
ELECTRONIC PUBLISHING, VOL. 6(4), 361–372 (DECEMBER 1993)

SIMON: A grammar-based transformation
system for structured documents
AN FENG AND TOSHIRO WAKAYAMA

Xerox Corporation
Webster Research Center
Webster, New York 14580, USA

SUMMARY
SIMON is a grammar-based transformation system for restructuring documents. Its target
applications include meta-level specification of document assembly, view definition and retrieval
for multiview documents, and document type evolution. The internal document model is based
on attribute grammars,and it interfaces with externaldocumentmodels such as SGML through
input and output conversion. The transformation engine of SIMON is an amalgamation of
syntax-directed computation and content-oriented computation: the former is through higher-
order (and related) extensions of attribute grammars whereas the latter is done by externally
defined programs and it is for computation not naturally amenable to the syntax-directed
paradigm. The current implementation of SIMON employs the higher-order extension proposed
in [1] for the syntax-directed computation, and C++ for the content-oriented computation.

KEY WORDS Structured documents Document transformation Document type evolution

Document assembly Multiview documents Attribute grammars

1 INTRODUCTION

One of the challenging issues in the study of structured documents is how to reuse docu-
ments and document components across heterogeneous types (e.g., manuals, letters, articles
within SGML [2]) and meta-types (e.g., SGML, ODA, and possibly LATEX). The main dif-
ficulty of the problem is that document components to be reused have their own internal
structures which are in general foreign to the new document being constructed. If the
generic structure of the new document is to remain the same and not to be extended or
modified to accommodate the structures of the reuse components, the reuse components
themselves must be structurally transformed to fit into the new generic structure. Thus, the
idea of document transformation becomes a key technical issue, as pioneered by [3,4].

A major advantage of structured documents is that documents are not simply structured,
but also the generic structural description itself is given a formal representation (e.g.,
Document Type Definition in SGML). The generic structure descriptions enable document
transformation to be specified at meta-level. Our study leverages such meta capabilities
of structured documents in order to strengthen and broaden the effectiveness and scope of
applications of document transformation. To this end, we have been developing a system
called SIMON1 based on attribute grammars and their higher-order extensions (and other
related extensions), which have been receiving much attention recently in the area of
programming language studies [1,5,6,7].
1 “SI” and “MON” stand for restructuring and documents respectively in Japanese.

CCC 0894–3982/93/040361–12 Received 15 August 1993
1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.

362 A. FENG AND T. WAKAYAMA

source
documents
sd1, ..., sdk

source
trees
ST1, ..., STk

result
tree
RT

result
document
rd

Input
Conversion

Output
Conversion

Structure
Transformation

Figure 1. Framework for document transformations

Figure 1 depicts the general framework of how SIMON works. The internal document
representation model of SIMON is exactly as in [8]. Namely, documents are given by
attributed trees (i.e., derivation trees where each node is associated with a set of attribute
values) and their type definitions by attribute grammars [9]. The transformation specifica-
tion in SIMON has three components: a collection of source attribute grammars, a result
attribute grammar, and a mapping that takes a collection of source trees (of the source gram-
mars) and produce a result tree (of the result grammar). Such mappings are specified by
higher-order (and related) extensions of attribute grammars. In the current implementation,
the transformation engine of SIMON is based on the higher-order extension proposed by
[1]. The SIMON transformation engine will be discussed in detail in later sections. SIMON
also interfaces with external document models such as SGML through input and output
conversions (see Figure 1).

Some of the target applications of SIMON are:

• Document Assembly Specification
It is often the case that the process of document reuse itself is highly structured, i.e.,
instances of the same component classes are combined into a new document in the
same manner. For instance, monthly project reports may be constructed, to a large
extent, from individual monthly reports, trip reports, publication databases, tables
of experimental raw data, etc. Since these documents are, in general, in different
meta-types, we first convert them into the uniform internal representation of SIMON
as attributed trees and then apply the assembly specification given by a higher-order
attribute grammar.

• Document View Retrieval
While document assembly tends to build more complex documents out of simpler
ones, document view retrieval refers to the inverse process of extracting simpler
documents out of complex multiview documents. One of the problems with such
complex documents is that they intertwine multiple views in a way quite cumbersome
and sometimes nearly impossible for the human reader to comprehend. In SIMON,
these views can be specified by higher-order attribute grammars, and they can be
computationally retrieved through attribute evaluation.

• Document Type Evolution
When a document type is designed, it reflects the properties of the objects and events
of documentation and the designer’s perception and understanding of them. As time
goes by, the nature of these objects and events as well as the designer’s perception
and understanding of them may change. In fact, such changes may accumulate to
an extent that the old type is no longer appropriate and a new type definition is
desirable. This is analogous to the problem of schema evolution in database design,
and the issue has been discussed in document settings as well [4]. In [4], the objects of
transformationare derivation trees withoutattributes. By extending them to attributed
trees, we enrich the class of transformations that can be specified and computed. For
instance, [8] identifies various classes of context-dependent transformations.

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 363

<!DOCTYPE article [
<!ELEMENT article 0 O (title, (sentence | citation)*) >
<!ELEMENT title - O (#PCDATA) >
<!ELEMENT sentence - O (#PCDATA) >
<!ELEMENT citation - - (#PCDATA) >]>
<title> AG <sentence>AG was introduced in 1968.<citation> intro </citation>
<sentence> It has been widely used.<citation> app</citation><citation> else</citation>

(a) article sd1 with citation in SGML style

@book{app, author = "A.Guy", title = "Application systems"}
@article{tran, author = "S.Lady", title = "Structure transformation" }
@article{intro, author = "G.Prof", title = "Attribute grammars" }

(b) bibliography document sd2 in BibTeX style

\documentstyle{article}
\begin{document}
\title{AG}

AG was introduced in 1968.[2] It has been widely used.[1][?]
\section*{Reference}

\begin{itemize}
\item{[1]} A.Guy: "Application Systems".
\item{[2]} G.Prof: "Attribute grammars".

\end{itemize}
\end{document}

(c) article rd with reference in LATEX style

Figure 2. Transformation from SGML and BibTeX documents to LATEX document

Another important feature of SIMON is that its transformation engine is an amalga-
mation of two computational paradigms: syntax-directed computation through attribute
grammars and content-oriented, domain-specific computations through programs external
to the grammar-based specification. Although higher-order attribute grammars can express
arbitrary computations, certain computations become quite unnatural in the syntax-directed
setting. Moreover, some of these computationsare well understood and their efficient imple-
mentations are known in other programming paradigms (e.g., sorting, text retrieval, certain
optimization problems). The interface between the two paradigms is through free functions
of the attribute specification language, which correspond to free predicates in [10]. [10]
gives a more formal treatment of such amalgamations. In the current implementation of
SIMON, we have chosen C++ [11] for writing programs to define such functions.

SIMON has been applied in several examples of document assembly, view retrieval,
and document formatting. The previous experience indicates that SIMON enables us to
write down transformation specifications that are easy for human beings to understand,
and efficient for computers to execute. For example, for the formatting process of technical
articles, our specification consists of 600 lines, among which 250 lines are attribute grammar

364 A. FENG AND T. WAKAYAMA

article

AG AG was introduced in 1968. intro It has been widely used.

citationsentencetitle

else

citation

app

citationsentence

(a) ST1 for article sd1

G.Prof Attribute grammars

titleauthor

entry

S.Lady

titleauthor

Structure transformation

entry

A.Guy

titleauthor

Application systems

entry

key=app

kind=book

key=tran

bibdata

kind=article key=intro

kind=article

(b) ST2 for bibliography document sd2

article

A.Guy

titleauthor

no=1

G.Prof Attribute grammars

titleauthor

no=2

Application Systems

reference

item item

title ref_no

AG AG was introduced in 1968. 2 It has been widely used. 1 ?

sentence sentence ref_no ref_no

(c) RT for article rd

Figure 3. Attributed trees for source and result documents

and 350 lines are C++ code. Based on this specification, SIMON can derive the layout
structure of a technical article from its logic structure within a few seconds.

In the following sections, we show, in greater detail, how SIMON works through
a single common example, which has been tested under the current implementation of
SIMON. Although the primary focus of this paper is the SIMON transformation engine,
the example also illustrates the input and output conversion process.

2 AN EXAMPLE: ASSEMBLING DOCUMENTS OF MULTIPLE META-TYPES

Assume that we have (1) a technical article sd1 in SGML style as shown in Figure 2(a),
and (2) a bibliography document sd2 in BibTeX style. The article sd1 contains three
citations {intro, app, else}, each of which indicates a reference to external documents.
The bibliography document sd2 contains a list of reference entries, each of which is either
a book or an article. Each reference entry is associated with a citation key (e.g., app for the
first entry) and has an author list and a title. The goal is to construct the LATEX article rd
of Figure 2(c) from sd1 and sd2 computationally. The result article rd contains a reference
list at the end and several cross reference numbers. The first character of all words (e.g.,

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 365

imported = { enum {book, article} entry.kind;
char *entry.key;}

article → title (sentence | citation)* bibdata → entry*
title → PCDATA entry → author title
sentence → PCDATA author → PCDATA
citation → PCDATA title → PCDATA

(a) SG1 for articles with citations (b) SG2 for bibliography documents

imported = { int item.no; }

article → title sentence* reference
sentence→ PCDATA ref no* title → PCDATA
ref no → PCDATA reference→ item*
item → author title author → PCDATA

(c) RG for articles with references

Figure 4. Attribute grammars for source and result documents

system of the first reference) in the reference’s title is translated into a capital letter iff the
reference is a book.

In order to deal with structured documents of various meta-types (e.g., SGML, LATEX,
troff), SIMON applies the transformation framework shown in Figure 1. First, source doc-
uments sd1, · · · , sdk of various meta-types are converted into attributed trees ST1, · · · , STk,
respectively. These trees are then transformed into a result attributed tree RT through
structure transformation. Finally, the result tree RT is converted into a result document rd.
Figure 3 shows the attributed trees ST1, ST2 and RT for the SGML, BibTeX and LATEX
documents of Figure 2. In the figure, tree nodes are denoted by circles, and their associated
attributes are shown in boxes. For example, in the attributed tree ST2, the left-most child
of the root is a node labelled by symbol entry which is associated with instances of two
attributes entry.kind and entry.key, whose assigned values are book and app, respectively.

Figure 4 illustrates the attribute grammars {SG1, SG2, RG} for the article with citation,
the bibliography document and the article with reference (Figure 2). In Figure 4, nonterminal
symbols are shown in lower-case letters, and terminal symbols in upper-case letters. As in
SGML, the terminal symbol PCDATA means zero or more data characters. An attribute
grammar usually contains three parts: (1) a context-free grammar (CFG) which expresses
the generic document structure, (2) a set of attributes associated with symbols of CFG, and
(3) a set of semantic rules associated with production rules of CFG. An attributeb associated
with a symbol X is denoted as X.b. X.b can be an imported attribute, inherited attribute,
or synthesized attribute. The value of an imported attribute is provided by external means
(e.g., the user). The values of synthesized and inherited attributes are defined by semantic
rules of productions. In Figure 4, CFGs are expressed in extended BNF. Two imported
attributes entry.kind and entry.key are declared in SG2, and one imported attribute item.no
is declared in RG. The types of attributes are declared as in C++. No semantic rules are
defined in these grammars.

366 A. FENG AND T. WAKAYAMA

imported = { char *item.key;} inherited = { int item.no;}

reference→ item*
{ item.no = if is left most(item) then 1 else left(item).no +1; }

item→ author title
author→ PCDATA title→ PCDATA

Figure 5. Attribute grammar IG for reference lists

Figure 5 shows an attribute grammar IG that specifies reference lists. In addition to an
imported attribute item.key, IG declares an inherited attribute item.no which represents the
ordered number of a reference item. The value of item.no is defined by the semantic rule
between “{“ and “}”: it is incremented by 1 from left to right. For a given item, function
is left most(item) returns a value true iff the item is the left-most child of its parent, and
function left(item) returns the sibling of item immediately to its left.

3 HIGHER-ORDER ATTRIBUTE GRAMMAR SCHEMES

3.1 A syntax overview

The SIMON transformation engine is based on a scheme extension of attribute grammars
in the sense of [10]: i.e., the grammars are augmented with free functions which are (freely)
interpreted by some externally defined programs. Currently its implementation employs
the higher-order attribute grammar (HAG) of [1] and C++ to define free functions. Figure 6
shows an example of such HAG schemes. The scheme constructs a reference list from an
article with citation and a bibliography document. The C++ code (Figure 6(b)) defines the
functions (e.g., contains) and data types (e.g., STRING SET) appearing in the grammar.

The grammar part of the scheme consists of attribute declaration (cf. lines (01) – (04) of
Figure 6(a)) and a set of productions (cf. lines (05) – (31) of Figure 6(a)). Each production
consists of a production rule in the form of “X0 → X1 · · ·Xm”, and several semantic
rules within “{“ and “}”. When a symbol appears more than once in a production, each
occurrence of the symbol is associated with a unique number in order to distinguish them
from each other (e.g., content[1] and content[2] in the line (11) of Figure 6). Each semantic
rule takes the form of “α = f (· · · ,β, · · ·)”, where f is the name of a function. The defined
identifier α is either a synthesized attribute of the left-hand side symbol X0, or an inherited
attribute of a right-hand side symbol Xi (1 ≤ i ≤ m), or a right-hand side nonterminal
symbol itself. Defining a nonterminal X in a semantic rule means that the subtree with root
X is constructed according to the semantic rule, rather than syntactical parsing of a given
string. Such a symbol X (e.g., reference in the first production of Figure 6(a)) is called a
nonterminal attribute. Each argument β of a semantic rule is a symbol of the production or
its attribute.

A production can be associated with a unique identifier, called production operator
[12], in order to obtain a linear notation for trees [1,5,6]. For example, the production in
the line (31) of Figure 6(a) is associated with an operator item. This operator denotes a
function that takes a pair of attributed trees, namely, an author-tree and a title-tree,
and constructs an item-tree with those two trees as its children. As a function, a production

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 367

(01) imported ={ char *entry.key, *item.key; enum { book, article} entry.kind; }
(02) synthesized ={ item entry.ref; item list bibdata.ref, entry list.ref;
(03) STRING SET article.cite, content.cite, citation.cite; }
(04) inherited ={ STRING SET bibdata.cite, entry list.cite; }

(05) ref cons→ article bibdata reference
(06) { bibdata.cite = article.cite; reference = refer(bibdata.ref); }
(07) article→ title content { article.cite = content.cite; }
(08) title→ PCDATA
(09) content[1]→ content[2] sentence { content[1].cite = content[2].cite; }
(10) sentence→ PCDATA
(11) content[1]→ content[2] citation
(12) { content[1].cite = content[2].cite + citation.cite; }
(13) content→ { content.cite = STRING SET(); }
(14) citation→ PCDATA { citation.cite = STRING SET(PCDATA); }
(15) bibdata→ entry list
(16) { entry list.cite = bibdata.cite; bibdata.ref = entry list.ref; }
(17) entry list[1]→ entry entry list[2]
(18) { entry list[2].cite = if (entry list[1].cite.contains(entry.key))
(19) then entry list[1].cite - STRING SET(entry.key)
(20) else entry list[1].cite;
(21) entry list[1].ref = if (entry list[1].cite.contains(entry.key))
(22) then itlist(entry.ref, entry list[2].ref) else entry list[2].ref; }
(23) entry list→ { entry list.ref = nolist(); }
(24) entry→ author title
(25) { entry.ref = if (entry.kind==book) then item(author, capitalize(title), key=entry.key)
(26) else item(author, title, key=entry.key); }
(27) author→ PCDATA
(28) refer: reference→ item list
(29) itlist: item list[1]→ item item list[2]
(30) nolist: item list→
(31) item: item→ author title

(a) Higher order attribute grammar

struct STRING SET {
int no; /*no of strings*/
char *str[100]; /*string data*/

STRING SET() { no = 0; }
STRING SET(char *x) { no = 1; str[1] = new char[strlen(x)+1]; strcpy(str[0], x); }
int contains(char *x) { for (int i = 0; (i < no); i++);

if (!strcmp(str[i],x)) return 1;
return 0; }

friend STRING SET operator+(STRING SET x, STRING SET y) { · · · }
· · · }

(b) C++ code

Figure 6. HAG scheme specification G1 for reference construction

368 A. FENG AND T. WAKAYAMA

content

content
else

citation key=app

A.Guy

titleauthor

Application systems

AG

title

article

ref_cons

reference

It has been widely used.

bibdata

S.Lady

titleauthor

Structure transformation

G.Prof Attribute grammars

titleauthor

AG was introduced in 1968.

sentence

intro

citation

content

content

app

citation

content

sentence

entry

entry_list

entry
entry_list

entry_list

entry_list

kind=book

key=intro

kind=article
entry

key=tran

kind=article

(05)

(07)

(08)
(09)

(09)

(09)

(09)

(09)

(10)

(14)

(14)

(14)

(10)

(15)

(17)

(23)

(26) (08)

(22)

(17)

(17)

(23)

(23)(26) (08)

(26) (08)content

(13)

Figure 7. Basic tree T of HAG G1

operator can be used in any semantic rule. For example, the production operator item is
used in the semantic rule of the lines (25)-(26) in Figure 6(a). That semantic rule uses a
function capitalize which translates the first letter of each word into capital. Three other
production operators refer, itlist, nolist are also declared and used in Figure 6.

3.2 Attribute evaluation

Let G be a HAG scheme. An attributed tree of G is a derivation tree of G (i.e., a derivation
tree according to the productions of G) in which each node x labelled by a nonterminal X
is associated with declared attribute instances x.b and their values val(x.b).

An attributed tree T of G is called a basic tree iff T satisfies the following conditions:
Each leaf of T is labelled by a nonterminal attribute or a terminal; No internal node of T
is labelled by a nonterminal attribute; All imported attribute instances of T are assigned
values. Figure 7 illustrates a basic tree of the attribute grammar G1 given in Figure 6(a). In
the figure, a node labelled with a nonterminal attribute is denoted by a dashed circle. Each
internal node has the line number of the production rule that expands that node.

An attributed tree T of G is complete if every leaf of T is labelled by a terminal symbol,
and every attribute instance (synthesized, inherited, or imported) of T is assigned a value.
An attributed tree T is consistent iff T satisfies the following conditions: (1) For every
inherited or synthesized attribute instance, its assigned value is equal to the value defined
by its semantic rule; (2) For every node of T labelled by a nonterminal attribute, the value
of this nonterminal attribute instance, i.e., the maximal basic subtree rooted at this node, is
equal to the tree defined by the semantic function for this nonterminal attribute.

Given a basic tree T of a higher-order attribute grammar, the attribute evaluation is a
process of constructing a complete and consistent extension of the tree, denoted cons(T),
by associating attribute instances with each node; assigning a value to an instance of

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 369

author

G.Prof Attribute grammars

titleauthor

key=intro

A.Guy

title

Application Systems

key=app

ref_cons

referencebibdata......
article

cite={intro,app,else}

cite={intro,app,else}

cite={intro,app,else}

G.Prof Attribute grammars

titleauthor

titleauthor

A.Guy
Application Systems

entry_list
item_listitem

item

item_list

item_list
item_list

item item_list

item item_list

ref=

key=intro

key=app
key=app

A.Guy

titleauthor

Application systems

entry

kind=book

kind=book

cite={intro,else}

ref=

...
entry

key=tran

kind=article
entry_list

item_list

item_list

G.Prof Attribute grammars

titleauthor

key=intro
item

...

Figure 8. Complete and consistent tree cons(T) of HAG G1

an inherited or synthesized attribute; and grafting a basic subtree to a leaf labelled by a
nonterminal attribute.

For the basic tree T of Figure 7, its attribute evaluation with grammar G1 of Figure 6
generates the tree cons(T) given in Figure 8. For the space limitation, some parts of the
tree have been omitted in Figure 8. Note that a subtree has been grafted to the node labelled
by nonterminal attribute reference. Also, various attribute instances such as article.cite and
bibdata.cite have been assigned values. As an example of nonterminal attributes, consider
the node labelled by the nonterminal attribute reference. The maximal subtree of cons(T)
with that node as a root forms a basic subtree, which is equal to the tree define by the
semantic rule reference = · · · in the line (06) of Figure 6(a). Note also that, for some
inherited or synthesized attribute instances (e.g., bibdata.ref), their assigned values are
attributed trees.

4 DOCUMENT TRANSFORMATION IN SIMON

Let SG1, · · · , SGk be source attribute grammars, and RG a result attribute grammar. Then a
document transformation in SIMON is a mapping of the following type:

| SG1 | × · · ·× | SGk |−→| RG | ,

where | X | denotes the collection of all attributed trees valid under the grammar X. As
shown in Figure 9, the transformation consists of three parts: (1) Parsing: embed source
trees into a basic tree of the HAG scheme which defines the transformation engine; (2)
Attribute evaluation: construct the complete and consistent extension of the basic tree; and
(3) Unparsing: take a projection of the extended tree with respect to the result grammar.

370 A. FENG AND T. WAKAYAMA

source
trees
ST1, ..., STk

basic
tree
T

consistent
tree
cons(T)

Attribute
Evaluation

result
tree
RT

Parsing Unparsing

HAG specification result grammar

Figure 9. HAG based structure transformation

4.1 Parsing (embedding) and unparsing (projection)

Given source attribute grammars and a result attribute grammar as above, let G be a HAG
scheme that specifies a transformation. We assume that G satisfies the following conditions:
(1) The symbols of G include all symbols of grammars SGi’s and RG; (2) every imported
attribute of RG is an attribute of G; and (3) every attribute of a source grammar SGi is an
imported attribute of G.

As an example, consider SG1 and SG2 in Figure 4 as source grammars, and IG of Figure 5
as the result grammar. With respect to these grammars, the HAG scheme specification in
Figure 6 satisfies those constraints stated above.

Since attribute evaluation has been explained in Subsection 3.2, we now describe the
other two steps in Figure 9: parsing and unparsing. Let STi be a tree of the grammar SGi,
and ST a tree whose root has STi’s, 1 ≤ i ≤ k, as its children. Then we require a one-to-one
mapping ϕ from the nodes of ST to the nodes of the basic tree that the parsing process
constructs out of STi’s such that:

C1: ϕ is a syntactic embedding, i.e., it preserves both ancestral and left-to-right orders;
C2: ϕ preserves labels, and no node of T outside the ϕ-image of ST has a symbol of a

source grammar as its label; and
C3: ϕ preserves values of imported attributes.

As an example, consider the trees ST1 and ST2 of Figure 3, and the HAG scheme G1 of
Figure 6. In this case, the parsing process produces the basic tree given in Figure 7. A node
x is shown in a bold circle in Figure 7 iff x is an image of some node in ST1 or ST2 under
the mapping ϕ.

The unparsing process, on the other hand, is a process of constructing a complete and
consistent tree RT of the source grammar RG out of the complete and consistent extension
cons(T) of the basic tree T. As in the parsing process, we require a one-to-one mapping ψ
from the nodes of RT to the nodes of cons(T) which satisfy three conditions analogous to
C1, C2, and C3: correponding to C3, however, the inverse of ψ, rather than ψ itself, must
preserve values of imported attributes.

As an example, consider the tree of Figure 8, and the grammar IG of Figure 5. The
unparsing process derives the attributed tree IT given in Figure 10. A node x is shown in a
bold circle in Figure 8 iff x is an image of some node in IT under the one-to-one mapping.
Note that the values of attribute instances item.no have been added into IT according to
grammar IG. IT expresses the list of references that exist within the bibliographydocument
of Figure 2(b) and are cited in the article of Figure 2(a).

By giving a HAG scheme specification G (and a result grammar RG), source trees {ST1,
ST2, · · ·, STk} can be transformed into a result tree RT through the three steps shown in
Figure 9. We write RT = trans(G, RG, ST1, · · ·, STk) to denote this transformation process.
For example, source trees ST1 and ST2 of Figure 3 are transformed into IT of Figure 10

SIMON: A GRAMMAR-BASED TRANSFORMATION SYSTEM OF STRUCTURED DOCUMENTS 371

reference

G.Prof Attribute grammars

titleauthortitleauthor

A.Guy Application Systems

key=app

no=1

key=intro

no=2
item item

Figure 10. Attributed tree IT for derived references

with the grammars G1 of Figure 6 and IG of Figure 5. IT = trans(G1, IG, ST1, ST2) denotes
this transformation.

For the implementation of such transformations, we can adopt the incremental and
efficient algorithms originally developed for the syntactical and semantical analysis in the
programming language field. Thus, when the source trees are modified, the result tree can
be incrementally updated by recomputing only the portion of the result tree that is affected
by the modification.

4.2 Composition of transformations

It is known that higher-order attribute grammars can express arbitrary computation [7].
Thus, in theory, any computable document transformation can be specificed in a HAG and
hence in a HAG scheme. However, it is also known that by decomposing a transformation,
one can obtain a sequence of computationally much simpler transformations [5].

Thus, SIMON also supports composition of transformations. For example, consider the
transformation from articles with citation and bibliography documents into articles with
reference (Figure 3). The transformation process can be composed of two subprocesses: (1)
construct a reference list (e.g., Figure 10) from the article with citation (e.g., Figure 3(a))
and bibliography document (e.g., Figure 3(b)); (2) create an article with reference (e.g.,
Figure 3(c)) from the derived reference list and the given article with citation. The subpro-
cess (1) is specified by the HAG scheme specification of Figure 6. In the same way, we can
write a HAG specification, say G2, for the subprocess (2).

After specifying all transformation subprocesses, we can perform the total transforma-
tion process by composing them. For example, for the HAG scheme specifications G1 of
Figure 6 and G2 mentioned above, we can execute the following composition,

RT = trans(G2,RG,ST1,trans(G1,IG,ST1,ST2)),

to assemble the source trees ST1 and ST2 into result the tree RT (Figure 3).

5 CONCLUSION: TOWARDS A VIEW MANAGEMENT SYSTEM
FOR COMPLEX DOCUMENTS

One of the daunting document problems today is how to manage large complex documents
as typified by the technical documents of, for instance, aerospace, automobile, and phar-
maceutical industries. It is our belief that the notion of structure is an essential ingredient

372 A. FENG AND T. WAKAYAMA

of any reasonable solution to the problem: any person who has to deal with such complex
documents must do so component by component, which are, by the very definition of
complex documents, intricately related to each other. One key issue here is how to define
human comprehensible views of the complex whole out of its components dynamically as
various needs arise. In this regard, the work presented in this paper may be considered
a step towards providing a document programming language in which one can program
various views as needed. Once a document management system acquires such flexibili-
ties, there has to be a way of managing those layers of (mutually dependent) views: e.g.,
propagating updates through the layers and maintaining some notion of consistency among
them. Our intention is to eventually develop SIMON into a more comprehensive system of
view management.

One related issue not discussed in this paper is the conversion problem of unstruc-
tured documents. We simply note that there has been a significant progress on this issue,
particularly, on the conversion from unstructured documents to (weakly) structured docu-
ments [13]. We hope to augment our system with such converters to build more powerful
document transformation/conversion systems.

REFERENCES

1. H.H. Vogt, S.D. Swierstra, and M.F. Kuiper, ‘Higher-Order Attribute Grammars’, in Proceedings
of the ACM SIGPLAN’89 Conference on Programming Language Design and Implementation,
131–145, ACM Press, New York, (1989).

2. C.F. Goldfarb, The SGML Handbook, Oxford University Press, Oxford, 1990.
3. R. Furuta and P.D. Stotts, ‘Specifying Structured Document Transformations’, in Proceedingsof

the International Conference on Electronic Publishing, Document Manipulation and Typography
(EP88), ed., J.C. van Vliet, 109–120, Cambridge University Press, Cambridge, UK, (1988).

4. E. Akpotsui and V. Quint, ‘Type Transformation in Structured Editing Systems’, in Proceedings
of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek and G. Coray, 27–41, Cambridge
University Press, Cambridge, UK, (1992).

5. H. Ganzinger and R. Giegerich, ‘Attribute coupled grammars’, ACM SIGPLAN Notices, 19(6),
157–170, (1984).

6. T. Teitelbaum and R. Chapman, ‘Higher-Ordered Attribute Grammars and Editing Environ-
ments’, in Proceedingsof the ACM SIGPLAN’90 Conferenceon ProgrammingLanguageDesign
and Implementation, 197–208, ACM Press, New York, (1990).

7. H.H. Vogt, Higher-Order Attribute Grammars, Ph.D. dissertation, Department of Computer
Science, University of Utrecht, 1993.

8. A.L. Brown, T. Wakayama, and H. Blair, ‘A Reconstruction of Context-Dependent Document
Processing in SGML’, in Proceedings of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek
and G. Coray, 1–26, Cambridge University Press, Cambridge, UK, (1992).

9. P. Deransart, M. Jourdan, and B. Lorho, Attribute Grammars – Definitions, Systems, and Bibli-
ography, Lecture Notes in Computer Science, No. 323, Springer, Berlin, 1988.

10. A.L. Brown and S. Mantha and T. Wakayama, ‘The declarative semantics of document process-
ing’, in Proceedingsof the First International Workshop on Principles of Document Processing,
(1992).

11. B. Stroustrup, The C++ Programming Language, Addison–Wesley, Reading, MA, 1991.
12. T. Reps and T. Teitelbaum, The Synthesizer Generator – A system for constructing language-

based editors, Springer, Heidelberg, 1988.
13. G. Porter and E.V. Rainero, ‘Document Reconstruction: A System for Recovering Document

Structure from Layout’, in Proceedings of Electronic Publishing, 1992 (EP92), eds., C. Vanoir-
beek and G. Coray, 127–141, Cambridge University Press, Cambridge, UK, (1992).

	SUMMARY
	1 INTRODUCTION
	2 AN EXAMPLE: ASSEMBLING DOCUMENTS OF MULTIPLE META-TYPES
	3 HIGHER-ORDER ATTRIBUTE GRAMMAR SCHEMES
	3.1 A syntax overview
	3.2 Attribute evaluation

	4 DOCUMENT TRANSFORMATION IN SIMON
	4.1 Parsing (embedding)
and unparsing (projection)
	4.2 Composition of transformations

	5 CONCLUSION: TOWARDS A VIEW MANAGEMENT SYSTEM FOR COMPLEX DOCUMENTS
	REFERENCES

