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SUMMARY
Many fonts derive from stroke-based ancestry. Pressure applied to the pen or brush provided
some variation in the stroke width, which defined a region on each side of a centreline. A simple
representation of fonts as variable width strokes is presented in this paper. Advantages include
a good first step toward typographic scaling (stroke width scales independently of overall
scale factor), and preservation of topology at low resolutions (minimum stroke width can be
enforced). A chief disadvantage is the lack of experience designing fonts in this paradigm, or
building routines to convert from other paradigms.
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1 INTRODUCTION

Many fonts originate in a form that was stroked by hand, either with brush or pen. Some were
modified as technologies changed, and as computerized typesetting was introduced, fur-
ther modifications ensued. Font representations have included bitmaps and contours. Both
require that the original shapes be modified, and neither is fully satisfactory. METAFONT

offers another alternative font representation [1], however it appears best suited to mathe-
maticians and programmers, as it is more a constraint specification language than a conve-
nient way to describe shapes as understood by a typical font designer. It is also a relatively
slow format for rasterization, compared to outlines. The expressiveness of METAFONT

may be sufficient to describe any font; the language may simply be too foreign for many
of the better type designers to find out.

Traditionally, type was created letter by letter by the designer. The notion of scaleable
fonts was meaningless, as naming a font implicitly specified its size. Some time before
computerized typesetting, type was geometrically scaled. Updike (in 1922) deplored the
use of the pantograph for mechanically making type of multiple sizes from a single master
[2].

By 1964, the makers of the Linotron were unashamed to describe their system for
selecting the size of type: a system of lenses optically scaled the characters in the master
before they were scanned, selected and written on to the film or plate [3]. So it should have
come as no surprise when the PostScript language provided the means to geometrically
scale any font to any size, with no concern for the aesthetic pain that might cause. Truly

CCC 0894–3982/93/030183–12 Received 1 September 1993
1993 by John Wiley & Sons, Ltd. Revised 3 December 1993

© 1998 by University of Nottingham.



184 R. V. KLASSEN

good typography requires that letters differ from size to size. At the very least, stroke widths
and kerning tables should not scale in the same way as character height. This is what I
shall call typographic scaling. It has been called optical scaling by some — an unfortunate
choice of term: optical scaling is exactly what was performed in the Linotron machines! Of
typographic scaling, altering stem widths is probably the most difficult part; variable width
strokes may offer, at the very least, a good start.

There are many well-known problems with bitmap fonts: every required size must be
hand designed to an excessive level of detail, they are tuned to a specific printer and cannot
easily be adjusted for inter-printer variation, and, for large characters, the representation
is far from compact. Outline fonts require extensive hinting at low resolutions, and it
is difficult to come close to typographic scaling with outline fonts, leading again to the
alternative of a complete redesign at each resolution. A nice compromise would be to
specify the font at a relatively small set of resolutions, and interpolate control points for
resolutions between, but it is difficult to guarantee the required consistency. And there are
those who claim that outlines make a poor representation from a design point of view, as
they distort the perceived shape of a character during the design process. (This is likely an
avoidable user interface issue.)

Variable width splines may be an alternative to outlines and bitmaps. They are arguably
a more natural representation, at least for many non-Latin fonts. Hinting is simplified
significantly when the centreline and stroke width are known. And it may be that a good
approximation to typographic scaling is possible based on relatively few sizes. Offsets of
plane curves (of which variable width splines are a form), have been studied in the context
of machine tool path design. It is known that the curve at a constant offset from a spline
curve is neither a spline curve nor even a rational spline curve. Variable width offsets are
even more complex mathematically. Many simple mathematical properties of spline curves
are lacking, making some operations (such as finding the nearest point on the offset to a
given point in space) much more complex. It is not clear that any of those more difficult
operations are necessary for rasterizing type. There exist relatively simple algorithms for
rasterizing variable width splines, based on well-known algorithms for rasterizing normal
splines.

The definition of variable width splines I shall use is similar to those used by Pham [4]
and by Chua [5] and Knuth [6]. Pham uses an offset approximation in which each segment of
the centreline curve is in one-to-one correspondence with a spline segment approximating
each of its offset curves. The approximation is done at definition time, and does not improve
with subdivision. Chua uses paired outlines, along the same lines as METAFONT 79’s
ddraw and METAFONT’s fill [1]. Both Pham and Chua show a number of special
effects — such as variation in colour with relative distance from the centreline — that
are possible with a stroke-based representation. METAFONT’s draw allows for strokes
of variable width, but uses pens of fixed shape and orientation. With these exceptions,
most prior work on offsets of plane curves appears to have been restricted to fixed width
offsets. Farouki and Neff have explored at length the analytic and algebraic properties of
plane offset curves [7,8], while Farin has considered computing offsets of conics [9] and
Hoschek [10] and Klass [11] give methods for approximating offsets of planar and planar
cubic (respectively) curves using splines.

This paper’s main purpose is to explore the use of variable width splines as a representa-
tion of fonts. A working definition is given in the next section, along with several examples.
The following section shows several characters designed using a modest number of control
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Figure 1. Two variable width strokes, each defined using a single Bézier segment, and a third, defined
using two segments. The centreline curves are shown in grey

points in a variable width spline form. The example characters are to be taken not as works
of art, but rather as proof that it is possible to make the necessary shapes. Only a skilled
designer can make high quality characters. Section 4 is a discussion of the advantages and
disadvantages of variable width strokes as a representation — initial impressions from the
point of view of one very biased user with a limited user interface. Finally, some concluding
remarks are given in Section 5.

2 DEFINITIONS

For the purpose of this paper, a variable width spline consists of a centreline curve, defined
as a spline curve, and a width function, also a spline function. More specifically, the
centreline curve is defined as p(t) = [x(t),y(t)], where both of the coordinates are piecewise
polynomial functions of the parameter t, (we shall concentrate on cubics), described as a
series of control points and a (fixed) set of basis functions. Thus they might, for example, be
represented in terms of Bézier control points, or B-spline control points. In addition to the
usual two coordinates, control points carry with them a third coordinate w, used to control
the width. The width is calculated from the w coordinates in exactly the same fashion as the
position of the centreline is calculated from the other two coordinates in the control points
related to the current segment. Figure 1 shows three sample variable width curves, defined
using the Bézier basis.

To find the two offset points corresponding to a point p(t) = [x(t),y(t)], on the centreline,
compute the normal vector ~n(t) = [ẏ(t), − ẋ(t)], at that point, and compute the two points
a distance w from p, in the±~n(t) directions.
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More formally, the offset consists of the locus of points defined by

o(t) = p(t)± w(t)n̂(t)

where n̂ is the unit normal to p at t:

n̂ =

(
dy/dt,− dx/dt

)√(
dy/dt

)2 +
(
dx/dt

)2
·

The square root is computationally the least attractive part, (although it can be done effi-
ciently by exploiting coherence), but without it the width depends on the parameterization
(the rate at which the curve is traversed relative to t).

A single spline segment has two offset curves, and because the segment has associated
with it a nondecreasing parameterization, it is natural to label one offset the left offset, and
the other the right offset, treating the two together as an offset pair. The left (right) offset
is the one on the left (right) as the centreline is traversed from 0 to 1. A segment may have
associated with it a flag indicating that one offset or the other is to be omitted, as well
as possibly a pointer to the segment containing the other offset (this has proven useful in
constructing mitre joints such as occur at the top of an A or the base of a V). A character at a
given size is represented as a collection of segments which, when drawn filled, collectively
cover the pixels to be intensified when the character is rasterized.

The above definition of a variable width stroke is different from those used by Pham and
Chua in that the offsets are not splines. It differs from Knuth’s variants in that the infinitely
thin ‘pen’ is always held perpendicular to the direction of travel. Like METAFONT, data
values (in particular widths) can be parameterized as functions of point size.

A complete font can be represented by storing control points (including widths) at one
representative size, along with width scale factors for several sizes. The scale factors are
interpolated for intermediate widths, and multiplied by the widths in the control points to
give adjusted stroke widths. This gives a compact representation for what may prove to be
a very good approximation to true typographic scaling. Some care is required in the design
to ensure that strokes continue to connect properly after widths are scaled, however making
centrelines connect is generally sufficient to preserve the topology.

While there is no guarantee that strokes connect properly after widths are scaled, it is
not hard to arrange. By contrast, interpolating control points of outlines corresponding to
different sizes can fail badly if control points do not correspond to the same ‘place’ on
the respective curves. Figure 2 shows an example of the difficulty of interpolating control
points with outlines.

3 RENDERING

Offsets of constant width are not as well-behaved as are simple splines, and offsets of
variable widths are even less so. Cusps and loops occur whenever the curvature of the
centreline matches or exceeds the width. Monotonic centrelines with monotonic widths do
not necessarily give rise to monotonic offsets. The two offsets of a single cubic segment can
have as many as eight extrema (in either direction), and even more roots when intersected
with a line. All of these considerations may be related to the fact that variable width strokes
are not currently in common use as a means of representing fonts.
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Figure 2. An example of catastrophic failure when trying to interpolate between two outlines. The
light and mid-grey curves are in fact identical. Only their representations (control points) differ. The
black curve results from linearly interpolating the control points of the two grey curves (dashed lines
connect corresponding control points). The resulting curve is not even close to the average of two

curves

Many of these mathematical difficulties are unlikely to occur in practice. For example,
cusps and loops large enough to cause difficulty will not occur because they would not be
designed into the font, or result from a faithful fitting of an existing font. The existence of
many roots in the line/offset intersection problem is also unlikely to cause difficulty, since
segments exhibiting this behaviour would not occur in actual fonts.

One method of rendering variable width strokes is adaptive subdivision. For this a
stopping criterion is needed. In this paper the criterion used is based on straightness, and uses
the combined linearity of the centreline and width to determine straightness. The deviation
from straightness of the centreline is estimated from the area of its control polygon, while
the maximum deviation from linearity of the width is calculated directly. These are summed
to give an estimate of the maximum deviation from straightness. Alternatively, a looser
tolerance could be used, such that Pham’s (curved) offset approximation is sufficiently
accurate [12]. No doubt better, more efficient schemes can be derived for determining the
depth of subdivision required; this one is sufficiently fast and accurate for design. A similar
variant of adaptive forward differencing is possible as well.

In relatively straight regions offset pairs are faster to render than outlines, as both sides
are generated at once. In curved regions the inside curve can be moved forward a single
step and then ignored while the outside catches up. Again, both sides are generated at once.
Somewhat more work is performed per step, but each step supplies points on both sides. By
far the vast majority of characters rasterized on typical pages today have outlines consisting
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of very many short segments. The start-up overhead is therefore quite significant. An offset
representation, if it can use half as many segments, may be faster to render, once fully
optimized rasterization algorithms have been implemented.

4 EXAMPLES

Six example characters are shown in this section. Three are from the Japanese katakana
alphabet, one is from the hiragana, and the remaining two are the roman V and O. The
katakana include enough stroke forms to provide a reasonable argument that the remaining
43 could be designed to the same level of quality. Given the origin of katakana as adaptations
of kan’ji radicals, it seems reasonable to believe that a system that can describe katakana
shapes is equally capable of describing kan’ji. Hiragana introduces a greater variety of
strokes, being more curved, so a sample hiragana character is included as well. The roman
V is particularly difficult for variable width strokes. It contains a mitre joint at the base,
and horizontal serifs connected to diagonal strokes. In addition to the character designs,
scaling, including minimum width constraints are shown. The letter O illustrates the use of
minimum width constraints.

The examples in this section are not intended as samples of good type design. Rather
they are intended to lend credibility to the claim that it is possible to design type using
the variable width stroke paradigm. They were designed using very limited tools (a text
editor was used to modify the control points), by one with no training in type design. At
design resolution they come within several pixels of matching the shapes of actual scanned
characters. The data quantities are also given. These should serve as a guideline only. More
data, or perhaps only more care in specifying the values of the data, would give better
looking type.

Figure 3 shows an uppercase Times Roman V, scaled up to allow inspection of the
control points. (The design point size is unknown: it was based on a PostScript font). Most
of the control points occur in the serifs, which contain several single-sided strokes each.
The mitre joint consists of four pieces: two are the left and right strokes with one offset
turned off when appropriate; the other two are isosceles triangles used to fill the gap. One
triangle is has its base at the bottom of the V, the other’s base connects the bottom right
corner to the corner formed by the insides of the two strokes. The triangular patch-up would
not be necessary in a more complete implementation; at present it is not possible to identify
a left offset with a right offset of a different stroke. The data used to generate the strokes in
Figure 3 appear in the appendix.

Figure 4 shows a letter O at three resolutions. At low resolutions, a minimum width
constraint is invoked, preventing the strokes from disappearing. Some modified characters
have been observed to look blocky in regions where the width constraint is active, but such
regions have sizes in the single pixel range, and so the distortion is not visible at device
resolution. Each is drawn from the same data: eight stroke segments, twenty-four control
points.

Figure 5 shows a hiragana su. The stroking paradigm works well here (18 segments,
56 control points). The round ends of the strokes require more control points than pointed
ones would, but an outline representation would require a higher number in the vicinity
of curved ends as well. This character was relatively easy to design. The character scales
gracefully to different sizes with the stroke widths decoupled from the character size. Any
lack of smoothness in the curve is in the design: a more carefully executed design would
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Figure 3. A Times Roman V. Control points are shown as filled circles, with the centreline drawn in
grey. On the right is the character that results from filling the stroke. Most of the effort is expended

in making the serifs behave correctly

Figure 4. Minimum width constraint. At top are the shapes, and below are rasterizations (lowest
resolution at the right). Because the stroke width is explicitly stored, minimal width constraints can
prevent the stroke from disappearing entirely at low resolutions. Without hinting, the thin strokes
are made to remain. Hinting could be used to position the centrelines so that the rasterizations are

symmetric
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Figure 5. Typographic scaling of the hiragana su. At the top is normal (PostScript style) scaling; at
the bottom the widths are scaled independently of the control point locations. The left character is
25% thicker than a strictly scaled version would be, while the right character is 25% thinner than if

it had been scaled from the one in the middle

Figure 6. Katakana bvi-ku-ta — (Victor) with independent width scaling
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be smooth. Figure 6 shows three katakana. The more angular nature of the katakana is
somewhat more difficult to mimic, requiring extra control points near the ends of most
strokes. In all, there were 15, 9 and 11 segments, with 49, 30, and 37 points, in the three
characters from top to bottom. The vowel-lengthening stroke below the ta required two
segments, seven points.

5 INITIAL IMPRESSIONS

On the whole the representation appears capable of representing characters of Latin or
non-Latin fonts, although non-Latin fonts are easier to represent. Serifs are difficult. The
(low) quality of the curves is probably deceptive, as the control points were manipulated
with the crudest possible user interface (typing numbers). It really is not at all clear whether
there is more or less data required to store a typical character.

Manipulation of variable width strokes appears more difficult than manipulating out-
lines, at least when the manipulation is done with the text-editor user interface. Of course
there are half as many objects to fit when fittingstrokes as there are when fitting independent
outlines, and that may outweigh the difficulty of fitting individual strokes. Guaranteeing
that two edges are parallel is trivial, even in an interactive environment.

This paper represents only a little experience with this representation; not enough to
indicate whether the representation is useful in a design environment. Independent of its
applicability in a design environment is its utility as an internal representation. The control
over minimum stroke width and knowledge of stroke centreline are sure to simplify hinting.
Because of the large body of outline fonts in existence, it is important to have the capability
of converting from outline to variable width stroke form. Doing so in a manner faithful
to the topology remains an open problem (it is hoped that this is as a result of lack of
effort, rather than fundamental difficulties). It is not even clear whether direct autotracing
from rasters or conversion from outlines is the better approach (given a solution to either
problem the other can be reduced to it). Typical skeletonization approaches — such as
the medial axis transform [13] — find a different centreline from the one used here: they
generally send a line into each corner of a stroke. For outlines, the challenge is finding the
corresponding points on pairs of outlines, and the centreline that generates them. Before
these points can be found, corresponding outlines must be identified.

While the representation brings back an important element of typographic scaling, it
loses certain features of outline fonts (purists might claim those features should never be
there). Most notable among them is the ability to automatically create an oblique font by
skewing the control points from a non-oblique font. Automatic oblique is still possible, but
much more expensive. Rather than simply skewing the control points, it is necessary to
de-skew the normal vectors at each step in the rendering. In addition, drawing a character
as its outline is no longer trivial. On the other hand, it does permit other special effects,
provided the strokes are set up with them in mind: varying the colour or grey shade over
the width of the stroke, and textures that appear to follow the natural stroking pattern.

6 CONCLUSIONS

Variable width strokes have much to offer as a paradigm for representing characters. The
mathematical anomalies they encompass are unlikely to occur in practice, so their rendering
will typically be no slower than filled outlines. Because of the ability to control stroke width
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independently of overall scaling, they offer an inexpensive approach to typographic-like
scaling. Controllingminimum width can prevent strokes from disappearing entirely at small
sizes.

There is little experience with designing characters based on variable width strokes, and
none at all with autotracing to create variable width representations from masters created in
other forms. While rendering is relatively straightforward, the degree of difficulty associated
with creation is relatively unknown.

Some conveniences do not exist with variable width strokes, including the easy gener-
ation of outlines and obliques. This may be considered a mixed blessing and curse.

The total data space requirement for a variable width stroked font may be greater or
less than that for a traditional (outline) font. One would expect that — for some letters at
least — a very good representation would only require three quarters as much data (half as
many control points each of one and a half times the data size).
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APPENDIX

Below is the set of strokes used for the uppercase V shown in Figure 3. Shown are Bézier
control points; at the start of each block of four is a single letter c, l or r. These indicate
whether a normal stroke segment is to be drawn, or whether only the left or right offset is
to be used, respectively. There are 68 unique points.

c 19.0500 99.5000 19.0000
19.0500 99.0000 19.0000
19.0500 98.0000 19.0000
19.0500 97.5000 19.0000

r 19.2100 97.5000 19.1600
19.2100 97.4950 15.0000
19.2138 97.0500 14.5000
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19.2288 96.5000 13.2500
l 19.1500 97.5000 18.9000

19.1500 97.0000 16.7500
19.1625 96.7500 16.7500
19.1750 96.5000 15.0000

r 19.2288 96.5000 13.2500
19.2437 95.9500 12.0000
19.2638 95.3750 11.6000
19.2775 95.2500 10.4500

l 19.1750 96.5000 15.0000
19.2000 96.0000 11.5000
19.2500 95.5000 11.0000
19.2775 95.2500 10.4500

c 19.2775 95.2500 10.4500
19.3075 95.0000 10.2000
19.3515 94.6000 9.5350
19.4725 94.0000 9.1250

c 19.4725 94.0000 9.1250
19.7750 92.5000 8.1000
20.2900 91.2000 7.4250
21.1000 89.4000 7.2000

c 21.1000 89.4000 7.2000
22.0000 87.4000 6.9500
23.4750 84.7500 6.9000
24.7500 82.5000 6.9000

c 24.7500 82.5000 6.9000
27.3000 78.0000 6.9000
32.4000 69.0000 6.9000
37.5000 60.0000 6.9000

c 37.5000 60.0000 6.9000
42.6000 51.0000 6.9000
47.7000 42.0000 6.9000
48.7200 40.2000 6.9000

r 48.7200 40.2000 6.9000
55.8600 27.6000 6.9000
55.8600 27.6000 6.9000
55.8600 27.6000 6.9000

c 51.1350 24.0000 1.2250
51.1350 24.0000 1.2250
51.1350 34.0500 0.0000
51.1350 34.0500 0.0000

c 51.1350 34.0500 0.0000
51.1350 34.0500 0.0000
53.5550 33.7750 9.8750
53.5550 33.7750 9.8750

l 57.7843 42.1300 3.4500
49.4138 25.6625 3.4500
49.4138 25.6625 3.4500
49.4138 25.6625 3.4500

c 77.1000 80.0000 3.4500
73.5500 73.0000 3.4500
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66.4000 59.0000 3.4500
57.7843 42.1300 3.4500

c 80.4500 87.0000 3.5500
79.9500 85.7500 3.5000
78.8750 83.5000 3.4500
77.1000 80.0000 3.4500

r 81.7000 89.0000 4.0000
81.3250 88.2500 3.8000
78.8750 83.5000 3.4500
77.1000 80.0000 3.4500

l 82.5000 91.0000 3.9000
82.1250 89.5000 2.8950
80.9500 88.2500 3.6000
80.4500 87.0000 3.5500

r 82.6800 93.5000 4.7500
82.7050 92.0000 4.6500
82.4500 90.5000 4.4000
81.7000 89.0000 4.0000

l 82.6930 93.5000 5.9000
82.6937 92.0000 4.4750
82.7500 92.0000 4.5700
82.5000 91.0000 3.9000

r 82.7250 96.2500 7.9000
82.7125 96.0000 7.2500
82.6550 95.0000 4.8500
82.6800 93.5000 4.7500

l 82.7250 96.5000 8.7500
82.6837 95.7500 7.6250
82.6925 94.5000 6.8500
82.6930 93.5000 5.9000
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