
ELECTRONIC PUBLISHING, VOL. 6(3), 145–157 (SEPTEMBER 1993)

Parametrization of PostScript fonts through
METAFONT — an alternative to Adobe
Multiple Master fonts
YANNIS HARALAMBOUS

Institut National des Langues et Civilisations Orientales, Paris
Private address: 187, rue Nationale, 59800 Lille, France

email: Yannis.Haralambous@univ-lille1.fr

SUMMARY
In this paper we present a new method of parametrizing PostScript fonts in order to create
font families. By changing parameter values one can obtain different weights, condensed or
expanded versions, small caps as well as optically scaled fonts. The tool used to parametrize Post-
Script fonts is D. E. Knuth’s METAFONT program. Instead of designing a font from scratch,
METAFONT is used as an extrapolator of existing PostScript fonts: out of the information
contained in them we build a meta-font; for every choice of parameter values, special versions
of METAFONT allow us to return to PostScript and produce a new PostScript font.

KEY WORDS Font design PostScript METAFONT

1 INTRODUCTION

Browsing through the lovely book Les caractères de l’Imprimerie nationale, one remarks
that the configurations of classical font families were quite different at the time of their
creators than they are today (although names have not changed). For example, the Gara-
mond face, made by Claude Garamond in 1530–1540, was available in roman/italics (6–36
points) and small capitals (6–20 points).

Bold and other weights were missing. This is not only a custom of the 16th–17th
centuries. The Marcellin-Legrand face, made by Marcellin Legrand in 1825 and replacing
the Didot face (1811) is available in roman/italics (4–28 points) and initials (10–64 points,
for titling).

Again, just a single weight in many different point sizes. Nowadays PostScript font
families are available in entirely different configurations. One has different weights (ranging
from Extra-Light to Heavy or Ultra Black) as well as condensed versions, but small caps
are underutilized: in rare cases there is at most one small capitals font. Furthermore there
is no indication of point size: PostScript allows continuous linear scaling of fonts — this
feature may be very useful for titling and graphic applications, but can hardly be used as
a substitute for the many different point sizes needed for high quality typography.1 The

1 The different point sizes of traditional fonts had a different design, adapted to their ‘real’ size – PostScript fonts
are scaleable and hence have no ‘real size’; every point size is a scaled version of the same generic design.

CCC 0894–3982/93/030145–13 Received 15 August 1993
1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.

146 YANNIS HARALAMBOUS

situation can be summarized as: We use typefaces of older times, perverted so that they
match the restrictions and pitfalls of modern technology.

Several attempts have been made to counterbalance these restrictions (see [1], [2]) in the
PostScript Type 1 font context. Furthermore, outside the strict context of Type 1 PostScript
fonts there are two major solutions: the first, rather recent, is the new concept of Multiple
Master Fonts introduced by Adobe in 1992; the second, almost 15 years old, is the font
creation program METAFONT by D. E. Knuth.

This paper presents an intermediate solution. The traditional TEX & METAFONT pro-
cess of font development and use is to build a font from scratch and to use METAFONT

to create bitmap files (in a special format called PK) which are then used inside the TEX
system. Instead of that, we propose the following procedure: (1) take an existing PostScript
font, (2) convert it to METAFONT, (3) parametrize it as if it were a METAFONT font, (4)
go back to PostScript, or even to Multiple Masters. In this way the power of METAFONT

can be used efficiently in the PostScript font development context, complementing features
which are not available in the existing formats.

1.1 Multiple Master fonts

Multiple Master Fonts were introduced in 1992, by Adobe Systems. They are an exten-
sion of PostScript Type 1 fonts (for a description of their format, see [3]). To create a
Multiple Master font, one needs from 1 to 8 pairs of master designs. These are normal
PostScript fonts, with very strong common properties (same number of control points for
each character, etc.) and for a good reason: the Multiple Master font will be a weighted
linear interpolation of the master designs.

This means that one can predefine up to 16 versions of every character, and for every
choice of a quadruple of coefficients (α1,α2,α3,α4) ∈ [0,1]4 one will obtain the corre-
sponding intermediate character from a weighted linear interpolation. The restrictions on
the master designs are intended to guarantee that every intermediate object is a valid
PostScript Type 1 font.

The master designs can be either extremal, or intermediate. Usually the four degrees
of freedom are used for weight, width, optical size and style. If one decides to use all four
degrees of freedom then there are no master designs left for intermediate use, and only
extremal ones can be used. There is an obvious risk in doing this: can one be sure that
the linear interpolation of an Extra-Light Garamond and an Ultra-Black Garamond is a
decent regular Garamond font? To avoid this risk one has to limit the range of variation to
a secure minimum.

Perhaps — as we will see in this paper — the most important problem is that the different
quantities involved in font design do not vary linearly. Measurements made on acceptable
real-world font families show that a quadratic approximation gives significantly better
results than a linear one.2 An example of compared linear and quadratic approximations
can be seen in Figure 5.

The last problem is that bold fonts often need a different number of control points than
light ones; control points sometimes disappear in smaller point sizes where character shapes
are supposed to get simpler. Interpolation then becomes impossible, since every control
point of the final font is the interpolation of the corresponding control points of master

2 This may have to do with the properties of human vision; the author would be glad to find out more information
on this topic.

PARAMETRIZATION OF POSTSCRIPT FONTS 147

← →
=missing point(s),

CMR5 CMR10 CMBX10

Figure 1. Candidates for master designs: Blue Sky ResearchCMR5, CMR10, CMBX10

designs. An example can be seen in Figure 1: the letters are taken from PostScript versions
of fonts CMR5, CMR10, CMBX10 of the Computer Modern Family (Blue Sky Research);
these fonts could be ideal candidates for master designs: on the left the variation would
correspond to the optical size axis (5 points→ 10 points), and on the right to the weight
axis (roman → bold extended). Nevertheless, as seen in the figure, the control points do
not satisfy the required consistency conditions: the Multiple Master concept is not flexible
enough to handle this case.

What are the advantages of Multiple Masters fonts? They are interactive. One can see
intermediate versions by moving a cursor on the screen. In future software one will perhaps
be able to see the variation inside a document — or software may be able to adjust the grey
level automatically. But these are the standard WYSIWYG advantages; and the publishing
world knows by now that WYSIWYG may be excellent for DTP and graphic arts, but is
not always the best way to high-quality typography.

1.2 METAFONT

To match the quality of the TEX typesetting system developed in the late seventies by D. E.
Knuth, the same author developed a companion program for font design and rasterization:
METAFONT. As a first example, he produced an entirely parametrized font family, which
is now distributed along with TEX.

The font family developed by Knuth is called Computer Modern. It is a derivative
of the Monotype Modern typeface. Besides being a typeface used world-wide, Computer
Modern is a magnificent experiment. METAFONT allows parametrization of every — even
the tiniest — part of a character. One can define arbitrary metric relations between parts of
a character, or between parts of different characters. By giving values to these parameters
one can change a complete typeface in a homogeneous way. To demonstrate this enormous
feature of METAFONT, Knuth produced all possible variations of the basic Computer
Modern font, always from the same code, by changing the values of parameters. Besides
weight variation and optical scaling, he also produced sans serif and typewriter fonts, as
well as all kinds of exotic or funny fonts, out of the roman ones.

The infinite flexibility of Computer Modern fonts made their METAFONT code quite
complicated and difficult for a novice to approach. One of the side-effects of this was of
a psychological nature: nobody ever tried to restart such a project, and Computer Modern
remained the only major Latin-script font family coded in METAFONT.

148 YANNIS HARALAMBOUS

But METAFONT can be used in other ways. It is not necessary to start the design of a
font from scratch, as Knuth did. Thanks to a set of utilitiesby Erik-Jan Vens, one can convert
a PostScript Type 1 font into raw METAFONT code. This code can then be parametrized so
that out of one or two different fonts one can interpolate (and extrapolate) a complete font
family. The main variations that can be achieved concern scaling (expansion/condensing),
weight (light/bold)and optical scaling (variable shape according to point size). Afterwards,
the METAFONT code of fonts created in this way can be converted back to PostScript.

In this article we propose to describe the whole process in detail, by taking a simple but
realistic example: a few letters out of the Bodoni font of the Serials collection, designed
by Hans Florenz Walter Brendel (1991 B & P Graphics, Ltd.). Besides being beautifully
designed, this family has the advantage of already proposing 7 differently weighted fonts,
from ‘light’ to ‘heavy’. In the following sections we will discuss in details the consecutive
steps:

1. parametrization of the PostScript code,
2. rewriting the METAFONT code,
3. interpolation and extrapolation of weight,
4. condensing and extension,
5. small capitals,
6. optical scaling, and
7. going back to PostScript.

2 PARAMETRIZATION OF POSTSCRIPT CODE

PostScript Type 1 fonts use only two kinds of graphic element to describe characters:
straight-line segments and third-degree Bézier curves. These combine to form boundaries
of surface elements which are then filled with black. Such boundaries are called ‘paths’ and
most of the commands available to describe a Type 1 character aim to abbreviate special
kinds of these graphic elements. This code is converted by Erik-Jan Vens’ utility ps2mf
to very raw METAFONT code, looking more or less like this:

beginchar("i",295FX#,665FY#,0FY#); "i";
z1=(22FX,0FY); z2=(278FX,0FY); % and other point definitions ...
fill z1 -- z2 -- z3 -- z4 -- z5 -- z6 -- z7 --

z8 -- z9 -- z10 -- cycle; % filling a piecewise-linear
% closed path

fill z11 .. controls z12b and z13b .. z14
.. controls z15b and z16b .. z17

& cycle; % filling a Bezier path
endchar;

The beginchar starts the description of character i, and assigns a width of 295
(horizontal) units, a height of 665 (vertical) units and zero depth to it. The instructions of
the type zn = (xn,yn); define points z1, . . .,z17 of the METAFONT coordinate system.
In this way, points defined in the PostScript code have been given names zn,3 in their natural
order. Their x and y coordinates are now multiplied by METAFONT quantities called FX

3 And the PostScript relative coordinates have been replaced by absolute METAFONT coordinates.

PARAMETRIZATION OF POSTSCRIPT FONTS 149

cap_jut cap_jut jut

slab

cap_stem

beak_jut

dot_diam

stem
curve

stem
cap_stem

jut

bar

beak

vair

o

cap_height

bar_height x_height

asc_height

(baseline)

Figure 2. Names of character parts used in the modified METAFONT code

and FY. By modifying these, one can achieve instant scaling in the x or y direction — but
we will see that there are better ways of doing this.

The fill commands fill the interiors of closed paths. The -- operator produces a
straight-line segment between two points, while the .. operator produces a Bézier curve.

We know that a Bézier curve (being a third-degree polynomial) has four degrees of
freedom. After specifying the beginning and end points, two degrees of freedom remain.
Usually METAFONT takes its own initiative in the choice of the remaining data: one may
ask for a curve leaving at a certain angle, or having a certain amount of tension, etc.,
and METAFONT will choose the ‘nicest’ Bézier curve out of all the curves satisfying
the requested conditions. In our case, to be as close as possible to the original drawing,
ps2mf has faithfully translated the information on the control points of the Bézier curve
and is imposing these on METAFONT. This is the meaning of the .. controls z1
and z2 .. operator. When parametrizing our characters, we will bypass this operator,
since an explicit determination of control points is often hard (and useless, except in rare
exceptions).

Finally thecyclekeyword means that the path should be closed. We will not enter more
into the details of METAFONT syntax; the interested reader will find excellent presentations
of this in [4] and [5].

The purpose of this section was to show to the reader how much information is involved
in the description of each character, and how this information is converted from PostScript
into raw METAFONT code. In the next sections we will see how to interpret, process and
extrapolate this information to parametrize the characters.

3 REWRITING THE METAFONT CODE

The most important and most fascinating part of the work involved in parametrizing a font
is to analyse the character shapes and find out which dimensions are significant for more
than one character, if not for the whole font. To take some trivial examples: the width of
the dot of i must be the same as that of the dot of j; the width of the vertical stem of I
must be the same in the letters B, D, E, F, H, T . . . , but most certainly not the same as
that of the i, and so on. Centuries ago, typeface creators had already classified many of
these quantities and given them names. In Figure 2 we give the names we will use in our

150 YANNIS HARALAMBOUS

examples of Bodoni characters. These are not necessarily traditional names, but are used
by D. E. Knuth in [6] where he parametrizes the Computer Modern font family.

Some parameters may take the same value in the original PostScript font (for example
hair and vair, or curve and stem). These will be differentiated when we start to produce
variations of the font (in METAFONT jargon this operation is called ‘adding metaness’).
Generally it is the responsibility of the reader to decide if slightly different quantities
should be identified; elementary aesthetic arguments — mostly involving symmetry — are
often sufficient to reach a conclusion. For example we have chosen to identify the stroke
width of all serifs and named this quantity slab, but we could also distinguish between
uppercase and lowercase serifs, and so on. This shows that there can be an arbitrary number
of parametrizations of the same PostScript font; it is up to the reader to find the correct
balance between too many parameters (loss of homogeneity, unnecessary complication)
and too few parameters (simplistic result, failure when extrapolating). The final goal is to
express the generic intentions of the original font designer in METAFONT language.4

Once we have given names to character parts we have to study the (raw) METAFONT

code to see if the dimensions of these parts are fixed throughout the font (since fonts are
often created ‘manually’, that is by use of a tablet, these dimensions may vary slightly —
this is also a means to evaluate the quality of a font). Once this is done, we start writing
our new METAFONT code by defining these quantities and giving them initial values:

cap_height#:= 720FY#; asc_height#:= 720FY#; x_height#:= 410FY#;
desc_depth#:= 0; bar_height#:= 0.5131cap_height#;
cap_stem#:= 94FY#; stem#:= 72FX#; curve#:= 81FX#;
slab#:= 14FY#; vair#:= 14FY#; bar#:= slab#;
dot_diam#:= 108FX#; cap_jut#:= 86FY#; jut#:= 72FX#;
beak#:= 209FY#; beak_jut#:= 10FX#; o#:= 14FX#;

The # operator indicates that the quantity preceding it is a ‘real’ dimension (sharp
dimension in METAFONT jargon). The next step will be to use the define pixels
command, to define pixel-dependent quantities, identified by the same names, without the
hash mark.

Now we will modify the description of every character so that all the parameters we have
defined appear, and not a single character part remains unparametrized. For the specific
needs of our method we are bound to use only filling METAFONT commands, and not
drawing ones. Nevertheless, the code will be quite simple and readable, since we are going
to use a special category of objects, called ‘simulated pens’.

The data involved in such an object is (1) a point of the plane (the centre of the pen),
(2) a length dimension (the width of the pen) and (3) an angle (the angle of the pen).
Intuitively, defining a simulated pen is the same as choosing a razor-like pen with the given
width, turning it to the appropriate angle and positioning it onto the chosen point. Once all
the simulated pens have been defined, one can ask METAFONT to draw a stroke passing
through those pen positions. Behind the scenes, METAFONT will replace the command for
‘drawing that stroke’ by the usual fill command of the closed path defined by the pen

4 Some readers may argue that font design is a purely artistic activity which cannot be modelled by mathematical
equations. This may be the case for the first design of a font; but when the designer tries to extrapolate his/her
font to produce faces of different weight or size, then he/she is certainly using mathematical rules to ensure
homogeneity and uniformity. This is the part of artistic creation which our method aims to model, and no more;
it is far less than the original goal of D. E. Knuth when creating METAFONT.

PARAMETRIZATION OF POSTSCRIPT FONTS 151

4

5

3 2

9

1 2

3

1 2

3

1 2

3

2

3

4

1 1

7

4

56

4

56

57

4

8108

6

7 12

10

11

14 13

9 6

Figure 3. Loci of simulated pen positions

positions and the central path of the requested stroke. Since this operation involves only
filling, we can use it without complications when going back to PostScript.

The next step will be to choose the locations of the (simulated) pen positions we are
going to define. These can be seen in Figure 3. First of all we describe the pen positions
without giving the exact coordinates of their locations. Here is the description of the pen
positions for the letter i:

pos1(slab,90); pos2(slab,90); pos3(stem,0); pos4(stem,0);
pos5(slab,90); pos6(slab,90); pos7(dot_diam,0);

The syntax used is: posn(〈width〉,〈angle〉); where n is the suffix of the centre of the
(simulated) pen zn. So for example pen positions 1 and 2 determine the serif of the letter;
pen positions 3 and 4 determine its vertical stem, and so on.

Next we have to position the pens we have defined. Here, one of METAFONT’s most
convenient features appears. Instead of giving the coordinates of each point explicitly, it is
sufficient to provide a system of linear equations between them. This spares the designer
a lot of unnecessary calculations and allows a very flexible control of the character shape
under the effect of varying parameters. We will describe the equations needed for the letter
i in detail, since these provide a good introduction to the operations we are going to make
in the rest of this article.

First of all, some syntax elements: suppose we have defined a pen by pos3(stem,0);. Then
automatically z3 is the centre of the pen, and z3r,z3l are the right and left edges of the pen.
Furthermore, wheneverz3 is a point in the METAFONT plane,x3 andy3 are its x and y coordinates.
Once the width and angle of the pen are known, the position of the pen can be determined by the
coordinates of z3 or z3l or z3r, or by any combination of one x and one y coordinate of these
three.

Let’s start with simulated pens 1 and 2 (of letter i). These are taken with an angle of 90 degrees.
Their left edges are to be taken at the baseline: y1l=y2l=0;. The x-coordinates of these simulated
pens are at the two sides of the character box: x2=0; x1=w;, where w is the width of the character
box as defined in the beginchar command (h, d being the height and depth of the box).5

5 The PostScript-accustomed reader should note that these are dimensions of an imaginary box which will be used
by TEX to typeset; they do not correspond to the PostScript character bounding box whose dimensions appear
in the AFM file.

152 YANNIS HARALAMBOUS

LI RE ME DB BO XB HE

Figure 4. The letter i in the seven weights of Brendel Bodoni

Pens 3 and 4 will produce the central stem. They should be centred, and the same applies to pen 7:
x3=x4=x7=0.5w;. Concerning the y-coordinate, pen 3 must be ‘lying upon’ the stroke joining
pens 1 and 2, in other words y3=y1r;. Pen 4 must be at height x height, since the dotless i must
have the standard height of lowercase letters without ascenders: y4=x height;. The right edge
of pen 5 is identical to the left edge of pen 4: z4l=z5r;. The right edge of pen 6 is horizontally
aligned to the right edge of pen 5: y6r=y5r; and the x-coordinate of pen 6 is equal to that of pen 2,
according to the design of the Bodoni i: x6=x2;.6

The remaining dimension (y7, i.e. the height of the dot) is the only one needing special care.
Having chosen the Brendel Bodoni font set, we already have 7 weight variations available (Light,
Regular, Medium, Demi-Bold, Bold, Extra-Bold, Heavy). In Figure 4, the reader can compare the
different i’s, at equal distance. One sees immediately that the heights of dots (as well as the dot
diameters) for the first six weights follow a linear rule. To help the reader in visualizing this property,
we have drawn grey lines joining the dot centres and vertical dot extremities of weights Light
and Extra-Bold; clearly the four intermediate ones fit between the lines, while the seventh (Heavy)
disobeys this rule.

This intuitive result is verified by a linear approximation of the function dot height =
f (dot diam) for the first six weights. The values of dot centre heights and dot diameters as taken
from the PostScript code are

weight LI RE ME DB BO XB HE
dot height 576 586 594 602 612 620 609
dot diam 108 123 142 166 192 214 250

A fairly succesful approximation of the dot height versus dot diameter relationship is
dot height ≈ 535.5 + 0.4 dot diameter, with the exception of the seventh (Heavy) weight.

The linear equation above has a non-zero scalar part (535.5). This number is independent of the
weight, but depends however on the character’s size. Therefore we will express it by some vertical
dimension of the character, with similar behaviour: the best choice seems to be asc height. So
finally we get a rule for the height of the dot of i:

y7 = 0.74375 asc height + 0.4 dot diam;
where 0.74375 is the quotient 535.5/720 (720 being the ascender height for all weights).

After having completed the set of linear equations, we draw the characters. This is straight-
forward; one should only keep in mind that only fill operations will be used, so that
post-conversion to PostScript is possible.7

6 We know that the x-coordinate of pen 2 is equal to 0, but this may change – the fact that x6=x2may also change
. . . as a matter of fact we must find the formula which is least likely to change when varying the letter.

7 For reasons of space, we do not include the complete METAFONT code for letters H, T, i, l, o. This code, as

PARAMETRIZATION OF POSTSCRIPT FONTS 153

LI RE ME DB BO XB HE

50

100

150

200

250

300

cap_stem

stem

Figure 5. Quadratic (black) and linear (grey) interpolations of stem and cap stem parameters

4 INTERPOLATION AND EXTRAPOLATION OF WEIGHT

The fact of having seven different weights of the same font is rather exceptional and one
could argue that they cover all possible cases where this typeface can be used. This is
actually wrong, since often one needs a font with a specific grey density level. In that case
it would be nice to be able to vary the weight of the font continuously until the right grey
density is obtained.

Once again we will examine the values of parameters for the seven available weights
and try to interpolate and extrapolate them. In Figure 5 the reader can compare the results
of a quadratic interpolation (in black) and of a linear one (in grey) on parameters stem and
cap stem. We consider this interpolation sufficiently succesful to base both parameters
on that rule. As a matter of fact we will make out of stem and cap stem two generic
parameters; this means that we are going to interpolate other parameters of each letter
with respect to stem if the letter is lowercase or with respect to cap stem if the letter is
uppercase.

We have applied this method to parameters slab, jut, dot diam, curve, vair, as
well as to the widths of H, T and o. The quadratic approximations we obtained have been
used as general interpolation rules; the reader can see the result in the following 51 words,
which represent fonts going from an Extra-Light weight to the original Heavy one.

�����, ����	,
��
�, �����, �����, �����, �� !", #$%&', ()*+,, -./01, 23456, 789:;,
<=>?@, ABCDE, FGHIJ, KLMNO, PQRST, UVWXY, Z[\]^, _`abc, defgh, ijklm, nopqr,
stuvw, xyz{|, }~���, �����, �����, �����, �����, �����, �����, ¡¢£¤, ¥¦§¨©,
ª«¬­®, ¯°±²³, ´µ¶·¸, ¹º»¼½, ¾¿ÀÁÂ, ÃÄÅÆÇ, ÈÉÊËÌ, ÍÎÏÐÑ, ÒÓÔÕÖ, ×ØÙÚÛ,
ÜÝÞßà, áâãäå, æçèéê, ëìíîï, ðñòóô, õö÷øù, úûüýþ,

5 CONDENSING AND EXTENSION

Many desktop publishing or word-processing programs allow the user to condense or
extend PostScript Type 1 fonts; in reality this operation is a horizontal scaling. This means

well as all METAFONT files used for the examples in this paper, can be obtained by anonymous ftp from
ftp.ens.fr (IP 129.199.104.12), directory /pub/tex/yannis/ridt94.

154 YANNIS HARALAMBOUS

that not only the width of characters but also the width of stems and curves, and every
horizontal dimension of the characters, is scaled as well. Another possible way of scaling
is to leave weight (widths of stems) unchanged: one should be able to change the width of
a character while keeping the widths of the principal strokes fixed.

This is trivial for METAFONT, since every width is separately parametrized. To scale
characters horizontally we just need to change their global widths; this does not affect any
other parameter. However, for aesthetic reasons we have chosen to modify the width of
serifs as well (parameters jut and cap jut) but to a lesser extent than the character’s
global width.

In the next examples, the reader can compare ‘PostScript-like’ global condensing and
extension (horizontal scaling of all character properties) with ‘METAFONT-like’ selective
horizontal scaling:

Selective scaling Global scaling
81% 90% 100% 111% 123% 81% 90% 100% 111% 123%

LI ����� ����� �� !" -./01 <=>?@ ����� ����� �� !" -./01 <=>?@

ME ����	 ����� #$%&' 23456 ABCDE ����	 ����� #$%&' 23456 ABCDE

BO
��
� ����� ()*+, 789:; FGHIJ
��
� ����� ()*+,789:;FGHIJ

6 SMALL CAPITALS

Small capital letters (‘small caps’) are another weak point of the PostScript font scene.
Obviously, it is bad typographical practice to use uppercase characters from a linearly
reduced font as small caps; nevertheless this is what happens most of the time, for very
obvious reasons: firstly, there are not many ready-to-use small caps fonts, and secondly
modifying reduced uppercase letters to look like small caps is not a trivial issue.

In our context, making small caps is straightforward. One only needs to replace up-
percase parameters by the corresponding lowercase ones (more-or-less, since the height of
small caps is usually a little more than the height of lowercase characters). In particular,
one obtains small caps for all weights, a feature that — at least to the author’s knowledge
— is offered by no current PostScript font family.

Here is how to proceed: the parameters involved in uppercase character construction
are cap height, bar height, cap stem, beak, beak jut and cap jut (see Fig-
ure 2), as well as the character widths. We will make the following replacements:

• cap stem and cap jut will be replaced by stem and jut;
• in theory, we could replace cap height by x height and scale the other param-

eters accordingly. However, small caps are usually slightly higher than lowercase
characters; D. E. Knuth scales this height by a factor of 1.1935 (cf. [6, p. 30]) and
we will – once more – follow his example;

• the parameter slab will not be changed. As a matter of fact, the author has all too
often heard traditional typographers say: ‘There will never be a computer Bodoni
[sic] since after photomechanical reduction thin strokes (traits déliés) disappear’.
This is exactly what we avoid by keeping the value of slab constant.

PARAMETRIZATION OF POSTSCRIPT FONTS 155

The caps and small caps versions of letters H and T of our example follow, in 14
different weights:

���� ���� �	
� �
�� ���� ����

���� ���� !"# $%&' ()*+ ,-./

0123 4567

7 OPTICAL SCALING

Perhaps the most important application of font parametrization is optical scaling. In older
times, different sizes of typefaces were cut separately in order to optimize their readability
and improve the overall appearance of printed pages with more than one point sizes.
PostScript fonts can only be linearly scaled: smaller sizes appear narrower than normal (for
example in the case of footnotes)8 and are hard to read; bigger sizes appear too large and
their thin strokes too thick.

When a font is optically scaled, the shape of characters varies as in traditional font
design. Usually fonts are designed at 10 points. When the font is scaled to bigger point
sizes, widths of strokes as well as the character’s global width are scaled to a lesser extent
than the character’s height, making it look lighter — titles look natural and do not hurt the
eye. On the other hand, when the font is reduced (for example for footnotes or marginal
notes) the thin strokes are reduced less than the thick strokes and tend to converge to a
certain limit so that they always remain visible; also letters are wider, interletter spacing is
increased and ligatures like fi, fl are broken, to increase readability.

To achieve optical scaling we will apply general rules (again quadratic approximations
to known examples) to create distinct fonts for every point size. The task of making the
necessary measurements has been done by D. E. Knuth on Monotype Modern 8A (cf. [6, p.
vi]). We will take his results and apply them to our case, since optical scaling coefficients
have more to do with the properties of human vision than with the style of the font.9

There follows an example of D. E. Knuth’s coefficients for the Computer Modern
Roman font family, the numbers given being factors applied to the corresponding quantity
after a linear scale:

point size 17.28 12 10 9 8 7 6 5
cap height 1 1 1 1 1 1 1 1
cap stem 0.723 0.912 1 1.01 1.03 1.07 1.12 1.19

slab 0.842 0.947 1 1.02 1.08 1.17 1.29 1.45

These numbers are quite significant: both cap stem and slab are reduced for bigger
point sizes and extended for smaller point sizes, but following different numerical rules.
To achieve a satisfactory quadratic approximation to the optical correction factor applied
to cap stem and slab, with respect to point size, we have treated separately point sizes
bigger and smaller than 10 points. The reader can see the results in Figure 6.

All parameters of our five-letter example appear in the Computer Modern fonts; for each
of them we have made similar quadratic approximations of the optical correction factor.

8 As this one, which has been typeset in the currently most standard PostScript font: Adobe Times Roman.
9 The author would be very grateful for the results of similar measurements on other traditional fonts, to either

confirm the method of D. E. Knuth, or propose alternative numerical rules.

156 YANNIS HARALAMBOUS

12.57.5 10 15 17.5 20

0.8

1.2

1.4

1.6

point size (in points)

op
tic

al
 c

or
re

ct
io

n
fa

ct
or

slab

cap_stem

5

Figure 6. Piecewise quadratic approximations of optical correction factor/point size

The reader can compare the results in the next table, where in the first column appear
the non-optically corrected linearly scaled characters, in the middle column the optically
corrected ones, and in the right column the optically corrected ones, magnified so that they
have a real size of 17.28 points.

Non optically scaled Optically scaled

ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ
ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ
ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ

ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ

ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ

ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ

ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ

ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ

ABCDE FGHIJ ABCDE FGHIJ ABCDE FGHIJ

8 GOING BACK TO POSTSCRIPT

After having parametrized the METAFONT code sufficiently to obtain all desirable vari-
ations, we return to PostScript by using special versions of METAFONT with PostScript
output. The important fact in this conversion is that all the METAFONT used in our code
has its PostScript Type 1 equivalents: once the parameters have received their values and
all calculations have been done, the operations METAFONT has to make are fills of
areas delimited by Bézier curves — this is exactly what PostScript Type 1 code can do (and
no more).

Among special versions of METAFONT with PostScript code we can list the following:10

10 The author is trying to convince Wilfried Ricken (wilfr@hadron.tp2.ruhr-uni-bochum.de) to
include mf2ps support in DirectTEX; hopefully by the time of the RIDT94 conference he will have suceeded.

PARAMETRIZATION OF POSTSCRIPT FONTS 157

• MacMETAFONT by Victor Ostromoukhov; for the Macintosh, available as an MPW
tool. Freeware.

• mf2ps, by Shimon Yanai and Daniel Berry (cf. [7], [8]); available as changefile for
the METAFONT Pascal-WEB source code. Freeware.

• MetaPost, by John Hobby (cf. [9]); extension of METAFONT with PostScript output
only. Written in C-WEB AT&T.

All of them produce PostScript Type 3 code. Many commercial utilities allow conver-
sion into Type 1 code and (poor) automatic hinting. A very interesting further development
of this method would be hint generation from METAFONT raster optimization techniques
and parametrization: in this paper these techniques have not been examined since the final
goal was to obtain Type 1 code: abstract Bézier curves, and not bitmaps — which are
METAFONT’s standard output.

REFERENCES

1. Jacques André and Corinna Kinchin, ‘Adapting character shape to point size’, PostScript Review,
31–36, (1991).

2. Jacques André and Irène Vatton, ‘Contextual typesetting of mathematical symbols taking care
of optical scaling’, INRIA/IRISA-Rennes, Research report no. 1972, (1993). (Submitted to
Electronic Publishing.)

3. Adobe Developer Support, Adobe Type 1 Font Format: Multiple Master Extensions, 1992.
4. D. E. Knuth, The METAFONTbook (Volume C of Computers and Typesetting), Addison-Wesley,

Reading, MA, 1986.
5. Helmut Kopka, LATEX, Erweiterungsmöglichkeiten, Addison-Wesley, München, 1991. Second

edition.
6. D. E. Knuth, Computer Modern Typefaces (Volume E of Computers and Typesetting), Addison-

Wesley, Reading, MA, 1986.
7. Shimon Yanai, Environmentfor TranslatingMETAFONT to PostScript, Ph.D. dissertation, Israel

Institute of Technology, Haifa, 1989. In Hebrew.
8. Daniel Berry and Shimon Yanai, ‘Environment for translating METAFONT to PostScript’,

TUGboat, 11(4), 525–542, (1990).
9. John Hobby, ‘Introduction to MetaPost’, in Proceedings of the 7th European TEX Conference, pp.

21–36, Prague, (1992).

	SUMMARY
	1 INTRODUCTION
	1.1 Multiple Master fonts
	1.2 METAFONT

	2 PARAMETRIZATION OF POSTSCRIPT CODE
	3 REWRITING THE METAFONT CODE
	4 INTERPOLATION AND EXTRAPOLATION OF WEIGHT
	5 CONDENSING AND EXTENSION
	6 SMALL CAPITALS
	7 OPTICAL SCALING
	8 GOING BACK TO POSTSCRIPT
	REFERENCES

