1. The architecture of the modification system

helps to avoid the problems of nondeterminism in parsing. Second, the compiler which is
to perform the actual transformation is generated from the translation grammar. Third, the
actual transformations of all the similar types of documents are made by the compiler.

The input grammar is a modified context-free grammar as was mentioned in Section 2.
The translation grammar is an extended syntax-directed translation schema (ESDTS). The
extension has been made by changing the notation defined in Reference [9] so that on the
left side of the ESDTS rule there are two nonterminals, the names of the nonterminals on
the left sides of the new and old grammars, separated by a semicolon and at the end of the
grammar rule there can be semantic actions like in attribute grammars [10] to provide the
renaming of nonterminals. Semantic actions are given in braces. On the right side of ESDTS
rule there are the right sides of the new and old grammars separated by a semicolon. If any
rule in either the old or new grammar has no corresponding rule in the other grammar, the
missing part placed on the right side of ESDTS rule is marked as an empty string by "".

In order to clarify the above description let us consider the following example. The
original input grammar rules for a letter with the use of our notation are:

letter -> receiver content sender.
receiver -> text.
content -> text.
sender -> text.

and the new input grammar rules are:

letter -> sender receiver body sign.
sender -> text.
receiver -> text.
body -> text.
sign -> text.

376 E. KUIKKA AND M. PENTTONEN

The transformation is meant to change the place of the nonterminal sender, rename
content to body and add a nonterminal sign as a new element to the letter. The
ESDTS rules for the transformation of letter instances are as follows:

letter ; letter -> receiver content sender ; sender receiver body
sign { content = body }. sender ; sender -> text ; text. receiver ;
receiver -> text ; text. content ; body -> text ; text. sign ; sign -> "" ;
text.

From the ESDTS grammar we generate definite clause grammar (DCG) rules (defined,
for example, in Reference [11]) that form our compiler program. The following DCG is
generated from the above ESDTS.

letter(letter(A,B,C),letter(D,E,F,G)) -->
sender(C,D),receiver(A,E),body(B,F),sign(H,G). sender(sender(A),sender(B))
--> text(A,B). receiver(receiver(A),receiver(B)) --> text(A,B).
body(content(A),body(B)) --> text(A,B). sign(sign(A),sign(B))
--> {B = sign}. text(text(A),text(B)) --> {A = B}.

Let us consider, for example, the first DCG rule. The nonterminal letter on the left
side of the DCG rule has two parse tree arguments, namely letter(A,B,C), and
letter(D,E,F,G), the former one for the old parse tree and the latter one for the new
parse tree. These parse tree arguments have arguments A, B, and C and further D, E, F, and
G. The arguments A, B, and C correspond to the nonterminals on the right side of the rule in
the original input grammar and the arguments D, E, F, and G to the nonterminals on the right
side of the rule in the new input grammar in the order defined in the original grammar rule.
The old input grammar rule of this example comprises three nonterminals (receiver,
content and sender) and the new input grammar rule four nonterminals (sender,
receiver, body and sign). Thus, the argument A corresponds to the nonterminal
receiver, B corresponds to content, and so on, whereas the argument D corresponds
to the nonterminal sender, E corresponds to receiver, and so on. The nonterminals
on the right side of the DCG rule correspond to the nonterminals of the right hand side
in the new input grammar (sender, receiver, body and sign), and further their
arguments are partly the same as arguments of the parse tree arguments on the left side of
the DCG rule. A pair of arguments on the right side of the DCG rule informs which of the
nonterminals of the old and new input grammars correspond to each other. For example,
a pair C, D indicates that the third argument of the old parse tree corresponds to the first
argument of the new parse tree and produces the reordering of the sender nonterminal.
If an argument does not have a corresponding argument on the other side of the DCG rule,
for example H, then the other argument of the pair corresponds to a nonterminal that is
either added, like sign in this example, or removed.

If there are optional nonterminals or list of identical nonterminals in the input grammars,
extra rules are generated into the DCG to overtake their processing as can be seen in the
example given in the next section.

4 THE TRANSFORMATION OF A SIMPLE ARTICLE INSTANCE

In this section a more difficult example to transform a simple article from one structure to
another will be demonstrated. The original grammar rules for a simple article could be as
follows:

TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 377

article -> authors [date] title content.
authors -> author.
author -> text.
date -> text.
title -> text.
content -> abstract (section)*.
abstract -> text.
section -> heading paragraph.
heading -> text.
paragraph -> text.
paragraph -> (itemize)+.
itemize -> text.

In the hierarchical representation of this sample article, article, the root element
of the document, has such components as authors, date, title, and content. The
date is optional and is placed in brackets. The element authors contains a component
author and the element content comprises components abstract and a list of none
or more components calledsection. Further, the elementsection contains components
heading and paragraph. The element paragraph can be a componenttext or a list
of one or more components calleditemize. The componenttext implicitly is a character
list, the actual content of an element. Figure 2 represents an article instance according to
the above grammar displayed in the document window on the screen of SYNDOC system.
The left hand side of the screen informs about the structure of the document, the right hand
side indicates the contents of the corresponding elements of the document.

The parse tree (without full contents) of this document instance is the following Prolog
term:

article(authors(author(text(‘Eila...’)),
’[date]’(text(‘9.11..’)),
title(text(‘Transformations...’)),
content(abstract(text(‘The need...’)),

[section(heading(text(‘Introduction’)),
paragraph(text(‘The aim...’))),

section(heading(text(’Modifications’)),
paragraph([itemize(text(’reordering...’)),

itemize(text(’deleting...’)),
itemize(text(’adding...’)),
itemize(text(’renaming...’)),
’itemize+’])),

’section*’])).

The lists are represented as Prolog lists. The new grammar rules could be as follows:

article -> title writers date body bibliography. writers ->
(author)+. author -> text. date -> text. title -> text. body -> abstract
(section)+ acknowledgement. abstract -> text. section -> [heading]
(paragraph)+. acknowledgement -> text. heading -> text. paragraph -> text.
paragraph -> (enumerate)+. itemize -> text. enumerate -> text.
bibliography -> (item)+. item -> text.

378 E. KUIKKA AND M. PENTTONEN

Figure 2. A document instance of a simple article

There are many differences in the grammars represented above. The transformation is
supposed to perform the following actions:

• change the place of the nonterminal title,
• rename and and change the place of the nonterminal authors, the new name being
writers,

• rename the nonterminal content with the new name body,
• change the optional nonterminal date to a compulsory one,
• add a new nonterminal bibliography to the article (this nonterminal is a list of

one or more item nonterminals that contain the text of the item),
• change the single nonterminal author to a list of one or more nonterminals
author,

• change a list of null or more section elements in such a way that at least one
element has to be on the list,

• add a new nonterminal acknowledgement to the body of the article,
• change the compulsory nonterminal heading of the section to an optional one,
• change the nonterminal paragraph to a list of one or more paragraph nonter-

minals, and
• change a list of one or more itemize nonterminals to a list of one or more
enumerate nonterminals.

TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 379

The ESDTS rules for the transformation of this simple article instance are as follows:

article ; article -> authors [date] title content ;
title writers date body bibliography
{authors = writers, content = body }.

authors ; writers -> author ; (author)*.
author ; author -> text ; text.
date ; date -> text ; text.
title ; title -> text ; text.
content ; body -> abstract (section)* ;

abstract (section)+ acknowledgement.
abstract ; abstract -> text ; text.
section ; section -> heading paragraph ;

[heading] (paragraph)+.
acknowledgement ; acknowledgement -> "" ; text.
heading ; heading -> text ; text.
paragraph ; paragraph -> text ; text.
paragraph ; paragraph -> (itemize)+ ; (enumerate)+

{itemize = enumerate }.
itemize ; enumerate -> text ; text.
bibliography ; bibliography -> "" ; (item)+.
item ; item -> "" ; text.

From the ESDTS rule DCG rules are generated and they form the compiler program
for all document instances of type similar to the document in Figure 2. The whole compiler
program is represented in the Appendix.

To illustrate the processing of optional and list elements let us consider two examples.
First, as it can be seen in the Appendix, from the rule:

article ; article -> authors [date] title content ;
title writers date body bibliography
{ authors = writers , content = body }.

the following three DCG rules are generated:

article(article,article)-->!.
date(’[date]’(_27173),date(_27171))-->

date(date(_27173),date(_27171)).
article(article(_16548,_16614,_16729,_16721),

article(_16835,_16898,_16961,_17024,_17016))-->
title(_16729,_16835),writers(_16548,_16898),
date(_16614,_16961),body(_16721,_17024),
bibliography(_26808,_17016).

The first rule is responsible for transforming an article element without subtrees in
the parse tree. The second one changes the date element from an optional element to
a compulsory one. The third one is responsible for the transformation of the article
element with subtrees.

380 E. KUIKKA AND M. PENTTONEN

Figure 3. A document instance of a simple article according to the new structure

Second, it can also be seen in the Appendix that from the rule:

content ; body -> abstract (section)* ;
abstract (section)+ acknowledgement.

the following five DCG rules are generated:

body(content,body)-->!.
’sectionlist+’([’section*’],[section,’section+’])-->!.
’sectionlist+’([_17430,’section*’],[_17426,’section+’])-->

section(_17430,_17426).
’sectionlist+’([_17536|_17537],[_17534|_17535])-->

section(_17536,_17534),’sectionlist+’(_17537,_17535).
body(content(_11738,_11730),body(_11917,_11980,_11972))-->

abstract(_11738,_11917),’sectionlist+’(_11730,_11980),
acknowledgement(_16950,_11972).

The first rule transforms a content element without subtrees. The second, third and
fourth ones are responsible for the processing of a list of sections with the use of the name
sectionlist+ and at the same for changing the type of the list. The fifth one processes
the old content element and changes the name to body. On the right side of the last
rule, the whole list of sections corresponds to a nonterminal sectionlist+.

TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 381

In order to produce the modified article the parse tree of the document instance in
Figure 2 has been processed with the program represented in the Appendix. Figure 3
represents this new article on the screen of the SYNDOC system. The old content of the
article is represented with the use of the new required structure. All the modifications have
been done. The program has generated elements without content for the new elements
acknowledgement and bibliography. Their contents can be added later.

5 DISCUSSION

With the above simple example it has been demonstrated how the transformation of a
document instance to a new structure is made with the use of our method. From the user’s
point of view, the method is easy to use and understand as part of the SYNDOC system.
The user is supposed to define structures in other parts of the system, thus, it is natural that
(s)he is able to use the same method also in the structure transformations. At present the
grammar used for the transformation is generated manually, but the aim is to implement a
user-friendly comparator program.

The modifications have been done in the parse tree among the children of a parent node.
Although this is enough in most practical situations, the modifications between different
layers of the parse tree are also needed. The ESDTS as such does not allow this possibility.
Some kind of new elements are needed for these operations. The implementation of these
complex transformations will be a future part of the research.

Transformations needed in the usual document processing are probably not much more
complicated than those described in this report. However, the basic fact about transforma-
tions is that they as theirselvesas such do not add information. Sometimes, for example, it
is necessary to enrich the structure of the text. In the model presented above, this should be
done in two stages: first, by refining the generic structure of the original document manually
or with the help of a special tool, and then by transforming the document as described in this
report. The process of refining involves increasing structural information of the document
and therefore requires intelligence. Transforming, on the other hand, increases entropy (in
physical terms) and can be automated.

REFERENCES

1. R. Furuta and P.D. Stotts, ‘Specifying Structured Document Transformations’, in Proceedingsof
the International Conference on Electronic Publishing, Document Manipulation and Typography
(EP88), ed., J.C. van Vliet, 109–120, Cambridge University Press, Cambridge, UK, (1988).

2. E. Akpotsui and V. Quint, ‘Type Transformation in Structured Editing Systems’, in Proceedings
of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek and G. Coray, 27–41, Cambridge
University Press, Cambridge, UK, (1992).

3. E. Blake, T. Bray, and F.W.M. Tompa, ‘Shortening the OED: Experience with a Grammar-
Defined Database’, ACM Transactions on Information Systems, 10(3), 213–232, (1992).

4. A.L. Brown and H.A. Blair, ‘A Logic Grammar Foundation for Document Representation and
Document Layout’, in Proceedings of the International Conference on Electronic Publishing,
Document Manipulation, and Typography (EP90), ed., R. Furuta, 47–64, Cambridge University
Press, Cambridge, UK, (1990).

5. A.L. Brown, T. Wakayama, and H.A. Blair, ‘A Reconstruction of Context-Dependent Document
Processing in SGML’, in Proceedings of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek
and G. Coray, 1–25, Cambridge University Press, Cambridge, UK, (1992).

382 E. KUIKKA AND M. PENTTONEN

6. P. Franchi-Zannettacci and D.S. Arnon, ‘Context-Sensitive Semantics as a Basis for Process-
ing Structured Documents’, in Proceedings of the Workshop on Object-Oriented Document
Manipulation (WOODMAN’89), 135–146, (1989).

7. E. Kuikka and M. Penttonen, ‘Designing a Syntax-Directed Text Processing System’, in Pro-
ceedings of the Second Symposium on Programming Languages and Software Tools, eds.,
K. Koskimies and K.-J. Räihä, 191–204, University of Tampere, Department of Computer
Science, A-1991-5, Tampere, Finland, (1991).

8. R. Furuta, ‘A Grammar for Representing Documents’, Technical Report UMIACS–TR–87–67,
University of Maryland, Maryland, (1987).

9. A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, volume 1, 2,
Prentice–Hall, Englewood Cliffs, NJ, 1972.

10. Attribute Grammars, Applications and Systems, eds., H. Alblas and B. Melichar, Lecture Notes
in Computer Science, No. 545, Springer, Berlin, 1991.

11. F.C.N. Pereira and D.H.C. Warren, ‘Definite Clause Grammars for Language Analysis – A
Survey of the Formalism and a Comparison with Augmented Transition Networks’, Artificial
Intelligence, 13, 231–278, (1980).

APPENDIX A: THE COMPILER PROGRAM OF A SIMPLE ARTICLE

article(article,article)-->!.
date(’[date]’(_27173),date(_27171))-->

date(date(_27173),date(_27171)).
article(article(_16548,_16614,_16729,_16721),

article(_16835,_16898,_16961,_17024,_17016))-->
title(_16729,_16835),writers(_16548,_16898),
date(_16614,_16961),body(_16721,_17024),
bibliography(_26808,_17016).

writers(authors,writers)-->!.
’authorlist*’([’author*’],[’author*’])-->!.
’authorlist*’([_10960|_10961],[_10958|_10959])-->

author(_10960,_10958),’authorlist*’(_10961,_10959).
writers(authors(_8102),writers(_8087))-->

’authorlist*’([_8102,’author*’],_8087).
author(author,author)-->!.
author(author(_7284),author(_7269))-->text(_7284,_7269).
date(date,date)-->!.
date(date(_6856),date(_6841))-->text(_6856,_6841).
title(title,title)-->!.
title(title(_7070),title(_7055))-->text(_7070,_7055).
body(content,body)-->!.
’sectionlist+’([’section*’],[section,’section+’])-->!.
’sectionlist+’([_17430,’section*’],[_17426,’section+’])-->

section(_17430,_17426).
’sectionlist+’([_17536|_17537],[_17534|_17535])-->

section(_17536,_17534),’sectionlist+’(_17537,_17535).
body(content(_11738,_11730),body(_11917,_11980,_11972))-->

abstract(_11738,_11917),’sectionlist+’(_11730,_11980),
acknowledgement(_16950,_11972).

abstract(abstract,abstract)-->!.
abstract(abstract(_7712),abstract(_7697))-->text(_7712,_7697).

TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 383

section(section,section)-->!.
’paragraphlist+’([_15859,’paragraph+’],[_15855,’paragraph+’])-->

paragraph(_15859,_15855).
’paragraphlist+’([_15965|_15966],[_15963|_15964])-->

paragraph(_15965,_15963),’paragraphlist+’(_15966,_15964).
’[heading]’(heading(_16100),’[heading]’(_16098))-->

heading(heading(_16100),heading(_16098)).
section(section(_10568,_10560),section(_10674,_10666))-->

’[heading]’(_10568,_10674),
’paragraphlist+’([_10560,’paragraph+’],_10666).

acknowledgement(acknowledgement,acknowledgement)-->!.
acknowledgement(_8782,_8780)-->{_8780=acknowledgement}.
heading(heading,heading)-->!.
heading(heading(_7532),heading(_7517))-->text(_7532,_7517).
paragraph(paragraph,paragraph)-->!.
paragraph(paragraph(_7926),paragraph(_7911))-->text(_7926,_7911).
paragraph(paragraph,paragraph)-->!.
’enumeratelist+’([_14435,’itemize+’],[_14431,’enumerate+’])-->

enumerate(_14435,_14431).
’enumeratelist+’([_14541|_14542],[_14539|_14540])-->

enumerate(_14541,_14539),’enumeratelist+’(_14542,_14540).
paragraph(paragraph(_11215),paragraph(_11200))-->

’enumeratelist+’(_11215,_11200).
enumerate(itemize,enumerate)-->!.
enumerate(itemize(_7712),enumerate(_7697))-->text(_7712,_7697).
bibliography(bibliography,bibliography)-->!.
bibliography(_8312,_8310)-->{_8310=bibliography}.
item(item,item)-->!.
item(_6428,_6426)-->{_6426=item}.
text(text(_4410),text(_4400))-->{_4410=_4400}.

	SUMMARY
	1 INTRODUCTION
	2 SYNDOC: SYNTAX-DIRECTED DOCUMENT PROCESSING SYSTEM
	3 DEFINITION OF THE STRUCTURE TRANSFORMATION
	4 THE TRANSFORMATION OF A SIMPLE ARTICLE INSTANCE
	5 DISCUSSION
	REFERENCES
	A: THE COMPILER PROGRAM OF A SIMPLE ARTICLE

