
ELECTRONIC PUBLISHING, VOL. 6(3), 195–205 (SEPTEMBER 1993)

A curve fitting algorithm for character fonts

KOICHI ITOH1 AND YOSHIO OHNO

Faculty of Science and Technology,
Keio University, 3–14–1 Hiyoshi, Kohoku-ku,
Yokohama 223, Japan

SUMMARY
This paper presents an algorithm that automatically generates outline fonts from a grey-level
image of a character obtained by a scanner. Our algorithm begins by extracting contour points
from the image and dividing the points into a number of segments at the corner points. The
next step is fitting a piecewise cubic Bézier curve to each segment.

To fit cubic Bézier curves to segments, we use least-squares fitting, without fixing the end
points of the curves. We locate the end points by computing the intersection of the adjoining
curves. This algorithm greatly improves the shape of the corner of the outline fonts.

KEY WORDS Curve fitting algorithm Grey-level characters Kanji characters

1 INTRODUCTION

Recent developments in personal computers and laser-beam printers have made ‘desktop
publishing’ systems very familiar. Such systems in Japan, however, are still poor in ex-
pressive power because only a small number of fonts for Kanji, characters used in writing
Japanese, are available.

In many desktop publishing systems, the shapes of the characters are stored in the
computer memory in terms of their outlines, and the outlines are expressed as cubic Bézier
curves.

Currently, outline fonts expressed in Bézier curves are usually produced by scanning
the original characters drawn on paper and then editing them interactively on the screen.
This work is especially time-consuming for Japanese fonts, because 7,000 Kanjis are
necessary for Japanese documents, and because each Kanji has a more complicated shape
than Roman characters. This is the reason why only a few fonts are supported in Japanese
desktop publishing systems.

On the other hand, because many font-selling companies have a lot of original character
fonts drawn in ink on paper, an automatic generation technique from these original char-
acters is required. In particular, automatic fitting of cubic Bézier curves to the grey-level
character images that are input into a computer using a scanner is necessary to improve
such a situation.

To date a lot of research has been done in this area (for examples, see [1,2,3,4,5]). Our
interest centres on the parametric curve representation of outline fonts, especially on cubic
Bézier curve representation. In this approach, Plass and Stone [3] gave some excellent
B-spline outline fonts, but their algorithm needs huge computation mainly because of the
dynamic programming for determining optimum breakpoints.

1 Current affiliation: Sony Corporation

CCC 0894–3982/93/030195–11 Received 15 August 1993
1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.

196 KOICHI ITOH AND YOSHIO OHNO

In [1], some defects of the former algorithms [6,7,8,3] are located, and solutions are
proposed, but we believe that at least the inverse slope problem can be avoided by improving
the contour point extraction phase.

In this paper, we propose a new algorithm for automatic generation of outline fonts from
original characters on paper. Some results of the application of our algorithm to some styles
of Kanji characters will be given, and the performance of the algorithm will be discussed.

2 THE ALGORITHM

Ideal outline fonts should satisfy the following two conditions:

1) faithfulness to the original characters, and
2) the need for a small number of curves.

From this point of view, we improve the previous algorithms in the two following respects:

1) more accurate estimation of contour points, based on the grey-level data which was
discarded in the previous algorithms, and

2) fitting curves without fixing end points in order to avoid degradation around the
corner points.

Our algorithm consists of the following steps:

1) extraction of contour points from the grey-level images using Avrahami’s algorithm
[9],

2) extraction of supposed corner points using Davis’ algorithm [6],
3) fittingof piecewise cubic Bézier curves to each segment using a least squares method,

and
4) determination of corner points using the Bézier clipping algorithm [10].

In the following subsections, we explain these steps in detail.

2.1 Extraction of contour points

We used the algorithm proposed by Avrahami and Pratt [9] for the extraction of contour
points from the grey-level image that is input by the scanner. Using this algorithm, the
effect of the error introduced by the conversion of the grey-level image to a bilevel image
can be avoided. It can extract contour points in subpixel precision.

In the original form of their algorithm [9], however, some human intervention is nec-
essary for the specification of initial trace points. We modified their algorithm slightly to
avoid this.

Another disadvantage of Avarahami’s algorithm is the degradation around the corner
points. This problem will be discussed in the next subsection.

2.2 Extraction of supposed corner points

In this step, we extract the supposed corner points from the obtained contour points using
Davis’ algorithm [6]. The contour points are divided into groups using the supposed corner
points.

A CURVE FITTING ALGORITHM FOR CHARACTER FONTS 197

(a) (b)
Figure 1. Degradation around a corner point

Davis’ algorithm approximates the curvature C k(i) at each contour point Pi = (xi,yi)
according to the following formula:

C k(i) =
aik · bik

|aik| · |bik|

where

aik = (xi − xi+k, yi − yi+k),

bik = (xi − xi−k, yi − yiik).

The contour points which take the local maxima are considered to be the corner points. The
best value of k depends on several factors, such as the resolution of the original image. We
set a threshold value T for C k(i) and take the point Pi as the corner point if C k(i) takes a
local maximum and if C k(i) > T. Without the threshold, the algorithm is too sensitive to
small variations of C k(i).

We adopted this algorithm temporarily, but the precise detection of corner points is
essentially impossible, because only the font designer knows whether a supposed corner
point is a true corner point or just a point with large curvature. The best a computer system
can do is to show candidates for the corner points and to provide the designer with the
means for overriding the computer’s proposals.

2.3 Curve fitting

Previous curve fitting algorithms [2,4,5] determine the end points first, and then fit a curve
by fixing the end points.

Using this approach for the contour points in Figure 1a, such fitted curves as in Figure 1b
would be obtained. We use Avrahami’s algorithm for extracting the contour points as
accurately as possible, but even with this algorithm a pattern of contour points such as
Figure 1a is often produced. Inaccurate estimation of corner points is fatal for well-shaped
curves when they are fixed as the end points in the first stage of the curve fitting.

Another disadvantage of curve fitting with fixed end points is the reduction in the degree
of freedom. It makes the fitting process easier, but tends to increase the number of curves
used unnecessarily.

198 KOICHI ITOH AND YOSHIO OHNO

Figure 2. Our approach to curve fitting

From these considerations, we adopt the following approach (Figure 2): divide the
contour points into groups at the supposed corner points (we call each group a segment),
fit a curve to each segment by giving even weight to each contour point in the segment,
and then determine the true corner points by computing the intersections of the adjoining
curves.

In dividing the contour points into segments, we remove the supposed corner points,
because the estimation of their positions is usually less accurate than other points.

2.3.1 Our approach to curve fitting

We use the least squares method for fitting a curve to each segment. The method of fitting
one curve to a segment will be described first, then the fitting of more than one curve will
be given. Suppose a segment is given as an ordered set of contour points Pi = (xi,yi),
i = 1, . . . , n. To simplify the formula, we use the power basis expression for a Bézier curve
B(t) = (Bx(t),By(t)):{

Bx(t) = axt3 + bxt2 + cxt + dx

By(t) = ayt3 + byt2 + cyt + dy, 0 ≤ t ≤ 1

A CURVE FITTING ALGORITHM FOR CHARACTER FONTS 199



ax

n∑
i=1

t6
i + bx

n∑
i=1

t5
i + cx

n∑
i=1

t4
i + dx

n∑
i=1

t3
i =

n∑
i=1

xit
3
i

ax

n∑
i=1

t5
i + bx

n∑
i=1

t4
i + cx

n∑
i=1

t3
i + dx

n∑
i=1

t2
i =

n∑
i=1

xit
2
i

ax

n∑
i=1

t4
i + bx

n∑
i=1

t3
i + cx

n∑
i=1

t2
i + dx

n∑
i=1

ti =
n∑

i=1

xiti

ax

n∑
i=1

t3
i + bx

n∑
i=1

t2
i + cx

n∑
i=1

ti + dxn =
n∑

i=1

xi

(Similar system for y-coordinates.)

Figure 3. The least squares method

To determine the coefficients based on the given contour points, the parameter value ti for
each contour point should be determined first. We use chord-length parameterization for
this purpose. That is,

ti =

{
0, i = 1
length of polygonal line P1P2 · · ·Pi
length of polygonal line P1P2 · · ·Pn

, 1 < i ≤ n

Note that these tis are only the initial values, and they will be improved in the following
stages.

Then the squared sum S of the distances between Pi and their corresponding points
B(ti) on the curve is computed as:

S =
n∑

i=1

[distance between B(ti) and Pi]2

=
n∑

i=1

(axt3
i + bxt2

i + cxti + dx − xi)2 +
n∑

i=1

(ayt3
i + byt2

i + cyti + dy − yi)2

By setting ∂S/∂ax, S/∂bx, S/∂cx, S/∂dx, S/∂ay, S/∂by, S/∂cy, and S/∂dy to zero, we can
obtain ax, bx, cx, dx, ay, by, cy, and dy that make S minimum.

The two systems of linear equations in Figure 3 are obtained from this computation.
The Gaussian elimination method can solve these systems stably.

The curves thus obtained are not necessarily the best ones, because the parameter values
ti used are not always the best. Therefore a reparameterization is necessary. This is a process
for improving the parameter values based on the obtained curve (see [3]).

In our algorithm, the reparameterization is done for each contour point Pi using the
following formula:

[B(t)− Pi] · B′(t) = 0

This is a quintic equation in t, and can be solved by Newton-Raphson’s method using ti

as the initial value. The solution t is used as the new parameter value ti in the next stage.

200 KOICHI ITOH AND YOSHIO OHNO

After solving the quintic equations for all contour points, it is necessary to normalize the
new parameters values so that the smallest ti is zero and the largest ti is one. Then apply
the least squares method again to the new tis to obtain the new curve. By repeating this
process, the curve converges to the contour points.

Next, the method of fitting more than one Bézier curve to a segment is described. The
two-curve case is considered first. Suppose that the two Bézier curves are expressed as:{

B(1)
x (t) = a(1)

x t3 + b(1)
x t2 + c(1)

x t + d(1)
x

B(1)
y (t) = a(1)

y t3 + b(1)
y t2 + c(1)

y t + d(1)
y , 0 ≤ t ≤ 1{

B(2)
x (t) = a(2)

x t3 + b(2)
x t2 + c(2)

x t + d(2)
x

B(2)
y (t) = a(2)

y t3 + b(2)
y t2 + c(2)

y t + d(2)
y , 0 ≤ t ≤ 1

In this case we have to consider the continuity conditions. We use G1 to increase the degree
of freedom. From the G0 condition, we have{

B(1)
x (1) = B(2)

x (0)
B(1)

y (1) = B(2)
y (0).

As the two curves should have a common tangent line at the connection point, we have{
αB(1)

x
′(1) = B(2)

x
′(0)

αB(1)
y
′(1) = B(2)

y
′(0)

where α is a given positive constant. We determine α as

α =
length of polygonal line Pm · · ·Pn

length of polygonal line P1 · · ·Pm

because α depends on the ratio of the lengths of the two curves. In this formula m indicates
the division point.

Thus we have 12 unknowns a(1)
x , b(1)

x , c(1)
x , d(1)

x , a(2)
x , b(2)

x , c(2)
x , and d(2)

x . By setting
∂S/∂a(1)

x , ∂S/∂b(1)
x , ∂S/∂c(1)

x , ∂S/∂d(1)
x , ∂S/∂a(2)

x , ∂S/∂b(2)
x , ∂S/∂c(2)

x , and ∂S/∂d(2)
x to

zero, two systems of linear equations in six unknowns each are obtained. By solving these
using Gaussian elimination, and by applying reparameterization, we have the two Bézier
curves that are connected in G1 to each other and that fit best to the contour points.

The method of fitting more than two Bézier curves can be obtained similarly.
Our algorithm for curve fitting for one segment can be summarized as follows:

1. Compute initial parameter values ti based on the chord length.
2. Fit one Bézier curve using the least squares method.
3. If the fit is good, output the curve and exit; otherwise go to the next step.
4. Apply reparameterization and fit one Bézier curve again. If the fit is good, output the

curve and exit.
5. Repeat the previous step. If a good fit is not obtained after a specified number of

repetitions, fit two Bézier curves to the segment.
6. If the fit with two Bézier curves does not give good results, increase the number of

Bézier curves and try again.

A CURVE FITTING ALGORITHM FOR CHARACTER FONTS 201

Table 1. Some statistics for a ‘Gothic’ character in Figures 4d and 7

Number of curves Largest squared error
Schneider’s method 34 0.249529

Our method 28 0.249840

We judge the goodness of the fit based on the largest distance between the contour point
and its corresponding point on the curve. When we have to increase the number of Bézier
curves, we divide the segment at the contour point that has the largest distance from the
corresponding point on the curve.

2.3.2 Determination of end points

As we fit Bézier curves without fixing the end points, we have to determine the end points
after we obtain all the Bézier curves.

The obtained Bézier curves in the previous section do not connect to each other.
Therefore, we extend each curve in both directions so that each pair of adjoining curves
has an intersection point. For the computation of the intersection point we use Bézier
clipping [10], which gives the intersection of two parametrically expressed curves stably
and efficiently.

Finally, normalize the parameter t so that t = 0 holds at the starting point and t = 1 at
the end point.

3 EXAMPLES

The process of our algorithm is illustrated using a character in a ‘Gothic’ font.2 Figure 4a
shows the scanned image of the character, and Figure 4b shows the computed outline points
and the supposed corner points. The obtained Bézier curves and their extensions are shown
in Figure 4c, and the final outline character is given in Figure 4d.

We show two more examples in Figures 5 and 6.

4 EVALUATION

For the comparison, the character obtained by Schneider’s curve fitting method [2] from
the same image is shown in Figure 7. Some statistics on these characters are summarized
in Table 1.

4.1 Shape of curves

The largest errors in the two methods are very similar, but the shapes differ greatly, especially
around the corners. This can be seen more clearly in the magnified figure (Figure 8). This
shows the effect of our fitting method in which the end points are not fixed.

2 In Japan a font similar to sans serif is called ‘Gothic’.

202 KOICHI ITOH AND YOSHIO OHNO

(a) (b)

(c) (d)

Figure 4. A ‘Gothic’ character; (a) An input image; (b) Computation of contour points and corner
points (• indicates a corner point); (c) Obtained Bézier curves and their intersections; (d) Final

outline font.

A CURVE FITTING ALGORITHM FOR CHARACTER FONTS 203

Figure 5. The second example – ‘Kantei’ style (a style based on calligraphic characters)

Figure 6. The third example – ‘Kaisho’ style (another style based on calligraphic characters)

204 KOICHI ITOH AND YOSHIO OHNO

Figure 7. The outline font obtained by Schneider’s method

(a) (b)

Figure 8. An enlarged portion; (a) An outline obtained by Schneider’s method; (b) The corresponding
outline obtained by our method.

A CURVE FITTING ALGORITHM FOR CHARACTER FONTS 205

4.2 Number of curves

The number of Bézier curves used is smaller in our algorithm. This is because by fixing
the end points the degree of freedom is reduced in the previous method, and because to
compensate for the unnatural shape at the corner more curves are used.

5 CONCLUSIONS

We proposed an algorithm for automatic generation of outline fonts expressed in cubic
Bézier curves from the original character on paper. As we do not fix the end points in the
fitting process, the generated font has smaller curves and has a shape more faithful to the
original, especially at the corners.

To apply our algorithm to calligraphic characters which have very long smooth seg-
ments, however, we would have to fit many Bézier curves to a segment. To do this, some
symbol manipulation mechanism like that of Mathematica or Maxima would be necessary
to derive the systems of linear equations to solve the least squares method. Therefore, our
method is especially suitable to such fonts as ‘Gothic’ (in the Japanese sense) or ‘Kaisho’
style (a font based on calligraphic characters but which has a very stiff impression).

REFERENCES

1. J. Gonczarowski, ‘A fast approach to auto-tracing (with parametric cubics)’, in Raster Imaging
and Digital Typography II, eds. R. Morris and J. André, pp. 1–15. Cambridge University Press,
(1991).

2. P. Schneider, ‘An algorithm for automatically fitting digitized curves’, in Graphics Gems, 612–
626, Academic Press, 1990.

3. M. Plass and M. Stone, ‘Curve-fitting with piecewise parametric cubics’, SIGGRAPH ’83
Proceedings, 229–239, (1983).

4. Torishima, Yamazaki, ‘Approximation of character contours by piecewise polynomials’, Tech-
nical Report PRU–87–107, IEICE Tech. Rep., (1988). (in Japanese).

5. Yamada and Sato, ‘A conversion technique from polygonal approximation to cubic Bézier
expression’, SIG on Graphics & CAD, IPSJ, 38(2), (1989). (in Japanese).

6. L. Davis, ‘Shape matching using relaxation techniques’, IEEE Trans. PAMI, 1, 60–72, (1979).
7. J. Hoschek, ‘Approximate conversion of spline curves’, Computer Aided Geometric Design, 4,

59–66, (1987).
8. J. Hoschek, ‘Spline approximation of offset curves’, Computer Aided Geometric Design, 5,

33–40, (1988).
9. G. Avrahami and V. Pratt, ‘Sub-pixel edge detection in character digitization’, in Raster Imaging

and Digital Typography II, eds. R. Morris and J. André, pp. 54–64. Cambridge University Press,
(1991).

10. T. W. Sederberg and T. Nishita, ‘Curve intersection using Bézierclipping’, CAD, 22(9), 538–549,
(1990).

	SUMMARY
	1 INTRODUCTION
	2 THE ALGORITHM
	2.1 Extraction of contour points
	2.2 Extraction of supposed corner points
	2.3 Curve fitting
	2.3.1 Our approach to curve fitting
	2.3.2 Determination of end points

	3 EXAMPLES
	4 EVALUATION
	4.1 Shape of curves
	4.2 Number of curves

	5 CONCLUSIONS
	REFERENCES

