
ELECTRONIC PUBLISHING, VOL. 6(3), 219–230 (SEPTEMBER 1993)

Dynamic regularisation of intelligent outline fonts
BEAT STAMM

Institute for Computer Systems
Swiss Federal Institute of Technology
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SUMMARY
This paper introduces a novel way to perform dynamic regularisation of outline fonts. In
the proposed font representation, the characters are decomposed into the components glyph,
contour, knot, and number. These components are scaled and mostly rounded before they are
assembled.Togetherwith adroitly-definedBézier curves, this implies regularisation of the outlines
without explicit grid-fitting, instructions, or hints. As a result, a single font representation
permits font-scaling at increasing levels of detail, along with increasing type size and resolution.
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1 INTRODUCTION

Today’s personal computers are equipped with raster displays and printers of highlyvarying
resolutions. Modern typesetting programs are expected to deliver the best possible quality
on all of these peripherals. For fonts intended for typesetting, this has two consequences.
On the one hand, they have to be available for raster devices of any resolution and at any
type size. On the other hand, they should display the highest possible level of detail at a
given resolution and type size.

The first consequence is addressed by producing bitmapped fonts on demand from
a generic representation. Fonts represented by their outlines, and scaled on-the-fly for
screen resolution, are becoming the state of the art on today’s personal computers [1]. The
process of producing bitmapped fonts from outline fonts involves three main steps: scaling,
digitizing, and rendering. Although the issues of digitizing (scan-converting) and rendering
(outlining or filling) are not restricted to the topic of font-scaling, their correct and efficient
implementation is a necessary prerequisite for it [2].

The second consequence is addressed by dynamic regularisation of the outlines. At
screen resolution (typically 64 to 100 dpi), most details of ‘artistic licence’ inherently
cannot be reproduced. Individual characters appear to be (and have to be) much more
regular than their designer intended. At printer resolution (typically ≥ 300 dpi), more
freedom of artistic expression can be represented in terms of pixels. To keep the digitizing
and filling of characters as efficient as it can be, and as simple as it should be, the outlines
are adapted to a given resolution and type size upon scaling. This process is called dynamic
regularisation. It permits a single font representation to be used to produce bitmapped

CCC 0894–3982/93/030219–12 Received 1 September 1993
1993 by John Wiley & Sons, Ltd. Revised 3 December 1993

© 1998 by University of Nottingham.



220 BEAT STAMM

fonts at increasing levels of detail, along with increasing type size and resolution, without
a substantial loss of overall performance.

Starting with the fundamental raster problem and proceeding to the formalism for
structuring fonts into components, Section 2 of this paper illuminates the background of
our approach. Section 3 discusses and illustrates the topic of dynamic regularisation and
leads to the demands on an appropriate font representation. Section 4 concludes with a
summary, a brief comparison with existing approaches, and a suggestion in which direction
to proceed with further research.

2 SOME BACKGROUND

2.1 The fundamental raster problem

Without loss of generality, we use integers for the coordinates in font space (i.e. the space
in which we define the fonts). Let x denote such a coordinate. To scale x, we multiply it by a
rational scaling factor σ = n/d, where both n and d are integers. With that, the product σ·x
is a rational number. Now, in order to decide which pixels to turn on, the resulting scaling
function s(x) eventually has to round back to an integer,

s(x):=[σ·x] ,

the rounding denoted by the brackets [ ]. Given two coordinates x and y, and two rational
numbers λ and µ denoting proportionality factors, this means that, usually,

s(λ·x + µ·y) 6= λ·s(x) + µ·s(y)

that is, the scaling function is non-linear! As a consequence, naive font-scalers are likely
to render equal stems unequally, since for such a stem often

s(rightEdge) 6= s(leftEdge) + s(stemWidth) , although

rightEdge = leftEdge+ stemWidth .

Similarly, λ = −1 explains why symmetric serifs are likely to be rendered asymmetrically
(that is, because s(λ·x) 6= λ·s(x)), and 0 < λ� 1 gives an idea why tiny parts are prone to
be dropped altogether (that is, because s(λ·x) = 0, although λ·s(x) 6= 0)). Since individual
facets of the above inequality will strike us repeatedly, we call this inherent problem the
fundamental raster problem. The fundamental raster problem explains the cause of many
‘raster tragedies’ (a term found in [3]). To avoid as many of these mishaps as possible when
scaling fonts at low resolution, two conclusions are drawn next.

2.2 Conclusion 1: components

Equality and symmetry properties of characters are lost unless the fundamental raster
problem is duly observed. Therefore, the characters have to be structured into (equal or
symmetric) components. Essentially, this means that glyphs (or closed contours) and (open)
contours are defined to be instances of one and the same template, rather than asking the
rasterizing algorithm to render equal but independent copies of the glyphs in the same
way. Unlike earlier approaches, which decomposed characters mainly into glyphs [4], the
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fundamental raster problem dictates the use of knots (control or support points) and single
numbers as components as well as glyphs. Knots and numbers can assume the role of
yardsticks, whose instances are inserted repeatedly into the blueprints of characters, rather
than requiring the respective distances to be scaled to the same lengths. The loss of linearity
of the scaling function applies to all these levels of a character’s blueprint.

2.3 Conclusion 2: the round-before-use rule

To assemble instances of components correctly, the components have to be rounded before
they are used in the assembly. If they are not, they do not observe the fundamental raster
problem. This is obvious for glyphs, for they are represented by a set of (rounded) pixels,
and it should become obvious for numbers as well as soon as we understand numbers
to represent vital dimensions of glyphs. Since this rule is of paramount importance, we
have coined the term round-before-use rule. This conclusion is maybe a quite surprising
one. Computer-science people tend to delay rounding as long as possible, so as to avoid
rounding errors, and now we advocate the opposite!

2.4 A formalism for hierarchical outline fonts

We have defined a formalism for hierarchical outline fonts [5] to bridge the gap between the
unstructured fonts we had and the structured fonts we needed. It is a declarative high-level
language, because we would like to express what the font is, and not what the computer
has to do in rendering the font. The entities to be declared in this language (font, variant,
character, glyph, contour, knot, and number) are immutable and do not assume different
values during font interpretation.

In this font language, the concept of attributes plays a central part. An attribute is
a quality or a distinguishing feature looked upon as naturally or necessarily belonging
to something. This is an important observation: with an attribute, we define what the
component in question is, but not what the computer might have to know about it, nor what
it must do with it. At the same time we would like to clearly distance ourselves from the
popular terms hint, such as in [6], and instruction, such as in [7]. We understand a hint to
be an indirect indication that suggests what might be the case. But the persistent vagueness
of this term still permits some fact not to be the case, which does not go far enough. On the
other hand, the imperative undertone of the term instruction does not quite blend in with
the declarative nature of our formal approach. Specifying the order in which the operations
must be performed by the computer goes too far. Notice, finally, that in the context of
font-scaling we strongly believe the term hint to be often used in a misleading way — even
in TrueType.

The most important attribute in this context is called the hyperbolic scaling attribute.
This attribute is used for numbers denoting e.g. stem widths or serif heights. The attribute
defines that the respective number persists under coarse scaling, while its omission permits
the number to vanish in pixel space.

Two more attributes should be mentioned as well. One is used to override the round-
before-use rule in cases where the latter is too restrictive. This is the case e.g. for numbers
that denote the distances between on-curve and off-curve points in Bézier curves. Since
these distances do not assume the role of reference distances and suchlike, they are irrelevant
for the assembly of the glyph, and hence are not subject to the round-before-use rule. The
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Figure 1. The first quadrant of a Times O, defined with Bézier curves

other attribute further specifies the nature of a contour. Such contour classes are e.g.
polygons or Bézier curves, and others may be added [8]. In particular, extensibility permits
smooth integration of answers to questions regarding the quality of rasterized curves. We
definitely agree with [9] that dynamic regularisation cannot deal easily with such issues of
the digital appearance of curvilinear glyphs.

3 IMPLIED DYNAMIC REGULARISATION

3.1 Curvilinear glyphs

Regularity of parts is only one aspect of font design. Quite often components that seem
to be identical to the untrained observer, unveil subtle nuances on closer examination.
Whatever the reason for such divergences from strict regularity may be, these details have
to be respected by the font-scaler. Many of them cannot be represented in small type sizes
at low resolution. Below a certain limit, a single unit in pixel space is far too coarse to
express this or that tiny difference. Therefore the degree of regularity must increase along
with decreasing resolution and type size. This transition to small type size at low resolution
is the whole purpose of dynamic regularisation.

To get the upper hand of dynamic regularisation, we start with the mathematical rep-
resentation of curvilinear glyphs. We have determined third-order Bézier curves to be the
form most appropriate to the problem, because successive pairs of off-curve and on-curve
points directly define the slope of the curve. This property can be exploited quite fruitfully
if we see to it that the Bézier curves start and end at the locus of the local extrema of the
desired shape (Figure 1).

With that, we obtain parallel tangents for pairs of Bézier curves. They will be used in
subsection 3.1 to formulate optical corrections to the thicknesses of strokes, or to express
the baseline overhangs and the mean-line and cap-line overshoots.

It is one thing to ask for something, but it is another to actually provide it. Inspired
by [10] we implemented a program to do a spline-to-Bézier conversion, to bridge the gap
between the natural spline curves we had and third-order Bézier curves defined in the way
we wanted. For this conversion, analytic continuity at the on-curve points is not required;
rather, geometric continuity is enough (Figure 2).

The outstanding advantage of all these efforts is that the dynamic regularisation of
curvilinear glyphs has now been reduced to that of rectilinear lines. This is what we mean
by adroitly-defined Bézier curves. Most control points now have a specific meaning as
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Figure 2. A Times e, defined with natural splines (left) and with Bézier curves (right). The illustration
in the middle depicts the degree of correspondence of the conversion program

far as the shape of the entire glyph is concerned, which is in contrast to natural splines.
As an immediate advantage, we point out that aligning the tangents with grid lines (cf.
subsection 2.3) avoids extra and missing pixels at the local extrema of curves, as well as
long flats, at no extra cost at all.

3.2 Optical corrections and snapping

In order to define the stroke thickness of curvilinear glyphs, the clever application of Bézier
curves, together with the round-before-use rule, is considered next (Figure 3).

The illustration above shows that the thickest part of the curvilinear glyph is a little
wider than the (regular) stem, while its thinnest part is just slightly narrower than the
(regular) crossbar. These optical corrections to the stroke thickness of curvilinear glyphs
are necessary if such glyphs are to give a well-balanced appearance in contrast to rectilinear
glyphs. Yet they cannot be represented in small type sizes at low resolution.

Using the font language, the solution is to define components for the regular numbers
stemWidth and crossbarWidth, which may be the same e.g. for all the capitals.
These figures must not vanish under coarse scaling, hence they bear the hyperbolic scaling
attribute. Then, the tangents of pairs of Bézier curves have their mutual distances (that is,
the stroke thickness) depend on the sum of the regular value plus (or minus) an optical

Figure 3. The first quadrant of a Times O, overlaid by part of an H
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Figure 4. Times HO at type sizes from 72 pt at 300 dpi down to 9 pt at 72 dpi, showing regularisation
of the thicknesses of stroke and discrete dropping of reference-line overlaps

correction. The correction may vanish under coarse scaling, hence it bears no special
attribute for scaling. By dint of the round-before-use rule, finally, both the regular value
and the optical correction are scaled and rounded before they are added to one another.
Thus, both the two following equations hold:

strokeThickness = regularThickness± opticalCorrection

s(strokeThickness) = s(regularThickness)± s(opticalCorrection)

But since the optical correction is much smaller than the regular value, it will vanish for
a sufficiently coarse scaling. As a result, the stroke thickness assumes the regular value
without any further contribution! (At the same time, this ensures that the standard stems
and crossbars will always come out regularly, without special stem-width control features
and the like: the stems and crossbars simply refer to these numbers.)

The same scheme can be used to define the position of curvilinear glyphs relative to
the horizontal reference lines (baseline, mean line and cap line). In order to give the eye
the same impression of darkness that a rectilinear crossbar on the baseline would, the
central part of a curvilinear glyph hangs slightly below the base line, while its ends remain
above it. By symmetry, curvilinear glyphs not only overhang the baseline, but overshoot
the mean line or the cap line as well. Therefore, the correct position of curvilinear glyphs
explicitly includes in its definition the magnitudes of these overlaps. Under sufficiently
coarse scaling this contour will drop its discrete overlaps and take its position exactly on
the standard reference line, without special phase-control features and the like (Figure 4).

This is what an appropriate font representation should comprise. Even though it may
seem somewhat elaborate, it closely mimics the way a font designer reasons about digital
font design: designing, say, a Times O on screen, he does not mean to make the thickest
vertical part of the character 36 units wide, but a few units wider than the regular vertical
stems, whose widths happen to be 33 units. He would argue similarly about the thinnest
horizontal part of the O, which he does not intend to be 6 units wide, but a single unit
narrower than the regular crossbar of width 7 units. Analogous reasoning, finally, would
lead him to the baseline overhangs or the mean-line and cap-line overshoots [11].
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Figure 5. A Times n in which the top edge of the head serif is inclined relative to the mean line

In the previous example, discrete reference-line overlaps eventually snapped into a
regular position. This idea can be used to align tilted or inclined straight lines as well.

As well as the mean-line overshoot of the arch of the n, Figure 5 shows several other
features which are dynamically regularised. First, the inclined head serif ends slightly
above the mean line. Clearly, this coordinate is formulated in terms of the mean line plus
the respective optical correction. Next, the head serif starts well below the mean line. But
this coordinate is expressed relative to the mean line as well. As a result, under sufficiently
coarse scaling the top edge of the inclined head serif eventually snaps into alignment with
the mean line. Lastly, the Bézier curve that makes up the bottom edge of the head serif
is aligned with the top edge of the head serif. This is achieved by formulating the Bézier
curve’s tangent relative to the top edge, but asserting that it always maintains a minimum
distance from the latter.

Notice that the half-serif width of the bottom serifs in Figure 6 eventually assumes the
width of the stems, since it is defined relative to the stem width — this is achieved without
special snapping values or half-serif-width or serif-thickness control features.

The examples in this section have in common near misses from regular dimensions.
Let x denote such a regular dimension, and ∆x a small part of it, then the fundamental raster
problem explains why subtle nuances at high resolutionmay be enlarged disproportionately
at low resolution:

s(x + ∆x) 6= s(x) + s(∆x) .

This is bound to happen whenever σ·x is just below a certain quantizing threshold, while
σ·(x + ∆x) is still above it. Mastering these local phenomena of near-regularity is merely

Figure 6. A Times n at various type sizes from 72 pt at 300 dpi down to 9 pt at 72 dpi, showing
dynamic regularisation of the stroke thickness and of different serifs
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Figure 7. Times Font: 72 pt at 300 dpi (left) and 12 pt at 72 dpi (right)

a matter of structuring a font into appropriate components, which in turn are to be scaled,
rounded, and assembled in a straightforward way.

3.3 Caricaturing and balancing out

The spectrum of what dynamic regularisation should be able to achieve does not amount to
merely ‘ironing out’ inconspicuous divergences. Rather, at the other end of the spectrum,
dynamic regularisation has to cope with the requirements imposed by small type sizes at
screen resolutions. At 72 dpi, the cap height of a 12 pt font is only just 8 pixels. For reasons
of connectivity — if not to say, sheer decipherability — many regular dimensions must be
severely exaggerated under coarse scaling.

At screen resolutions and the type sizes of plain text, different stroke thicknesses are
drawn uniformly and divergent variants of serifs degenerate to a single pixel (Figure 7).

This caricaturing is a result of unconditionally safeguarding regular dimensions against
vanishing, while seeing to it that delta dimensions do vanish under coarse scaling. For
orthogonal rectangles, such as upright stems and horizontal crossbars, this is a mere question
of proper font definition in terms of number components. Placing serifs next to a stem is
understood to be like sticking small rectangles to the stem and sealing the joints that arise
from the L and T-bars thus formed.

Under dynamic regularisation of the F in Figure 8, the stem and crossbar widths and
the serif length are balanced out from a ratio of 33:7:4 to a ratio of 1:1:1. The more the
resolution and type size decrease, the more these figures respond to hyperbolic scaling.
Simultaneously, the seals of the serifs of the arm at the top, of the horizontal stroke in the
middle, and of the foot at the bottom, seem to be ‘soaked up’ by their joints.

Matters are not that much different with glyphs of more general curvilinearity. The idea
is to take a pair of concentric Bézier curves, as in Section 3, and define their tangents as
if they were hooked into pairs of horizontally or vertically adjacent parallel guard-rails.
Under dynamic regularisation, a tangent then can glide freely on the rail, but it cannot
move away from it. Much as with ordinary railroads, a pair of rails introduces a gauge.

Figure 8. A Times F, regularised for type sizes from 72 pt at 300 dpi down to 9 pt at 72 dpi
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Figure 9. A Times o, regularised for type sizes from 72 pt at 300 dpi down to 9 pt at 72 dpi

This gauge corresponds to the maximum or the minimum stroke thickness, inclusive of
optical corrections. Four such pairs of Bézier curves, that is, the topological equivalent of
a full circle, are placed on an arrangement of rails that form two concentric orthogonal
rectangles. These are the rectilinear convex hulls of the curves.

For the o in Figure 9, the outer one of these hulls extends from the baseline to the mean
line (including overlaps). The inner hull moves further and further away from the outer
one, along with decreasing type size and increasing exaggeration of the stroke thickness.
An appropriate construct of the font language asserts that the control points glide on the
guard-rails in appropriate proportions. With that, the dynamic regularisation of curvilinear
glyphs has been reduced to that of orthogonal rectangles.

The o in Figure 9 had to undergo substantial deformations as a result of coarse scaling.
But intuitively, this should be obvious: once it is clear that for a given type size and at a
given resolution the vertical stroke of the o can best be represented by two units in pixel
space, and once it is known that the horizontal stroke has to be drawn with one unit, then
a continuous transition between them is a natural wish. This is precisely what is achieved
when using third-order Bézier curves skilfully, as described here.

The examples in this section have in common an interplay of safeguarding characteristic
dimensions and balancing out proportions. Let x denote such a characteristic dimension,
and λ a portion thereof, then the fundamental raster problem explains why character
decomposition should include knots and numbers as constituent parts. If it does not,

s(λ·x) 6= λ·s(x)

is bound to happen. Without a component x which is rounded before it is used, s(λ·x)
cannot refer to the result of s(x). Thus, mastering these global phenomena of constrained
proportionality is a mere matter of structuring a font into components, which in turn are
tagged with an attribute if they are to persist under coarse scaling.

3.4 An appropriate font representation

The best way of summing up the aspects of dynamic regularisation is to give a somewhat
more comprehensive illustration.

Figure 10 shows a family of curves. Each member of this family is determined by its
scaling factor, which by itself stems from the targeted resolution and type size. On sweeping
through the scaling factors, individual characters are simplified from all their beauty down
to a skeleton of topology — drawn at unit stroke thickness.

At the lower limit of resolution and type size, the requirement of a font definition is
predominantly the possibility of expressing regularity, while at the upper limit, the whole
gamut of ‘artistic license’ is made explicit. To recapitulate, a good font representation
defines the following points:



228 BEAT STAMM

Figure 10. The outlines of Times Font regularised for various type sizes from 72 pt at 300 dpi down
to 9 pt at 72 dpi

Regularity: The obvious consequence of the fundamental raster problem, the loss of reg-
ularity (equality, symmetry), is covered by decomposing characters into components
(glyph, contour, knot, number) and safeguarding their existence (connectivity).

Near-regularity: Local aspects of dynamic regularisation (optical corrections, snapping)
are taken care of by explicitly including in the characters’ blueprints any divergence
from strict regularity, and by rounding the blueprints’parts before they are assembled.

Constrained proportionality: Global aspects of dynamic regularisation (caricaturing,
balancing out) are a consequence of safeguarding components against disappear-
ance; they are realised by preserving proportions within the constraints imposed by
the safeguards.

Together with the adroit application of third-order Bézier curves, this reduces to a font
representation that provides for well-behaved degeneration in an amazingly natural way.
Without resorting to a multitude of concepts and fancy features, dynamic regularisation
is implied within this font representation. The appropriate font representation makes the
intelligent outlines as simple as possible, but not any simpler.

4 CONCLUSIONS

In this paper we advocate a representation for intelligent outline fonts. The intelligence
consists of representing the artistic aspects of font design explicitly. This particular rep-
resentation allows to render fonts at increasing levels of detail along with increasing type
size and resolution. At the same time, the process of digitizing and rendering a font on the
fly becomes a relatively simple and straightforward task.
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Our font representation, together with its interpretation, implies dynamic regularisation
of outline fonts without any further contribution. This is in contrast to [7], which performs
grid-fitting by explicit instruction. Thus, we might understand our approach as implicit
grid-fitting. Together with varying scaling factors, our font representation defines a family
of curves that interpolate different levels of detail of the outlines. This is related to the
goals targeted by [12], which interpolates different weights, widths, sizes, and styles. Thus,
we might understand well-behaved degeneration to be replacing the design axis size, or
to be contributing a fifth design axis, labelled detail. Recently, [13,14] has introduced a
simpler and technically more appealing approach that manages with a single master font.
Compared to this approach, our font representation may be contributing to the axes labeled
expand vs. condense and optical scaling.

The proposed font representation comprises a few simple concepts that are sufficiently
close to the world of type design. These concepts are not related to idiosyncrasies specific
to a particular rendering algorithm. With appropriate meta-information about topology and
typography, as proposed in [15], we anticipate the feasibility of automated acquisition of
complete outline font representations. We believe that this substantially eases the problem
of making existing artwork usable on medium and low resolution devices.
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