ELECTRONIC PUBLISHING, VOL. 6(4), 373-383 (DECEMBER 1993)

Transformation of structured documents with the
use of grammar

EILA KUIKKA MARTTI PENTTONEN

University of Kuopio University of Joensuu

P. O. Box 1627 P. O. Box 111

SF—70211 Kuopio, Finland SF-80101 Joensuu, Finland

email: kui kka@s. uku. fi email: pentt onen@s. j oensuu. fi
SUMMARY

In structured text processing systems the need for transformation of document instances is
obviousif the structuredefinition of the document type changes. Thisarticle presentsa trans-
formation method with the use of an extended syntax-directed translation schema and its
implementation to certain modificationsin a syntax-directed document processing system cre-
ated by the authors. The method uses grammar sto define both the structur e of documentsand
transfor mation between structures.

KEY WORDS Typetransformations Structured documents Syntax-directed translation schema

1 INTRODUCTION

One of the difficulties encountered in structured document processing systems is how to
transform the corresponding exi sting document i nstances whenever auser hasto changethe
generic structure definition of thesedocuments. Sofar only few studi esand i mplementations
concerning these stati ¢ structuretransfor mati onsof documentshave been carried out. These
modifications are employed in arange of documents with similar structure. In References
[1,2], and [3] transformations can be considered as type transformations because they
define a new form for elements of the structure for future processing of the document. In
References [4,5], and [6] transformations group all the existing elements of the document
in a new way and they add new elements to the structure for the use of the layout or
view processing of this document. Another group of structure modifications are dynamic
transformationsthat occur when the structured editing only changes a document instance,
not itsgeneric structure. They can be perceived as a structured editing of asingledocument.

The aim of our research isto develop a syntax-directed document processing system
that uses grammars and their parse trees for inputting, updating, and outputting as well
as storing and retrieving documents. The system is meant to be declarative in the sense
that the user is asked only to define what he wants and does not have to know how to
achieve it. Hence, the system should support the user as much as possible. In the research
carried out so far aswell as in the devel opment of the whole system, the target has been to
focus on the principle of the grammar-based processing as far as possible throughout the
implementation without any ad hoc extensions. Inthefirst part of the study, a prototypeof a
syntax-directed document processing system was designed and tested (see Reference [7]).

CCC 0894-3982/93/040373-11 Received 15 August 1993
[J1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.



374 E. KUIKKA AND M. PENTTONEN

Its aim was to input and output structured documents with the use of grammars and a
syntax-directed trand ation schema.

The present report describes the initial step in the study: how static structure modi-
fications such as type transformations should be made in the syntax-directed document
processing system mentioned in the previous paragraph. On the basis of the examination
of arange of documents in a variety of environments, for example articles in different
journalsand lettersin sampl e offices, it has been observed that the following modifications
of document instances are most commonly found: reordering of elements, adding a new
element, deleting or renaming an el ement, and changing features of e ements. More com-
plex transformations, such as relocating a nonterminal in a parse tree or adding a layer to
and removing a layer from a parse tree are also required as well as grouping elementsin
a new way. The methods based on pair grammars and rewrite rules (see Reference [1]),
coordinate grammars (see References [4] and [5]), attribute grammars (see Reference [6])
or tree operations (see Reference [3]) have been used for complex modifications. This
report isrestricted only to the simpler modifications; the implementation of more complex
transformationsis the next step in our research.

2 SYNDOC: SYNTAX-DIRECTED DOCUMENT PROCESSING SYSTEM

The prototype of the syntax-directed document processing system, called SYNDOC and
created by the authors, uses modified context-free grammars similar to grammars in Ref-
erence [8] to define the hierarchical logical structure of a class of structured documents.
Nonterminals of the grammar represent the elements of the document, whereas terminals
comprise the content of the document. In addition to BNF of the context-free grammar, it
is possibleto define whether an optiona element in the structure appears once or not at all
and also to define two kinds of iterations. In one of the iterations, elements appear zero or
more times while in the other one or more times. Grouping of €l ements as in grammars of
Reference [8] is possible with the use of an additional nonterminal.

The processing of the document is implemented with the use of a syntax-directed
tranglation schema. A grammar, the input grammar in this case, isused in the input phase
of the text to expand incrementally the parse tree of the document. Another grammar, the
output grammar, is used to generate the layout of the document. These two grammars are
coordinated. They have the same nonterminals arranged in the same order. Many output
grammars can be defined for one input grammar, which makes it possible to get different
kinds of output of the same document.

At present, the internal as well as the externa representation of the document is the
parse tree for the input grammar. Because the implementation of SYNDOC is made in
Prolog, the parse tree of the document is represented by a Prolog term whose nesting
structure describes the hierarchy of the document structure.

3 DEFINITION OF THE STRUCTURE TRANSFORMATION

Theaim of thestudy reportedinthisarticlewastoimplement stati c structuretransformations
with the use of the idea of compiling with a syntax-directed trand ation schema (Figure 1).
First, the old and new input grammars are compared to form a trandlation grammar. The
process would need the user’s interruption only when the user renames nonterminals. The
order of rules of the trandation grammar is coordinated by the old input grammar which



TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 375

Grammar 4@ NewGrammar

Translation grammar

Generator
Document @ NewDocument

Figure 1. The architecture of the modification system

helps to avoid the problems of nondeterminismin parsing. Second, the compiler which is
to perform the actua transformation is generated from the trand ation grammar. Third, the
actua transformations of all the similar types of documents are made by the compiler.

The input grammar isamodified context-free grammar as was mentioned in Section 2.
Thetrand ation grammar is an extended syntax-directed trand ation schema (ESDTS). The
extension has been made by changing the notation defined in Reference [9] so that on the
left side of the ESDTS rule there are two nonterminds, the names of the nonterminals on
the | eft sides of the new and old grammars, separated by a semicolon and at the end of the
grammar rule there can be semantic actions like in attribute grammars [10] to provide the
renaming of nonterminals. Semantic actionsaregivenin braces. Ontheright sideof ESDTS
rulethere are the right sides of the new and old grammars separated by a semicolon. If any
rulein either the old or new grammar has no corresponding rule in the other grammar, the
missing part placed on theright side of ESDTS ruleis marked as an empty string by "".

In order to clarify the above description let us consider the following example. The
original input grammar rulesfor aletter with the use of our notation are:

letter -> receiver content sender.
recei ver -> text.

content -> text.

sender -> text.

and the new input grammar rules are:

letter -> sender receiver body sign.
sender -> text.

receiver -> text.

body -> text.

sign -> text.



376 E. KUIKKA AND M. PENTTONEN

The transformation is meant to change the place of the nonterminal sender , rename
cont ent to body and add a nontermina si gn as a new dement to the letter. The
ESDTS rulesfor the transformation of |etter instances are as follows:

letter ; letter -> receiver content sender ; sender receiver body
sign { content = body }. sender ; sender -> text ; text. receiver ;
receiver -> text ; text. content ; body -> text ; text. sign; sign ->""
text.

From the ESDTS grammar we generate definite clause grammar (DCG) rules (defined,
for example, in Reference [11]) that form our compiler program. The following DCG is
generated from the above ESDTS.

letter(letter(A B, C),letter(DEF, Q) -->
sender (C, D), recei ver (A E), body(B, F), sign(H, G. sender(sender(A), sender(B))
--> text (A B). receiver(receiver(A),receiver(B)) --> text (A B).
body(content (A), body(B)) --> text(A B). sign(sign(A),sign(B))
-->{B = sign}. text(text(A),text(B)) --> {A = B}.

Let us consider, for example, the first DCG rule. The nontermina | et t er on the left
side of the DCG rule has two parse tree arguments, namely | etter (A, B, C), and
letter (D, E, F, G ,theformer onefor the old parse tree and the latter one for the new
parse tree. These parse tree arguments have arguments A, B, and C and further D, E, F, and
G. Thearguments A, B, and C correspond to the nontermina son theright side of therulein
theoriginal input grammar and thearguments D, E, F, and G tothe nonterminalsontheright
side of therulein the new input grammar in the order defined in the original grammar rule.
The old input grammar rule of this example comprises three nonterminals (r ecei ver,
cont ent and sender) and the new input grammar rule four nonterminals (sender ,
recei ver, body and si gn). Thus, the argument A corresponds to the nontermina
recei ver, B correspondsto cont ent , and so on, whereas the argument D corresponds
to the nontermina sender , E correspondsto r ecei ver, and so on. The nonterminals
on the right side of the DCG rule correspond to the nonterminals of the right hand side
in the new input grammar (sender, recei ver, body and si gn), and further their
arguments are partly the same as arguments of the parse tree arguments on the left side of
the DCG rule. A pair of arguments on theright side of the DCG rule informswhich of the
nonterminals of the old and new input grammars correspond to each other. For example,
apair C, D indicates that the third argument of the old parse tree corresponds to the first
argument of the new parse tree and produces the reordering of the sender nonterminal.
If an argument does not have a corresponding argument on the other side of the DCG rule,
for example H, then the other argument of the pair corresponds to a nonterminal that is
either added, likesi gn in thisexample, or removed.

If thereare optional nonterminalsor list of identica nonterminalsintheinput grammars,
extrarules are generated into the DCG to overtake their processing as can be seen in the
example given in the next section.

4 THE TRANSFORMATION OF A SIMPLE ARTICLE INSTANCE

In this section a more difficult example to transform a simple article from one structure to
another will be demonstrated. The original grammar rules for a simple article could be as
follows:



TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 377

article -> authors [date] title content.
aut hors -> aut hor.

aut hor -> text.

date -> text.

title -> text.

content -> abstract (section)*.
abstract -> text.

section -> headi ng paragraph.
headi ng -> text.

paragraph -> text.

paragraph -> (item ze)+.
itemze -> text.

In the hierarchical representation of this sample article, arti cl e, the root el ement
of the document, has such componentsasaut hor s,date,titl e,andcont ent . The
dat e isoptiona and is placed in brackets. The element aut hor s contains a component
aut hor andtheelement cont ent comprises componentsabst r act and alist of none
or morecomponentscalledsect i on. Further,theelementsect i on containscomponents
headi ng and par agr aph. Theelement par agr aph canbeacomponentt ext oralist
of oneor morecomponentscaledi t em ze. Thecomponentt ext implicitly isacharacter
list, the actual content of an element. Figure 2 represents an article instance according to
the above grammar displayed in the document window on the screen of SYNDOC system.
The left hand side of the screen informs about the structure of the document, the right hand
side indicates the contents of the corresponding elements of the document.

The parse tree (without full contents) of this document instanceisthe following Prolog
term:

article(authors(author(text(‘Ela...")),
"[date] (text('9.11..")),
title(text(' Transformations...’)),
content (abstract (text (‘ The need...’)),

[ section(headi ng(text(‘Introduction’)),
paragraph(text(‘The aim..’))),
section(headi ng(text (' Mddifications')),

paragraph([item ze(text('reordering...’)),
item ze(text (' deleting...’)),
item ze(text('adding...")),
item ze(text('renanming...’)),

item ze+'])),
‘section*’])).

Thelistsare represented as Prolog lists. The new grammar rules could be as follows:

article -> title witers date body bibliography. witers ->
(author)+. author -> text. date -> text. title -> text. body -> abstract
(section)+ acknow edgenent. abstract -> text. section -> [heading]
(paragraph) +. acknow edgenent -> text. heading -> text. paragraph -> text.
par agraph -> (enunerate)+. item ze -> text. enunerate -> text.
bi bl i ography -> (item+. item-> text.



378 E. KUIKKA AND M. PENTTONEN

JJE] article T
] ¥
-rarticle
authors
author Eila kuikka
[date] 9.11.1993
title Transformation of structured
documents with the use of grammar
content
abstract The need for the transformations of
document instances is obvious in the
structured document processing systems.
section
heading Introduction
paragraph The aim of this research is to develop
a syntax-directed document processing
systen that uses grammars and their
parse trees for inputting, updating and
outputting as well as storing and retr
documents.
section
heading Modifications
paragraph
itemize reordering elements
itemize deleting elements
itemnize adding elements
itemize renaming elements
itemize+
section®
5

Figure2. A document instance of a simple article

There are many differences in the grammars represented above. The transformation is
supposed to perform the following actions:

e changethe place of thenonterminal tit | e,

e rename and and change the place of the nonterminal aut hor s, the new name being
witers,

e rename the nonterminal cont ent with the new name body,

e change the optional nonterminal dat e to a compulsory one,

e add anew nonterminal bi bl i ogr aphy to the article (this nonterminal isalist of
oneor morei t emnonterminalsthat contain the text of the item),

e change the single nonterminal aut hor to a list of one or more nonterminals
aut hor,

e change alist of null or more sect i on elements in such a way that at least one
element has to be on thelist,

e add anew nonterminal acknow edgenent to the body of the article,

e change the compulsory nonterminal headi ng of the section to an optional one,

e change the nonterminal par agr aph to alist of one or more par agr aph nonter-
minals, and

e change a list of one or more i t em ze nonterminals to a list of one or more
enuner at e nonterminals.



TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 379

The ESDTS rules for the transformation of thissimple article instance are as follows:

article ; article -> authors [date] title content ;
title witers date body bibliography
{authors = witers, content = body }.
authors ; witers -> author ; (author)*.
author ; author -> text ; text.
date ; date -> text ; text.
title ; title -> text ; text.
content ; body -> abstract (section)* ;
abstract (section)+ acknow edgenent.
abstract ; abstract -> text ; text.
section ; section -> heading paragraph ;
[ headi ng] (paragraph) +.
acknow edgerent ; acknow edgenment -> "" ; text
heading ; heading -> text ; text.
paragraph ; paragraph -> text ; text.
paragraph ; paragraph -> (itemze)+ ; (enunerate)+
{item ze = enunerate }.
item ze ; enunerate -> text ; text
bi bl i ography ; bibliography ->"" ; (item+
item; item->"" ; text.

From the ESDTS rule DCG rules are generated and they form the compiler program
for al document instances of type similar to the document in Figure 2. The whole compiler
program is represented in the Appendix.

To illustrate the processing of optional and list elements let us consider two examples.
First, asit can be seen in the Appendix, from therule

article ; article -> authors [date] title content ;
title witers date body bibliography
{ authors = witers , content = body }.

the following three DCG rules are generated:

article(article,article)-->!.
date(’'[date]’ (_27173),date(_27171))-->
date(date(_27173), date(_27171)).
article(article(_16548, 16614, 16729, 16721),
article(_16835, 16898, 16961, 17024, 17016))-->
title(_16729, 16835), witers(_16548, 16898),
date(_ 16614, 16961), body(_16721, 17024),
bi bl i ogr aphy(_26808, _17016).

The first rule is responsible for transforming an art i cl e element without subtrees in
the parse tree. The second one changes the dat e element from an optiona eement to
a compulsory one. The third one is responsible for the transformation of thearticl e
element with subtrees.



380 E. KUIKKA AND M. PENTTONEN

IAE] article 0
¥
-rarticle
title Transformation of structured
documents with the use of grammar
writers
author Eila kuikka
author*
date 9.11.1993
hody
abstract The need for the transformations of
document instances is obvious in the
structured document processing systems.
section
[heading] Introduction
paragraph The aim of this research is to develop
a syntax-directed document processing
system that uses grammars and their
parse trees for inputting, updating and
outputting as well as storing and retr
documents.
paragraph+
section
[heading] Modifications
paragraph
enumerate reardering elements
enumerate deleting elements
enumerate adding elements
enumerate renaming elements
erumerate+
paragraph+
section+
acknowledgement
bibTioaraphy|
A

Figure 3. A document instance of a simple article according to the new structure

Second, it can also be seen in the Appendix that from therule:

content ; body -> abstract (section)* ;
abstract (section)+ acknow edgenent.

the following five DCG rules are generated:

body(cont ent, body) -->!.

"sectionlist+ (['section*'],[section,’ section+ ])-->!.

"sectionlist+ ([_17430, section*'],[_17426,' section+])-->
section(_17430, _17426).

"sectionlist+ ([_17536|_17537],[_17534| _17535])-->
section(_17536, _17534),  sectionlist+ (_17537,_17535).

body(content (_11738, _11730), body(_11917, 11980, _11972))-->
abstract(_11738, _11917), ' sectionlist+ (_11730, _11980),

acknow edgenent (_16950, _11972).

The first rule transforms a cont ent element without subtrees. The second, third and
fourth ones are responsible for the processing of alist of sectionswith the use of the name
secti onl i st + and at the same for changing the type of the list. The fifth one processes
the old cont ent element and changes the name to body. On the right side of the last
rule, the whole list of sections correspondsto anontermina sect i onl i st +.



TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 381

In order to produce the modified article the parse tree of the document instance in
Figure 2 has been processed with the program represented in the Appendix. Figure 3
represents this new article on the screen of the SYNDOC system. The old content of the
articleisrepresented with the use of the new required structure. All the modifications have
been done. The program has generated elements without content for the new elements
acknow edgerent and bi bl i ogr aphy. Their contents can be added later.

5 DISCUSSION

With the above simple example it has been demonstrated how the transformation of a
document instance to a new structure is made with the use of our method. From the user’s
point of view, the method is easy to use and understand as part of the SYNDOC system.
The user is supposed to define structuresin other parts of the system, thus, itis natural that
(s)he is able to use the same method also in the structure transformations. At present the
grammar used for the transformation is generated manually, but the aim isto implement a
user-friendly comparator program.

The modifications have been donein the parse tree among the children of a parent node.
Although thisis enough in most practica situations, the modifications between different
layers of the parse tree are also needed. The ESDTS as such does not alow thispossibility.
Some kind of new elements are needed for these operations. The implementation of these
complex transformationswill be afuture part of the research.

Transformations needed in the usual document processing are probably not much more
complicated than those described in thisreport. However, the basic fact about transforma-
tionsis that they as theirselvesas such do not add information. Sometimes, for example, it
isnecessary to enrich the structure of thetext. In the model presented above, thisshould be
doneintwo stages: first, by refining the generic structure of theorigina document manually
or withthehelp of aspecial tool, and then by transforming thedocument asdescribed inthis
report. The process of refining involvesincreasing structural information of the document
and therefore requires intelligence. Transforming, on the other hand, increases entropy (in
physical terms) and can be automated.

REFERENCES

1. R.FurutaandPD. Stotts, ‘ Specifying Structured Document Transformations', in Proceedingsof
the Inter national Conference on Electronic Publishing, Document Manipulation and Typography
(EP88), ed., J.C. van Vliet, 109-120, Cambridge University Press, Cambridge, UK, (1988).

2. E. Akpotsui and V. Quint, ‘ Type Transformation in Structured Editing Systems’, in Proceedings
of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek and G. Coray, 2741, Cambridge
University Press, Cambridge, UK, (1992).

3. E. Blake, T. Bray, and FW.M. Tompa, ‘Shortening the OED: Experience with a Grammar-
Defined Database’, ACM Transactions on Information Systems, 10(3), 213-232, (1992).

4. A.L.BrownandH.A. Blair, ‘A Logic Grammar Foundation for Document Representation and
Document Layout’, in Proceedings of the International Conference on Electronic Publishing,
Document Manipulation, and Typography (EP90), ed., R. Furuta, 47—64, Cambridge University
Press, Cambridge, UK, (1990).

5. A.L.Brown, T. Wakayama, and H.A. Blair, ‘ A Reconstruction of Context-Dependent Document
Processingin SGML’, in Proceedingsof Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek
and G. Coray, 1-25, Cambridge University Press, Cambridge, UK, (1992).



382 E. KUIKKA AND M. PENTTONEN

10.

11

P. Franchi-Zannettacci and D.S. Arnon, ‘ Context-Sensitive Semantics as a Basis for Process-
ing Structured Documents’, in Proceedings of the Workshop on Object-Oriented Document
Manipulation (WOODMAN' 89), 135-146, (1989).

E. Kuikka and M. Penttonen, ‘Designing a Syntax-Directed Text Processing System’, in Pro-
ceedings of the Second Symposium on Programming Languages and Software Tools, eds.,
K. Koskimies and K.-J. Raiha, 191-204, University of Tampere, Department of Computer
Science, A-1991-5, Tampere, Finland, (1991).

R. Furuta, ‘A Grammar for Representing Documents’, Technical Report UMIACS-TR-87-67,
University of Maryland, Maryland, (1987).

A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, volume 1, 2,
Prentice—Hall, Englewood Cliffs, NJ, 1972.

Attribute Grammars, Applications and Systems, eds., H. Alblas and B. Melichar, L ecture Notes
in Computer Science, No. 545, Springer, Berlin, 1991.

F.C.N. Pereira and D.H.C. Warren, ‘Definite Clause Grammars for Language Analysis — A
Survey of the Formalism and a Comparison with Augmented Transition Networks', Artificial
Intelligence, 13, 231-278, (1980).

APPENDIX A: THE COMPILER PROGRAM OF A SIMPLE ARTICLE

ar

ticle(article,article)-->!.

date(’'[date]’ (_27173),date(_27171))-->

ar

wr

date(date(_27173), date(_27171)).

ticle(article(_16548, 16614, 16729, _16721),
article(_16835,_16898, 16961, 17024, 17016))-->

title(_16729,_16835),witers(_16548,_16898),

date(_16614, _16961), body(_16721, _17024),

bi bl i ogr aphy(_26808, _17016) .

iters(authors,witers)-->!.

“authorlist*’ (["author*’],[ author*'])-->I.
“authorlist*’ ([_10960| _10961],[_10958| _10959])-->

wr

aut hor (_10960, _10958), " authorlist*’ (_10961, _10959).
iters(authors(_8102),witers(_8087))-->
“aut horlist*’ ([_8102,’ author*’],_8087).

aut hor (aut hor, aut hor) - ->!.

aut hor (aut hor (_7284), aut hor (_7269) ) -->text (_7284, _7269).
dat e(dat e, date)-->!.

dat e(dat e(_6856), date(_6841)) -->t ext (_6856, _6841).

ti
ti

tle(title, title)-->!.
tle(title(_7070),title(_7055))-->text(_7070,_7055).

body(cont ent, body) - - >!.
"sectionlist+ (['section*'],[section,’ section+])-->!.
"sectionlist+ ([_17430,  section*’],[_17426,’ section+ ])-->

section(_17430, _17426).

"sectionlist+ ([_17536| 17537],[_17534| 17535])-->

section(_17536, _17534),  sectionlist+ (_17537,_17535).

body(cont ent (_11738, 11730), body(_ 11917, 11980, 11972))-->

abstract(_11738, _11917), 'sectionlist+ (_11730, _11980),
acknow edgenent (_16950, _11972).

abstract (abstract, abstract)-->!.
abstract (abstract (_7712), abstract (_7697))-->text (_7712, _7697).



TRANSFORMATION OF DOCUMENTS WITH THE USE OF GRAMMAR 383

section(section,section)-->!.

' paragraphli st +' ([_15859, ' par agraph+'],[_15855, " paragraph+])-->
par agr aph(_15859, _15855).

' paragraphli st+ ([_15965| _15966], [ _15963| _15964])- - >
par agr aph(_15965, 15963), ' par agraphlist+ (_15966, _15964).

" [ headi ng]’ (headi ng(_16100), ' [ headi ng] ' (_16098))-->
headi ng( headi ng(_16100), headi ng(_16098) ).

section(section(_10568, 10560), secti on(_10674, 10666))-->
"[headi ng] * (_10568, _10674),
" paragraphlist+ ([_10560,’ paragraph+' ], _10666).

acknow edgenent (acknow edgenent , acknow edgenent) - - >! .

acknow edgenent (_8782, 8780)-->{_8780=acknow edgenent }.

headi ng( headi ng, headi ng) -->!.

headi ng( headi ng(_7532), headi ng(_7517)) -->text (_7532, _7517).

par agr aph( par agr aph, par agr aph) - ->!.

par agr aph( par agr aph(_7926), paragraph(_7911))-->text (_7926, _7911).

par agr aph( par agr aph, par agr aph) - ->!.

“enuneratelist+ ([_14435,’item ze+ ],[_14431,  enunerate+ ])-->
enuner at e( _14435, _14431) .

"enuneratelist+ ([_14541| _14542],[_14539| _14540])-->
enuner at e( _14541, 14539),’ ' enuneratel i st+ (_14542, 14540).

par agr aph( par agr aph(_11215), par agr aph(_11200) ) -- >
“enuneratelist+ (_11215, 11200).

enunerate(item ze, enunerate)-->!.

enunerate(item ze(_7712), enunerate(_7697))-->text(_7712, _7697).

bi bl i ogr aphy(bi bl i ogr aphy, bi bl i ography)-->!.

bi bl i ography(_8312, _8310)-->{_8310=bi bl i ogr aphy}.

iten(itemiten)-->!.

item(_6428, 6426)-->{ 6426=iten}.

t ext (text (_4410), text (_4400))-->{_4410=_4400}.



	SUMMARY
	1 INTRODUCTION
	2 SYNDOC: SYNTAX-DIRECTED DOCUMENT PROCESSING SYSTEM
	3 DEFINITION OF THE STRUCTURE TRANSFORMATION
	4 THE TRANSFORMATION OF A SIMPLE ARTICLE INSTANCE
	5 DISCUSSION
	REFERENCES
	A: THE COMPILER PROGRAM OF A SIMPLE ARTICLE

