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SUMMARY
This paper presents a statistical approach for font attribute recognition based on features
extracted from projection profiles of text lines and using a Bayesian classifier. The presented
features allow the discrimination of the font weight, slope and size.
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1 INTRODUCTION

Optical Font Recognition (OFR) is an important but often neglected problem in optical
reading. In fact, OFR is useful and necessary in different domains:

• Recognition of logical document structures [1], where knowledge of the font used in
a word, line, or text block may be useful for defining its logical label (chapter title,
section title or paragraph).

• Document reproduction, where knowledge of the font is necessary in order to repro-
duce (reprint) the document.

• Document indexing and information retrieval, where word indexes are generally
printed in fonts different from those of the running text.

• Text font knowledge may also improve the recognition rate of OCR (Optical Char-
acter Recognition) systems, because we believe that mono-font OCR (OCR with an
assumed known font) may give better results than omni-font OCR (OCR capable of
recognizing characters of any font and size).

One uses different fonts in a document in order to emphasize some parts of the text in such a
way that the reader notices them easily. In a document, font changes may occur at particular
points (titles, indexes, references, etc.). They may be done by choosing another typeface,
or changing the style or the size of the same typeface (normal typeface for the running text,
bold for titles, italic for references, monospaced typeface for program illustrations, etc.).
In reality, we do few and systematic font changes in a single structured document.

1.1 Font recognition approaches

There are two possible approaches for font recognition:

• Global feature extraction from text entities (word, line, paragraph). These features
are generally detected by non-experts in typography (text density, size, orientation
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and spacing of the letters, serifs, etc.). This approach is suitable for a priori font
recognition, where the font is recognized without any knowledge of the letter classes.

• Local feature extraction from individual letters. The features are based on letter
particularities like the shapes of serifs (coved, squared, triangular, etc.) and the
representation of particular letters like g and g, a and a. This kind of approach may
derive substantial benefit from knowledge of the letter classes. In this case we talk
about a posteriori font recognition.

1.2 Goals of our work

In our work we are interested in an a priori font recognition system which is integrated
into a structured document recognition system in which the analysis is based, among other
factors, on font identification. The OCR comes at a second level and uses the knowledge
of the font to perform character recognition.

The OFR system uses a global feature extraction approach on a limited and known set
of fonts. This set belongs to the system knowledge base, which may contain many fonts.
This approach is justified by the fact that in a structured document we generally use a
limited number of known fonts. The OFR system is able to work on different text entities
(words, lines, paragraphs). It is also independent of document content and language. The
knowledge base is generated by a process of learning selected features for the different
fonts used in the system.

The following information could be estimated from the knowledge base:

• the power of a feature to discriminate fonts. We talk about discrimination power. In
fact, it is important to know the risk of confusion between some fonts according to
one feature or a whole vector of features;

• global recogniton rate for each font in the system or for a particular set of fonts.

The following section presents some related work on digital font recognition. Section 3
defines the notion of font considered in our system. Section 4 discusses the methodology
we adopted. In Section 5 we present some of the selected features used in the classification
process. Some statistical evaluations applied to the features, and practical results, are
presented respectively in Sections 7 and 8.

2 RELATED WORK

A small amount of work has been done on typeface classification and recognition. Type-
face classification has mainly been done manually, and operated according to historical
considerations and serif styles [2–5]. Nowadays, with the expansion of computers, we are
witnesses to a rapid proliferationof digital fonts, but their analysis for document recognition
has not yet been considered.

Morris [6] based his study of the problem of digital font recognition on the analysis
of Fourier amplitude spectra extracted from word images. The study was mainly done
in order to examine the applicability of human vision models to typeface discrimination
and to investigate whether spectral features might be useful in typeface production. He
applied a Fourier transform to the word image and then extracted a features vector by
applying many filters to the resulting spectra. He used a quadratic Bayesian classifier for
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Figure 1. Structure of a text line

font classification and obtained good results, but many important simplifications were done:
the images considered were noise-free, because they were created by software instead of
being scanned from paper documents. He also considered only one font size for the different
samples.

Anigbogu [7], in his multi-font OCR system, defined models for characters and placed
them in a tree according to certain attributes (ascenders, descenders, holes, etc.). Some
preprocessing was done on the text in order to select one sample for each kind of shape
(letters). The selected shapes were placed in the tree according to their attributes. In another
operation, a tree was generated for each font in the system (instantiation of a generic tree
with the different letters of the given font). The shape tree was then compared with each font
tree in order to compute a distance; the smallest distance thus defined the associated font.
The font identification was mainly done to improve the performance of the OCR system
by limiting the search space (font trees). This approach seems to provide good results if the
generated shape tree is complete enough (i.e. it has a sample for each character).

Spitz, in his Multilingual Document Recognition System [8], used a function discrim-
inating Roman from Japanese texts for OCR purposes. The discrimination is based on
fundamental differences between Roman and Japanese texts such as character spacing, the
presence of ascenders and descenders and the homogeneity of text density. It relies on the
presence of a statistically significant difference in the distribution of a measure of local
optical density.

3 DEFINITIONS

In a global features approach, the features are extracted from zones extending over several
characters, words or lines instead of a single character.

3.1 Text line structure

A text line can be considered as being composed of three zones: the upper zone, the middle
zone and the lower zone (see Figure 1). These zones are delimited by four virtual lines:
the top-line, the upper-line, the base-line and the bottom-line. Each text line has at least a
middle zone; the upper zone depends on capital letters and letters with ascenders, like h and
k; the lower zone depends on letters with descenders, like g, p and y. This structure allows
the definition of four kinds of text line:

1. full line, with character parts present in all three zones;
2. ascender line, with character parts present in the upper and middle zones;
3. descender line, with character parts present in the lower and middle zones;
4. short line, with character parts present in the middle zone.
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The middle zone is the most important part of a text line, where we find the main
information. Its height is commonly called the x-height because it corresponds to the height
of a lowercase x. The proportion of the different zones in the font size differ from one
typeface to another.

3.2 Font model

In our OFR system a font is modelled by the following attributes:

1. the font family, such as Times, Helvetica or Courier. Commonly this corresponds to
the definition of typeface;

2. the size, expressed in typographic points and with a value range of [6, . . . ,96];
3. the weight of the font, having one of the following values: light, normal or bold;
4. the slope indicating the orientation of the letters’ main strokes. A font could be

roman, slanted or italic;
5. the spacing mode specifying the pitch of the characters. A font may have a fixed

pitch (mono-spaced) or a proportional one. The latter class may have condensed,
normal or expanded spacing mode.

4 METHODOLOGY

We decided to use a Bayesian classifier for our font identification system. The selected
features are extracted from projection profiles.

4.1 Bayesian decision theory

A classification process consists of associating a class (from a set of predefined classes) to
an observation defined by a features vector x = (x1, x2, . . . , xd). Bayesian decision theory
is based on the assumption that the decision problem is posed in probabilistic terms and
that all of the relevant probability values are known [9].

4.1.1 Bayesian classification

Let Ω = {w1,w2, . . . ,wn} be the set of classes. The Bayesian classification consists of
finding a class ωi so that P(ωi|x) is maximal where P(ωi|x) is computed with the Bayes
rule:

P(ωi|x) =
p(x|ωi)P(ωi)

P(x)
, where

P(x) =
n∑

i=1

p(x|ωi)P(ωi).

P(ωi) expresses the a priori probability of the classωi , and p(x|ωi) represents the conditional
density function of x, or in other words the probability of obtaining x when its class is ωi.

A Bayesian classifier can be represented as a set of discriminant functions gi(x),
i = 1, . . . ,n. It assigns the class ωi to the features vector x if gi(x) > gj(x) for all j 6= i.
It is then seen as a machine calculating n discriminant functions and choosing the class
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Figure 2. Bayesian error probability

corresponding to the largest discriminant. The selection of the discriminant function is not
unique. We can take gi(x) = P(ωi|x), because the largest discriminant corresponds to the
highest a posteriori probability.

4.1.2 Classification error

The Bayesian classifier splits up the feature space into n decision regions, R1 . . .Rn. Take
the case of two regions; there are two cases that give rise to a classification error: either the
observation x falls into R2 and its true class is ω1, or x falls into R1 and its true class is ω2

(see Figure 2). We have thus

P(error) = P(x ∈ R2,ω1) + P(x ∈ R1,ω2)
= P(x ∈ R2|ω1)P(ω1) + P(x ∈ R1|ω2)P(ω2)

=
∫

R2

p(x|ω1)P(ω1)dx +
∫

R1

p(x|ω2)P(ω2)dx.

4.1.3 Feature distribution

As mentioned above, Bayesian decision theory supposes that feature distributions can be
expressed by probabilistic parametric functions. In our study we assume, as discussed in
Section 7, that feature vectors follow normal lowsN (µ,Σ). This means that their distribu-
tions are multivariate normal density functions expressed by:

f (x ;µ,Σ) =
1

(2π)(d/2)
√
|Σ|

exp
[
−1

2
(x− µ)tΣ−1(x− µ)

]
where x is a d-component features vector, µ is the d-component mean vector, Σ is the
d-by-d covariance matrix, (x− µ)t is the transpose of x− µ and |Σ| is the Σ determinant.

4.1.4 Learning

The learning process consists of estimating the parameters of the class conditional density
function p(x|ωi) so that the Bayes rule can be applied to find the feature discriminant
function values. These values are computed on a large-enough sample for each class ωi. In
our case, we used the maximum likelihood estimator for the estimation of the parameters
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µ and Σ. To be more specific, if xi is the ith component of features vector x, µi is the ith
component of µ and σij is the i-jth component of Σ, then

µi = E(xi) and

σij = E(xi − µi)(xj − µj), where E(y) =
1
n

n∑
k=1

yk.

We also assumed that the classes have the same a priori probabilities P(ωi), so that they
became computationally irrelevant.

4.2 Projection profiles

Features are extracted from the projection profiles of text lines. Let S(N,M) be a binary
image of N lines and M columns. As is shown by Figure 3, we define:

• Vertical profile: sum of black pixels perpendicular to the y axis; this is represented
by the vector Pv of size N and defined by:

Pv[i] =
M∑

j=1

S[i, j].

• Horizontal profile: sum of black pixels perpendicular to the x axis; this is represented
by the vector Ph of size M and defined by:

Ph[ j] =
N∑

i=1

S[i, j].

5 SELECTED FEATURES

We considered five principal features for font discrimination. They have been derived from
visual observations of different fonts and their projection profiles.

5.1 Vertical profile heights

The height of the vertical profile (Pv) depends mainly on the font size. As is shown in
Figure 4, Pv has four peaks estimating the four virtual lines defined in section 3.1:
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1. Htop = max{i such that Pv[i] > 0}.
2. Hbottom = min{i such that Pv[i] > 0}.
3. Hbase = i such that Pv[i]− Pv[i− 1] is maximal.
4. Hupper = i such that Pv[i]− Pv[i− 1] is minimal.

Three features are extracted from Pv:

1. The height of the whole profile, defined by h1 = |Htop −Hbottom|.
2. The height of the upper part of the profile, defined by h2 = |Htop −Hbase|.
3. The height of the middle part of the profile, defined by h3 = |Hupper− Hbase|.

5.2 Density of black pixels

The weight of a font is reflected by the density of black surfaces on the white background.
This density (dn) is extracted from the horizontal profile P′h (see Figure 5). It is computed
on the central part of the line located between Hupper and Hbase, in order to be independent
of the text line structure. The feature is thus defined by

dn =
1
n

n∑
x=1

P′h[x].

5.3 Variance of horizontal profile derivative

One can observe from the horizontal profile that roman texts are characterised by a set
of upright and tall peaks. For italic texts the peaks are less tall, rounded and broader (see
Figure 5). This feature is revealed by the first derivative of the horizontal projection profile
(dr), defined by

dr =
1

n− 1

n−1∑
x=1

(P′h[x + 1]− P′h[x])2.
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The latter two features are sensitive to text formatting: in a justified text, word spacing is
not fixed and depends on the number of words in the line. In order to be independent of
formatting, each space between two words is replaced by a small fixed space.

6 LEARNING

The learning process consisted of estimating, for each font, the mean vector of five features
(dr, dn, h1, h2, h3) and the corresponding covariance matrix. This has been done on 100
full English text lines (with ascenders and descenders) of about 6 cm length for each font.
The texts have been arbitrarily extracted from existing documents and produced by a laser
printer. Binary images have been produced from these texts by scanning at 400 dpi.

Some preprocessing has been done on the image of the text lines, in order

• to detect and correct possible skew;
• to filter some marks such as noise, punctuation and diacritical signs which do not

carry any pertinent information.

The knowledge base, used in the theoretical evaluations and in the classification exper-
iments, contains 112 fonts compounded from the combinations of the different font at-
tributes. Seven font families have been considered: four are seriffed (Times, Palatino,
Bookman, New Century Schoolbook), two are sanserif (Avant Garde, Helvetica) and one
is monospaced (Courier). Four sizes (10, 11, 12, 14) and four styles (normal, italic, bold,
bold-italic) often used in documents have been selected for each font family.

7 STATISTICAL EVALUATION

Bayesian decision theory allows the estimation of theoretical classification error rates,
which can be computed from the feature distribution functions (see subsection 4.1). Thus,
in a first step, we made a statistical evaluation in order

• to evaluate the power of the selected features to discriminate the weight, slope and
size attributes;

• to study the influence of the family and size attributes on the weight and slope.

7.1 Evaluation environment

In this evaluation, feature discrimination powers have been analysed individually, where
we did not take into account their correlations. Individual features follow univariate normal
lowsN (µ,σ) with the distribution function

f (x ;µ,σ) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]

.

A verification of the normality of marginal distributions has been done by statistical eval-
uation in which we used the χ2 test [10]. Nevertheless, we assume without any rigorous
verification that feature vectors are normally distributed.
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Table 1. Theoretical confusion rates for weight (normal, bold) and slope (roman, italic) with known
family and size (12) and with unknown size (all sizes merged)

Font Decision with dn Decision with dr
for normal weight for roman slope

Family Weight Slope Size 12 All sizes Size 12 All sizes
normal roman 1.0 0.999 0.998 0.995

Courier bold roman 0.0 0.001 0.983 0.964
(1) normal italic 1.0 0.999 0.009 0.026

bold italic 0.0 0.001 0.006 0.026
normal roman 1.0 0.999 1.0 0.999

Avant Garde bold roman 0.0 0.001 1.0 1.0
(2) normal italic 1.0 0.999 0.0 0.001

bold italic 0.0 0.001 0.0 0.0
normal roman 0.996 0.973 1.0 0.0

Times bold roman 0.002 0.010 1.0 0.0
(3) normal italic 0.998 0.989 0.0 1.0

bold italic 0.003 0.026 0.0 1.0

normal roman 0.752 0.709 0.999 0.995
(1)+(2)+(3) bold roman 0.238 0.254 0.999 0.996

normal italic 0.755 0.712 0.001 0.003
bold italic 0.241 0.251 0.001 0.002

7.2 Evaluation results

Table 1 gives an overview of the power of dn (density of black pixels) and dr (variance
of horizontal projection profile derivative) features to discriminate the weight and slope of
a font when its family and size are known, and when its size is unknown. dn was used to
discriminate the weight and dr to discriminate the slope. We can see that:

• these features are pertinent, and have a discrimination power greater than 97%;
• the slope is easier to detect than the weight;
• the font size has a very low influence on the discrimination of weight and slope.

The last line of Table 1 shows that dr is still very accurate in discriminating the slope
when the font family is unknown, while dn is less accurate in discriminating the weight.
This may be explained by the fact that fonts do not have homogeneous typographic grey
levels.

Other tests with other font families (Helvetica, Palatino, Bookman, New Century
Schoolbook) gave similar results.

Table 2 gives an overview of the power of the h3 feature to discriminate the font size
with known family, weight and slope (h3 is presented because it estimates the main part of
a text line). The confusion rates were computed, first for sizes 10, 11 and 12 and second for
sizes 10, 12 and 14. The table shows that size discrimination is easy for non-consecutive
sizes and is more difficult for successive ones.

Other tests with the h1 and h2 features led to the same conclusions. In fact, h1, h2 and
h3 depend on the font family and have very low discrimination power for merged families,
for example h3 has the same value for Helvetica-10 and Times-11.

8 EXPERIMENTS

In a second step, a multivariate Bayesian classifier has been designed for the experiments
in order to confirm the statistical evaluation results of Section 7 and to see the influence of
font families on the classification results.
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Table 2. Theoretical confusion rates between font sizes using h3 with known family, weight and slope

Font Decision for size with h3 Decision for size with h3
Family Weight Slope Size 10 11 12 10 12 14

10 0.798 0.189 0.013 0.987 0.013 0.0
Courier normal roman 11 0.312 0.588 0.100 - - -

12 0.017 0.093 0.890 0.017 0.960 0.023
14 - - - 0.0 0.018 0.982
10 0.987 0.012 0.001 0.999 0.001 0.0

Avant Garde normal roman 11 0.013 0.903 0.084 - - -
12 0.001 0.115 0.884 0.001 0.998 0.001
14 - - - 0.0 0.001 0.999
10 0.951 0.047 0.002 0.999 0.001 0.0

Times normal roman 11 0.107 0.592 0.301 - - -
12 0.001 0.129 0.870 0.001 0.998 0.001
14 - - - 0.0 0.001 0.999

8.1 Preclassification

The classifier has been configured so that it takes into account the text line structures defined
in subsection 3.1. A text line preclassification was done for each text line, and following
its estimated structure we use different feature vectors:

• a 5-component vector (dr, dn, h1, h2, h3) is used when the line is estimated to be full.
• a 4-component vector (dr, dn, h2, h3) is used for ascender lines.
• a 3-component vector (dr, dn, h3) is used for descender and short lines.

8.2 Classification results

The classification was done on 100 French text lines for each font with almost the same
length as those used for learning.

In a first trial, the classification was done with known font families. Global recognition
rates for different attributes (weight, slope and size) are shown in Table 3. For each family
16 fonts have been considered (four sizes, two slopes and two weights).

The classification gave better discrimination than the statistical evaluation from the
knowledge base. This is due to the property of multivariate classification which implicitly
takes into account correlations between features. This confirms the interdependence of the
different features used in the classification process.

Another classification trial was done on a set of font families, including the seven
learned font families, with a database of 112 fonts. The recognition rates are shown in
Table 4. The weight and slope discrimination are still accurate, even when the family and
sizes are unknown. The family and size discrimination were surprisingly good, confirming
the fact that the features are interdependent.

Finally, confusion between font families was tested; the results are presented in Table 5.
If we consider three font family classes (seriffed, sanserif and monospaced), when a font
family is misclassified it is mainly confused with a font family within the same class.

9 CONCLUSIONS

We have shown in this paper the importance of font identification and the reliability of an a
priori identification based on statistical analysis of projection profiles. We have presented
some features allowing an accurate discrimination of font weight and slope, but we think
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Table 3. Recognition rates of a Bayesian multivariate classifier for each family

Family Weight Slope Size
normal bold roman italic 10 11 12 14

Courier 1.0 1.0 1.0 0.997 0.974 0.885 0.920 0.995
Helvetica 1.0 1.0 1.0 0.999 1.0 0.998 1.0 1.0
Avant Garde 1.0 1.0 1.0 0.991 0.998 0.987 1.0 1.0
Times 0.992 0.996 1.0 0.991 0.945 0.904 0.981 1.0
Palatino 1.0 0.994 1.0 0.993 1.0 0.966 0.995 1.0
Bookman 1.0 1.0 1.0 0.997 0.997 0.988 0.982 0.994
New Century Schoolbook 1.0 0.995 1.0 0.985 0.928 0.852 0.916 0.994

Table 4. Global recognition rates of a Bayesian multivariate classifier including all families

Family Weight Slope Size
Courier 0.992 0.995 0.995 0.887
Helvetica 0.844 0.991 0.996 0.978
Avant Garde 0.936 0.998 0.996 0.975
Times 0.895 0.997 0.998 0.958
Palatino 0.924 0.996 0.997 0.950
Bookman 0.922 0.999 0.996 0.976
New Century Schoolbook 0.923 0.999 0.999 0.977

Table 5. Confusion rates between font families including all families

Courier Helvetica Avant G Times Palatino Bookman New C
Courier 0.992 0.002 0.003 0.001 0.0 0.001 0.002
Helvetica 0.005 0.844 0.115 0.012 0.004 0.010 0.010
Avant Garde 0.002 0.033 0.936 0.011 0.0 0.011 0.007
Times 0.015 0.003 0.002 0.895 0.016 0.003 0.066
Palatino 0.004 0.002 0.001 0.044 0.924 0.013 0.011
Bookman 0.003 0.004 0.007 0.004 0.006 0.922 0.054
New Century Schoolbook 0.002 0.0 0.0 0.042 0.020 0.012 0.923

that we do not yet have a classifier for omni-font recognition (discrimination of the weight
and slope of any font family and size). Size discrimination was accurate when the font
family was known. The correlation between the selected features seems to be powerful for
family discrimination on a limited number of fonts but needs a more thorough analysis to
be confirmed.

The classifier’s theoretical performance has been evaluated, using intuitive methods. A
more comprehensive study needs to be done. A standard eigenvalue analysis of variance
on the classifier must be done to show the discrimination power of individual features and
to find if some linear combination of the basic features can be better than any of them taken
separately.

Some other problems, on which we are presently working, still need to be analysed.
First, other features are studied in order to discriminate font families or family classes.
Second, an evaluation of the approach on a large number of fonts has to be done. Third, the
influence of sample length on discrimination power (line length, number of words) has to
be analysed in order to evaluate the approach on single words. Finally, an analysis of the
influence of document degradation (faxes, photocopies) should also be considered.
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