ELECTRONIC PUBLISHING, VOL. 6(4), 361-372 (DECEMBER 1993)

SIMON: A grammar-based transformation
system for structured documents

AN FENG AND TOSHIRO WAKAYAMA

Xerox Corporation
Webster Research Center
Webster, New York 14580, USA

SUMMARY

SIMON is a grammar-based transfor mation system for restructuring documents. Its target
applicationsinclude meta-level specification of document assembly, view definition and retrieval
for multiview documents, and document type evolution. Theinternal document model is based
on attributegrammars,and it inter faceswith exter nal document modelssuchasSGML through
input and output conversion. The transformation engine of SSIMON is an amalgamation of
syntax-directed computation and content-oriented computation: the former isthrough higher-
order (and related) extensions of attribute grammarswhereasthe latter is done by externally
defined programs and it is for computation not naturally amenable to the syntax-directed
paradigm. Thecurrentimplementation of SIMON employsthehigher-or der extension proposed
in [1] for the syntax-directed computation, and C++ for the content-oriented computation.

KEY WORDS Structured documents Document transformation Document type evolution
Document assembly ~ Multiview documents Attribute grammars

1 INTRODUCTION

One of the challenging issues in the study of structured documents is how to reuse docu-
mentsand document components across heterogeneoustypes(e.g., manuals, letters, articles
within SGML [2]) and meta-types (e.g., SGML, ODA, and possibly IATEX). The main dif-
ficulty of the problem is that document components to be reused have their own internal
structures which are in genera foreign to the new document being constructed. If the
generic structure of the new document is to remain the same and not to be extended or
modified to accommodate the structures of the reuse components, the reuse components
themselves must be structurally transformed to fit into the new generic structure. Thus, the
idea of document transformation becomes a key technical issue, as pioneered by [3,4].

A major advantage of structured documentsisthat documentsarenot simply structured,
but also the generic structural description itself is given a formal representation (e.g.,
Document Type Definitionin SGML). The generic structure descriptions enable document
transformation to be specified at meta-level. Our study leverages such meta capabilities
of structured documentsin order to strengthen and broaden the effectiveness and scope of
applications of document transformation. To this end, we have been developing a system
called SSIMON? based on attribute grammars and their higher-order extensions (and other
related extensions), which have been receiving much attention recently in the area of
programming language studies[1,5,6,7].

1«g” and“MON” stand for restructuring and documentsrespectively in Japanese.

CCC 0894-3982/93/040361-12 Received 15 August 1993
[J1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.

362 A. FENG AND T. WAKAYAMA

result
—>document
rd

result
—>-tree —
RT

source
documents =
sdl, ..., sdk

source
—> trees —
ST1, ..., STk

Structure
Transformation

| Input
Conversion

Output
Conversion

Figure 1. Framework for document transformations

Figure 1 depictsthe genera framework of how SIMON works. The internal document
representation model of SIMON is exactly as in [8]. Namely, documents are given by
attributed trees (i.e., derivation trees where each node is associated with a set of attribute
values) and their type definitions by attribute grammars [9]. The transformation specifica-
tionin SIMON has three components:. a collection of source attribute grammars, a result
attributegrammar, and amapping that takes a collection of sourcetrees (of the source gram-
mars) and produce a result tree (of the result grammar). Such mappings are specified by
higher-order (and related) extensions of attributegrammars. In the current implementation,
the transformation engine of SIMON is based on the higher-order extension proposed by
[1]. The SIMON transformation enginewill bediscussed in detail inlater sections. SIMON
also interfaces with externa document models such as SGML through input and output
conversions (see Figure).

Some of the target applications of SIMON are:

e Document Assembly Specification
It is often the case that the process of document reuseitself ishighly structured, i.e.,
instances of the same component classes are combined into a new document in the
same manner. For instance, monthly project reports may be constructed, to alarge
extent, from individual monthly reports, trip reports, publication databases, tables
of experimenta raw data, etc. Since these documents are, in genera, in different
meta-types, wefirst convert theminto the uniforminternal representation of SIMON
as attributed trees and then apply the assembly specification given by a higher-order
attribute grammar.

e Document View Retrieval
While document assembly tends to build more complex documents out of simpler
ones, document view retrieval refers to the inverse process of extracting simpler
documents out of complex multiview documents. One of the problems with such
complex documentsisthat they intertwinemultipleviewsin away quitecumbersome
and sometimes nearly impossible for the human reader to comprehend. In SIMON,
these views can be specified by higher-order attribute grammars, and they can be
computationally retrieved through attribute evaluation.

e Document Type Evolution
When adocument type isdesigned, it reflects the properties of the objectsand events
of documentation and the designer’s perception and understanding of them. Astime
goes by, the nature of these objects and events as well as the designer’s perception
and understanding of them may change. In fact, such changes may accumulate to
an extent that the old type is no longer appropriate and a new type definition is
desirable. Thisis analogous to the problem of schema evolution in database design,
and theissue has been discussed in document settingsaswell [4]. In[4], the objects of
transformati onare derivationtreeswithout attributes. By extending themto attributed
trees, we enrich the class of transformationsthat can be specified and computed. For
instance, [8] identifies various classes of context-dependent transformations.

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 363

<IDOCTYPE article[
<IELEMENT article 0 O (title, (sentence]| citation)*) >

<IELEMENT title - O (#PCDATA) >
<IELEMENT sentence - O (#PCDATA) >
<IELEMENT citation - - (#PCDATA) >1>

<title> AG <sentence> AG wasintroduced in 1968. <citation> intro </citation>
<sentence> It has been widely used. <citation> app </citation><citation> else </citation>

(a) article sd; with citation in SGML style

@book{app, author="A.Guy", title="Application systems" }
@article{tran, author="S.Lady", title="Structure transformation” }
@article{intro, author ="G.Prof", title = "Attribute grammars" }

(b) bibliography document sd; in BibTeX style

\documentstyle{article}
\ begin{document}
\title{ AG}
AG wasintroduced in 1968.[2] It has beenwidely used.[1][7]
\ section* { Reference}
\begin{itemize}
\item{[1]} A.Guy: "Application Systems".
\item{[2]} G.Prof: "Attribute grammars".
\end{itemize}
\end{document}

(c) article rd with referencein IATEX style

Figure 2. Transfor mation from SGML and BibTeX documentsto IATEX document

Another important feature of SIMON s that its transformation engine is an amalga
mation of two computationa paradigms: syntax-directed computation through attribute
grammars and content-oriented, domain-specific computations through programs external
to the grammar-based specification. Although higher-order attribute grammars can express
arbitrary computations, certain computati onsbecome quiteunnatural inthe syntax-directed
setting. Moreover, some of these computationsarewell understood and their efficient imple-
mentationsare knownin other programming paradigms (e.g., sorting, text retrieval, certain
optimi zation problems). The interface between the two paradigmsisthrough free functions
of the attribute specification language, which correspond to free predicates in [10]. [10]
gives a more formal treatment of such amalgamations. In the current implementation of
SIMON, we have chosen C++ [11] for writing programs to define such functions.

SIMON has been applied in several examples of document assembly, view retrieval,
and document formatting. The previous experience indicates that SIMON enables us to
write down transformation specifications that are easy for human beings to understand,
and efficient for computers to execute. For example, for the formatting process of technical
articles, our specification consistsof 600 lines, among which 250 lines are attribute grammar

364 A. FENG AND T. WAKAYAMA

Caricie)
Cite D Grend o) Genened Getation) Gataion

AG AG was introduced in 1968. intro It has been widely used. app else
(a) ST; for article sd;
bibdata

kind=book kind=article

key=intro|

kind=article

key=tran

A.Guy Application systems S.Lady Structure transformation G.Prof Attribute grammars

(b) ST, for bibliography document sd,

AG AG was introduced in 1968. 2 It has been widely used.

A.Guy Application Systems G.Prof Attribute grammars

(c) RT for articlerd
Figure 3. Attributed trees for sourceand result documents

and 350 lines are C++ code. Based on this specification, SIMON can derive the layout
structure of atechnical article fromitslogic structure within afew seconds.

In the following sections, we show, in greater detail, how SIMON works through
a single common example, which has been tested under the current implementation of
SIMON. Although the primary focus of this paper is the SIMON transformation engine,
the example also illustrates the input and output conversion process.

2 ANEXAMPLE: ASSEMBLING DOCUMENTSOF MULTIPLE META-TYPES

Assume that we have (1) atechnical article sd; in SGML style as shown in Figure 2(a),
and (2) a bibliography document sd, in BibTeX style. The article sd; contains three
citations {intro, app, else}, each of which indicates a reference to externa documents.
The bibliography document sd, containsalist of reference entries, each of which is either
abook or an article. Each reference entry is associated with acitation key (e.g., app for the
first entry) and has an author list and a title. The goal isto construct the LATEX articlerd
of Figure 2(c) from sd; and sd, computationally. The result articlerd contains a reference
list at the end and severd cross reference numbers. The first character of al words (e.g.,

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 365

imported = { enum {book, article} entry.kind;

char *entry.key;}
article — title (sentence| citation)* bibdata — entry*
title — PCDATA entry — author title
sentence — PCDATA author — PCDATA
citation — PCDATA title — PCDATA
(8) SGs for articles with citations (b) SG; for bibliography documents

imported = { int item.no; }

article — title sentence* reference

sentence — PCDATA ref_no* title — PCDATA

ref_.no — PCDATA reference— item*

item — author title author — PCDATA

(c) RG for articles with references

Figure4. Attribute grammarsfor sourceand result documents

system of the first reference) in the reference' s titleis trandated into a capital |etter iff the
reference is abook.

In order to deal with structured documents of various meta-types (e.g., SGML, IATEX,
troff), SIMON applies the transformation framework shown in Figure 1. First, source doc-
umentssdy, - - -, Sdk of various meta-types are converted into attributed trees STy, - - -, ST,
respectively. These trees are then transformed into a result attributed tree RT through
structure transformation. Finally, the result tree RT is converted into a result document rd.
Figure 3 shows the attributed trees ST;, ST, and RT for the SGML, BibTeX and LATEX
documents of Figure 2. In thefigure, tree nodes are denoted by circles, and their associated
attributes are shown in boxes. For example, in the attributed tree ST», the left-most child
of the root is a node labelled by symbol entry which is associated with instances of two
attributes entry.kind and entry.key, whose assigned values are book and app, respectively.

Figure4 illustratesthe attribute grammars { SG, SG,, RG} for the articlewith citation,
thebibliography document and thearticlewithreference(Figure2). InFigure4, nonterminal
symbols are shown in lower-case |etters, and termina symbolsin upper-case letters. Asin
SGML, the terminal symbol PCDATA means zero or more data characters. An attribute
grammar usually contains three parts. (1) a context-free grammar (CFG) which expresses
the generic document structure, (2) a set of attributes associated with symbols of CFG, and
(3) aset of semantic rulesassociated with productionrulesof CFG. An attributeb associated
with a symbol X is denoted as X.b. X.b can be an imported attribute, inherited attribute,
or synthesized attribute. The value of an imported attributeis provided by external means
(e.g., the user). The values of synthesized and inherited attributes are defined by semantic
rules of productions. In Figure 4, CFGs are expressed in extended BNF. Two imported
attributes entry.kind and entry.key are declared in SG,, and one imported attributeitem.no
is declared in RG. The types of attributes are declared as in C++. No semantic rules are
defined in these grammars.

366 A. FENG AND T. WAKAYAMA

imported = { char *item.key;} inherited = { int item.no; }

reference — item*

{ item.no = if isleft_most(item) then 1 else |eft(item).no +1; }
item — author title
author — PCDATA titte — PCDATA

Figure5. Attribute grammar |G for referencelists

Figure 5 shows an attribute grammar |G that specifies reference lists. In addition to an
imported attributeitem.key, 1G declares an inherited attributeitem.no which represents the
ordered number of areference item. The value of item.no is defined by the semantic rule
between “{* and “}": it isincremented by 1 from left to right. For a given item, function
isleft_most(item) returns a value true iff the item is the left-most child of its parent, and
function left(item) returns the sibling of itemimmediately to itsleft.

3 HIGHER-ORDER ATTRIBUTE GRAMMAR SCHEMES
3.1 A syntax overview

The SIMON transformation engine is based on a scheme extension of attribute grammars
inthesense of [10]: i.e., thegrammars are augmented with free functionswhich are (fregly)
interpreted by some externaly defined programs. Currently its implementation employs
the higher-order attributegrammar (HAG) of [1] and C++ to define free functions. Figure 6
shows an example of such HAG schemes. The scheme constructs a reference list from an
article with citation and a bibliography document. The C++ code (Figure 6(b)) defines the
functions (e.g., contains) and data types (e.g., STRING_SET) appearing in the grammar.

Thegrammar part of the scheme consistsof attributedeclaration (cf. lines(01) — (04) of
Figure 6(a)) and a set of productions (cf. lines (05) — (31) of Figure 6(a)). Each production
consists of a production rule in the form of “Xg — X;---Xqy", and severa semantic
rules within “{* and “}". When a symbol appears more than once in a production, each
occurrence of the symbol is associated with a unique number in order to distinguish them
from each other (e.g., content[1] and content[2] in theline (11) of Figure 6). Each semantic
ruletakestheformof “a = f(---,3,---)", wheref isthe name of afunction. The defined
identifier o is either a synthesized attribute of the left-hand side symbol X, or an inherited
attribute of a right-hand side symbol X; (1 < i < m), or aright-hand side nonterminal
symbol itsdlf. Defining anonterminal X in asemantic rule means that the subtree with root
X is constructed according to the semantic rule, rather than syntactical parsing of a given
string. Such a symbol X (e.g., reference in the first production of Figure 6(a)) iscaled a
nonterminal attribute. Each argument 3 of asemantic ruleisasymbol of the production or
its attribute.

A production can be associated with a unique identifier, called production operator
[12], in order to obtain a linear notation for trees [1,5,6]. For example, the production in
the line (31) of Figure 6(a) is associated with an operator item. This operator denotes a
function that takes a pair of attributed trees, namely, an aut hor -treeand at i t | e-tree,
and constructsani t emtreewiththosetwotreesasitschildren. Asafunction, aproduction

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 367

(01) imported ={ char *entry.key, *item.key; enum { book, article} entry.kind; }
(02) synthesized ={ item entry.ref; item_list bibdata.ref, entry_list.ref;

(03) STRING_SET article.cite, content.cite, citation.cite; }

(04) inherited ={ STRING_SET bibdata.cite, entry_list.cite; }

(05) ref_cons — article bibdatareference

(06) { bibdata.cite = article.cite; reference = refer (bibdataref); }

(07) article — title content { article.cite = content.cite; }

(08) titte — PCDATA

(09) content[1] — content[2] sentence { content[1].cite = content[2].cite; }

(10) sentence — PCDATA

(12) content[1] — content[2] citation

(12) { content[1].cite = content[2].cite + citation.cite; }

(13) content — { content.cite= STRING_SET(); }

(14) citation — PCDATA { citation.cite = STRING_SET(PCDATA); }
(15) bibdata — entry_list

(16) { entry_list.cite = bibdata.cite; bibdataref = entry_list.ref; }

a7) entry_list[1] — entry entry_list[2]

(18) { entry_list[2].cite = if (entry_list[1].cite.contains(entry.key))

(29) then entry_list[1].cite - STRING_SET (entry.key)

(20) elseentry list[1].cite;

(21) entry_list[1].ref = if (entry_list[1].cite.contains(entry.key))

(22) thenitlist(entry.ref, entry_list[2].ref) else entry_list[2].ref; }
(23) entry_list — { entry_list.ref = nolist(); }

(24) entry — author title

(25) { entry.ref = if (entry.kind==book) then item(author, capitalize(title), key=entry.key)
(26) elseitem(author, title, key=entry.key); }

27 author — PCDATA

(28) refer: reference — item_list

(29) itlist: item_list[1] — item item_list[2]
(30) nolist:item_list —

(31) item: item — author title

(a) Higher order attribute grammar

struct STRING_SET {

int no; /*no of strings*/
char *str[100]; [*string data*/
STRING_SET() {no=0;}
STRING_SET (char *x) { no= 1, str[1] = new char[strlen(x)+1]; strcpy(str[0], x); }
int contains(char *x) {for (inti =0; (i < no); i++);
if (Ystremp(str[i],x)) return 1;

return 0; }
friend STRING_SET operator+(STRING_SET x, STRING_SETyY) {---}
ce)

(b) C++ code

Figure 6. HAG scheme specification G; for referenceconstruction

368 A. FENG AND T. WAKAYAMA

fa D
{efﬁrenc;

AG was introduced in 1968. G.Prof Attribute grammars

Figure7. Basic tree T of HAG G;

operator can be used in any semantic rule. For example, the production operator item is
used in the semantic rule of the lines (25)-(26) in Figure 6(a). That semantic rule uses a
function capitalize which trandates the first letter of each word into capital. Three other
production operatorsrefer, itlist, nolist are also declared and used in Figure 6.

3.2 Attribute evaluation

Let GbeaHAG scheme. An attributed tree of G isaderivationtree of G (i.e., aderivation
tree according to the productions of G) in which each node x labelled by a nonterminal X
is associated with declared attribute instances x.b and their values val (x.b).

An attributed tree T of G iscaled abasic tree iff T satisfies the following conditions:
Each leaf of T islabelled by a nontermina attribute or aterminal; No interna node of T
is labelled by a nontermina attribute; All imported attribute instances of T are assigned
values. Figure 7 illustrates a basic tree of the attributegrammar G; givenin Figure 6(a). In
the figure, a node labelled with a nonterminal attributeis denoted by a dashed circle. Each
internal node has the line number of the production rule that expands that node.

An attributedtree T of G iscompleteif every leaf of T islabelled by aterminal symboal,
and every attribute instance (synthesized, inherited, or imported) of T is assigned a value.
An attributed tree T is consistent iff T satisfies the following conditions: (1) For every
inherited or synthesized attribute instance, its assigned valueis equal to the value defined
by its semantic rule; (2) For every node of T labelled by anonterminal attribute, the value
of thisnonterminal attributeinstance, i.e., the maximal basic subtree rooted at thisnode, is
equal to the tree defined by the semantic function for this nonterminal attribute.

Given abasic tree T of a higher-order attribute grammar, the attribute evaluation is a
process of constructing a complete and consistent extension of the tree, denoted cons(T),
by associating attribute instances with each node; assigning a value to an instance of

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 369

-
(eferencs\
-
- ; ftem_lis
[key=ap
em ffem_lis
G.Prof Attribute grammars — e \
autho)
ref item
A.GLy Applicallon systems -
_ey—lntro

A.Guy
I

Application System

uth @

G.Prof Attribute grammars

:lkind:arlicle cite={intro,else|

G.Prof Attribute grammars

Figure 8. Complete and consistent tree cons(T) of HAG G,

an inherited or synthesized attribute; and grafting a basic subtree to a leaf |abelled by a
nonterminal attribute.

For the basic tree T of Figure 7, its attribute evaluation with grammar G; of Figure 6
generates the tree cons(T) given in Figure 8. For the space limitation, some parts of the
tree have been omitted in Figure 8. Notethat a subtree has been grafted to thenode | abelled
by nonterminal attributereference. Also, variousattributeinstances such asarticle.citeand
bibdata.cite have been assigned values. As an example of nonterminal attributes, consider
the node |abelled by the nonterminal attribute reference. The maximal subtree of cons(T)
with that node as a root forms a basic subtree, which is equa to the tree define by the
semantic rule reference = - - - in the line (06) of Figure 6(a). Note also that, for some
inherited or synthesized attribute instances (e.g., bibdata.ref), their assigned values are
attributed trees.

4 DOCUMENT TRANSFORMATION IN SIMON

Let SGy, - - -, SGk be source attribute grammars, and RG aresult attribute grammar. Then a
document transformation in SIMON is amapping of the following type:

| SGy | X+ x| G |—|RG [,

where | X | denotes the collection of al attributed trees valid under the grammar X. As
shown in Figure 9, the transformation consists of three parts: (1) Parsing: embed source
trees into a basic tree of the HAG scheme which defines the transformation engine; (2)
Attribute eval uation: construct the complete and consistent extension of the basic treg; and
(3) Unparsing: take a projection of the extended tree with respect to the result grammar.

370 A. FENG AND T. WAKAYAMA

l_ HAG specification _l resultframmar

source basic Attribute consistent ! result
trees —t Parsing [—>tree —>t Evaluation |—="tree —>1 Unparsing |—> tree
ST1, ..., STk T cons(T) RT

Figure9. HAG based structure transformation

4.1 Parsing (embedding) and unparsing (projection)

Given source attribute grammars and a result attribute grammar as above, let G beaHAG
scheme that specifies atransformation. We assume that G satisfies thefoll owing conditions;
(1) The symbols of G include all symbolsof grammars SG;'s and RG; (2) every imported
attribute of RG is an attribute of G; and (3) every attribute of a source grammar SG; is an
imported attribute of G.

Asan example, consider SG; and SG, in Figure4 assourcegrammars, and | G of Figure5
as the result grammar. With respect to these grammars, the HAG scheme specification in
Figure 6 satisfies those constraints stated above.

Since attribute evaluation has been explained in Subsection 3.2, we now describe the
other two stepsin Figure 9: parsing and unparsing. Let ST; be atree of the grammar SG;,
and ST atreewhoseroot hasSTi’s, 1 < i < k, asitschildren. Then werequire aone-to-one
mapping ¢ from the nodes of ST to the nodes of the basic tree that the parsing process
constructs out of ST;’s such that:

Cl: pisasyntactic embedding, i.e., it preserves both ancestra and left-to-right orders;

C2: o preserves labds, and no node of T outside the p-image of ST has a symbol of a
source grammar asitslabel; and

C3: ¢ preserves values of imported attributes.

Asan example, consider thetrees ST; and ST, of Figure 3, and the HAG scheme G; of
Figure6. Inthiscase, the parsing process producesthe basic tree givenin Figure 7. A node
x isshowninabold circlein Figure 7 iff x is an image of some node in ST; or ST, under
the mapping .

The unparsing process, on the other hand, is a process of constructing a complete and
consistent tree RT of the source grammar RG out of the compl ete and consistent extension
cons(T) of thebasic tree T. Asin the parsing process, we require a one-to-one mapping
from the nodes of RT to the nodes of cons(T) which satisfy three conditions analogous to
C1, C2, and C3: correponding to C3, however, the inverse of v, rather than v itself, must
preserve values of imported attributes.

As an example, consider the tree of Figure 8, and the grammar |G of Figure 5. The
unparsing process derives the attributed tree I T given in Figure 10. A nodex isshownin a
bold circlein Figure 8 iff x isan image of some nodein IT under the one-to-one mapping.
Note that the values of attribute instances item.no have been added into IT according to
grammar |G. IT expressesthelist of references that exist withinthe bibliography document
of Figure 2(b) and are cited in the article of Figure 2(a).

By givingaHAG scheme specification G (and aresult grammar RG), sourcetrees { ST,
STy, - -+, STk} can be transformed into a result tree RT through the three steps shown in
Figure 9. We write RT = trans(G, RG, STy, - - -, STk) to denote this transformation process.
For example, source trees ST; and ST, of Figure 3 are transformed into IT of Figure 10

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 371

A.Guy Application Systems G.Prof Attribute grammars

Figure 10. Attributed tree I T for derived references

with the grammars G, of Figure 6 and I1G of Figure5. IT = trans(Gy, |G, STy, ST») denotes
thistransformation.

For the implementation of such transformations, we can adopt the incremental and
efficient algorithms originally devel oped for the syntactical and semantical analysisin the
programming language field. Thus, when the source trees are modified, the result tree can
beincrementally updated by recomputing only the portion of the result tree that is affected
by the modification.

4.2 Composition of transformations

It is known that higher-order attribute grammars can express arbitrary computation [7].
Thus, intheory, any computable document transformation can be specificed inaHAG and
hencein aHAG scheme. However, it isaso known that by decomposing atransformation,
one can obtain a sequence of computationally much ssimpler transformations[5].

Thus, SIMON al so supports composition of transformations. For example, consider the
transformation from articles with citation and bibliography documents into articles with
reference (Figure3). Thetransformation process can be composed of two subprocesses: (1)
construct areference list (e.g., Figure 10) from the article with citation (e.g., Figure 3(a))
and bibliography document (e.g., Figure 3(b)); (2) create an article with reference (eg.,
Figure 3(c)) from the derived reference list and the given article with citation. The subpro-
cess (1) is specified by the HAG scheme specification of Figure 6. In the same way, we can
writeaHAG specification, say G, for the subprocess (2).

After specifying al transformation subprocesses, we can perform the total transforma-
tion process by composing them. For example, for the HAG scheme specifications G; of
Figure 6 and G, mentioned above, we can execute the following composition,

RT = trans(G,,RG, STy trans(G1,1G,ST1,ST2)),
to assembl e the source trees ST; and ST into result the tree RT (Figure 3).

5 CONCLUSION: TOWARDSA VIEW MANAGEMENT SYSTEM
FOR COMPLEX DOCUMENTS

One of the daunting document problemstoday is how to manage large complex documents
as typified by the technical documents of, for instance, aerospace, automobile, and phar-
maceutical industries. It isour belief that the notion of structure is an essential ingredient

372 A. FENG AND T. WAKAYAMA

of any reasonabl e solution to the problem: any person who has to deal with such complex
documents must do so component by component, which are, by the very definition of
complex documents, intricately related to each other. One key issue here is how to define
human comprehensible views of the complex whole out of its components dynamically as
various needs arise. In this regard, the work presented in this paper may be considered
a step towards providing a document programming language in which one can program
various views as needed. Once a document management system acquires such flexibili-
ties, there has to be a way of managing those layers of (mutually dependent) views: e.g.,
propagating updates through the layers and maintai ning some notion of consistency among
them. Our intentionisto eventual ly develop SIMON into a more comprehensive system of
view management.

One related issue not discussed in this paper is the conversion problem of unstruc-
tured documents. We simply note that there has been a significant progress on this issue,
particularly, on the conversion from unstructured documents to (weakly) structured docu-
ments [13]. We hope to augment our system with such converters to build more powerful
document transformation/conversion systems.

REFERENCES

1. H.H.Vogt, S.D. Swierstra, and M.F. Kuiper, ‘Higher-Order Attribute Grammars', in Proceedings
of the ACM SIGPLAN’89 Conference on Programming Language Design and Implementation,
131-145, ACM Press, New York, (1989).

2. C.F. Goldfarb, The SGML Handbook, Oxford University Press, Oxford, 1990.

3. R.Furutaand P.D. Stotts, ‘ Specifying Structured Document Transformations', in Proceedingsof
theInter national Conference on Electronic Publishing, Document Manipulation and Typography
(EP88), ed., J.C. van Vliet, 109-120, Cambridge University Press, Cambridge, UK, (1988).

4. E. Akpotsui and V. Quint, ‘ Type Transformation in Structured Editing Systems', in Proceedings
of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek and G. Coray, 27-41, Cambridge
University Press, Cambridge, UK, (1992).

5. H. Ganzinger and R. Giegerich, ‘Attribute coupled grammars’, ACM SIGPLAN Notices, 19(6),
157-170, (1984).

6. T. Teitelbaum and R. Chapman, ‘Higher-Ordered Attribute Grammars and Editing Environ-
ments', in Proceedingsof the ACM SIGPLAN' 90 Conferenceon Programming LanguageDesign
and Implementation, 197-208, ACM Press, New York, (1990).

7. H.H. Vogt, Higher-Order Attribute Grammars, Ph.D. dissertation, Department of Computer
Science, University of Utrecht, 1993.

8. A.L.Brown, T. Wakayama, and H. Blair, ‘A Reconstruction of Context-Dependent Document
Processingin SGML’, in Proceedingsof Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek
and G. Coray, 1-26, Cambridge University Press, Cambridge, UK, (1992).

9. P Deransart, M. Jourdan, and B. Lorho, Attribute Grammars— Definitions, Systems, and Bibli-
ography, Lecture Notes in Computer Science, No. 323, Springer, Berlin, 1988.

10. A.L.BrownandS. Manthaand T. Wakayama, ‘ The declarative semantics of document process-
ing’, in Proceedingsof the First International Workshop on Principles of Document Processing,
(1992).

11. B. Stroustrup, The C++ Programming Language, Addison—\Wesley, Reading, MA, 1991.

12. T.Repsand T. Teitelbaum, The Synthesizer Generator — A system for constructing language-
based editors, Springer, Heidelberg, 1988.

13. G. Porter and E.V. Rainero, ‘ Document Reconstruction: A System for Recovering Document
Structure from Layout’, in Proceedings of Electronic Publishing, 1992 (EP92), eds., C. Vanoair-
beek and G. Coray, 127-141, Cambridge University Press, Cambridge, UK, (1992).

	SUMMARY
	1 INTRODUCTION
	2 AN EXAMPLE: ASSEMBLING DOCUMENTS OF MULTIPLE META-TYPES
	3 HIGHER-ORDER ATTRIBUTE GRAMMAR SCHEMES
	3.1 A syntax overview
	3.2 Attribute evaluation

	4 DOCUMENT TRANSFORMATION IN SIMON
	4.1 Parsing (embedding)
and unparsing (projection)
	4.2 Composition of transformations

	5 CONCLUSION: TOWARDS A VIEW MANAGEMENT SYSTEM FOR COMPLEX DOCUMENTS
	REFERENCES

