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SUMMARY
In spite of a worldwide trend towards the use of outline fonts for displays and for printing
devices, they are still not very common in the east Asian countries where Chinese characters
are used. The reason for this is that the complex, structured shapes of Chinese characters take
a long time to design and develop.

Several systems have proposed automatic generation of outline fonts from the original
master fonts. These systems have the serious problem of quality degradation when rasterizing
the font at small point sizes, because they do not incorporate a hinting mechanism to adjust the
outlines under these circumstances.

In this paper, we present an experimental study on a hinting mechanism specially designed
for Chinese-style characters. We propose a scheme which automatically generates the hinted
outline data from the plain outline fonts.

We have implemented and experimented with four sets of Korean Myungjo (Ming) and
Gothic style fonts, and have obtained good results with respect to font quality and development
time.
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1 INTRODUCTION

For character processing on screen displays and on mid-resolution laser printers, the world-
wide trend is towards representing digital fonts as outline information for the characters.
These outlines are then processed to get on-the-fly bitmap fonts, in various sizes, at run-time.

In spite of much interest in outline fonts within those east Asian countries that use
Chinese characters, it is still the case that outlines are not commonly used, largely because
of the different characteristics of Chinese characters as compared to Latin ones. These
different characteristics can be summarized as follows.

First, there is a difference in the design process. Latin characters are designed by
drawing the outline with pen-type media and then filling the inside of the character. Chinese
characters use a different process whereby the trajectories of a character are made with a
weighted brush. In a Latin font, there are the mathematical regularities and symmetries.
Most of the components are composed with strict lines and strict arcs in the outline
description. In a Chinese font, however, there are few regularities because most of the
trajectories made by the brush consist of random curves. The main components of a
Chinese character are lines and curves (Figure 1).

CCC 0894–3982/93/020067–25 Received 31 December 1991
1993 by John Wiley & Sons, Ltd. Revised 22 June 1992

© 1998 by University of Nottingham.



68 SEUNG WOON PARK AND SEUNG RYOUL MAENG

Figure 1. Example of Latin and Chinese fonts

There is another difference, which relates to typographical control. Latin text requires
proportional spacing of characters with differing widths. Therefore the inter-character
balance is essential to Latin fonts and several reference lines such as baseline, x-height
and capsline are needed for the control of this balance. In Chinese characters, however,
the space between the characters is fixed and the balance of the character’s constituent
components becomes more important because a Chinese character has a large number of
strokes (the average number of strokes in a character is 15[1]). The quality of Chinese fonts
is mainly dependent on this inter-stroke balance.

The number of characters in a font is yet another difference. While a Latin font set
consists of no more than 300 characters, a Chinese font set has several thousand characters.
The standard encoding systems for Korean, Japanese and Chinese contain, respectively,
about 8000, 7000 and 13 000 characters[2].

Because of their structural characteristics, it is far more difficult to digitize and rasterize
Chinese fonts than Latin ones. During digitization, Chinese fonts require more storage
and longer development times than do the Latin fonts. Furthermore, the rasterization of the
digitizedChinese fonts takes more time because of the complex strokes. In the case of small-
size Chinese characters, the quality of the reproduced fonts can deteriorate remarkably.

In east Asian countries, there have been several attempts to overcome these prob-
lems. A reduction in storage can be effected by using outline descriptions and the META-
FONT technique [3–7]. Automatic curve fitting techniques make it possible to reduce de-
velopment times by generating outline data automatically from analog master fonts [8–11].
Hardware solutions such as font-accelerating ASIC chips can shorten the time required for
font generation at run-time [12–15].

The most serious issue in representing Chinese characters with outline fonts is the
quality degradation for small-size characters. For Latin characters, several researchers have
succeeded in improving font quality for the middle- and low-resolution devices [16–22].
Some of these techniques are commercially available, but many of them are proprietary
[23–27].

Ou and Ohno[28] proposed a hinting mechanism for Chinese fonts which generates a
larger bitmap than the desired size and then scales it down. Before making the enlarged
bitmap, the vertical and horizontal segments are extracted and strokes of a predefined width
are added to the final-size bitmap to regularize the stem widths. This can be regarded as
a basic hinting mechanism but it requires a lot of time to generate a bitmap of the desired
size. Moreover, the quality of the bitmap is not very good because the method only adjusts
to equal width those strokes that are strictly horizontal or vertical strokes and the detection
mechanism for these horizontal and vertical strokes is rather crude.

Despite the fact that a hinting mechanism is more necessary for Chinese fonts than
for Latin ones, only a few systems have succeeded in obtaining limited improvements for
Chinese characters, and none of these systems is commercially available. The first reason
for this is the lack of a satisfactory hinting solution for the structural characteristics of
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Chinese fonts when rendered on middle- and low-resolution devices. The second reason is
the large amount of labor-intensive and tedious manual operations required for generating
the hinting information from the outline fonts. Therefore, we need to devise an automated
methodology for generating hinted data from plain outline fonts.

Two papers have already been published about the automatic generation of hinting
information for Latin fonts. One of these is by Andler[29] and the other by Hersch[30]. The
main idea of Andler’s work is to detect stems, curve extrema and serifs in terms of Latin
typography. The generated character outline hinting information is then used for Hersch’s
rasterization scheme. The horizontal and vertical strokes can be detected by grouping a
pair of different winding directions among the horizontal and vertical segments. But this
method may fail to detect the stems in Chinese fonts because a Chinese character consists
of complex strokes, and it is hard to detect the near-horizontal and near-vertical strokes.

Hersch’s approach is more systematic. First, it defines a style-independent template
(model) for the outline description of each character,1 and then matches each of the points
in the given outline to the ones in the template. If the match is successful, the predefined
hinting information in the templates is then copied into the given real character outline. For
matching the character outline to the model, the coordinate space describing the approximate
location of the model character’s contours is divided into 5-by-6 sub-areas. Furthermore,
model outline segments lying between characteristic points (local extrema and junctions)
are marked by their direction. Such a model description allows the matching program to
match characteristic points of the model to points of the input character. Despite some good
results for Latin fonts, this method is still far from being suitable for Chinese fonts owing
to the following two problems. Firstly, it is hard to make templates for each one of several
thousand Chinese characters. A template cannot cover a set of similar typefaces because
the structure of Chinese characters is too complicated to be represented by a template.
Secondly, it is hard to match correctly the points in the outline descriptions of Chinese
fonts because the sub-areas with 5-by-6 divisions cannot handle complex structures such
as Chinese fonts. As a consequence, it is not suitable, for Chinese characters, to match the
points by using templates as there are many gaps between the modeled outline description
and the real outline description for each of the typefaces.

In this paper, we propose an efficient rasterization scheme including a hinting mecha-
nism suitable for Chinese fonts. Based on this scheme, we present an automated method-
ology for generating hinted outline fonts, which is the main theme of this paper.

The rest of the paper is made up as follows. In Section 2, we propose an intelligent ras-
terization scheme for Chinese characters. In Section 3, we explain the automatic procedure
for generating hinted outline fonts. In Section 4, we analyze and discuss the experimental
results. Finally, in Section 5, the conclusions are discussed and some suggestions are made
for further work.

2 INTELLIGENT FONT RASTERIZATION SCHEME

2.1 Problems in primitive font rasterization

The plain outline font is defined by a set of closed paths which consists of line and curve
segments. The primitive font rasterization algorithm simply scales the plain outline font at
a given size, draws the outline and fills the interior area of the strokes.

1 It can have several templates for one character.
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Even if the primitive rasterization algorithm reproduces the character with complete
mathematical precision, there are still difficulties in rasterizing small-size characters ( i.e.
smaller than 12 points at a resolution of 300 dpi). The algorithm regards the outline simply
as a graphical description and does not take into account the innate characteristics of the font
glyph. This leads to several anomalies and to a distortion of the original character shape, as
shown in Figure 2. Within each part of that figure the characters on the left are the originals,
the middle characters are drawn by the primitive font rasterizer and the ones on the right
are drawn by an intelligent rasterizer in which the font characteristics are considered. In
diagram (a), a staircase is generated whenever a stroke is nearly horizontal or vertical.
Rounding errors have caused strokes of similar width within the character to look different.
It is preferable to maintain uniform stroke widths, as in the right-hand example. Diagram
(b) shows that strokes having a width smaller than one pixel may actually disappear. Since
it is not desirable to exclude any stroke of a character, the width of a stroke must be at least
1 pixel. In diagram (c), strokes having similar or identical widths may, after rasterization,
become unequal. Those strokes perceived as having equal widths in the original drawing
must still have equal widths at small point sizes. In diagram (d), the stroke widths remain
equal but the stroke intervals do not. We require that equal stroke intervals should remain
equal after rasterization.

(a) Staircase (b) Stroke disappearance

(d) Irregular stroke intervals(c)  Different stroke widths

Figure 2. Anomalies of primitive font rasterization

2.2 Proposed solutions

The above anomalies are mainly caused by rounding errors in converting real values into
integer values, and also by the algorithm itself, which does not take into account the details
of the character shape. We use the term hint to cover various stratagems for dealing with the
problems mentioned in the previous section, with the aim of producing a character shape
that is close to the original. An outline font which includes hinting information is called
a hinted outline font, and a rasterizer which processes the hinting information in order to
avoid or prevent the above problems is called an intelligent rasterizer.

Several hinting techniques for Latin fonts have already been introduced and most of
these resolve into three possible methods[19]. One of these is to regularize the width of
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stems, i.e., vertical and horizontal strokes (Stem Hint), and another is to draw good-looking
arcs by getting rid of flat arcs and any isolated pixels at the extreme point of an arc (Arc
Hint). The third method involves adjustment of the various reference lines (Reference Line
Hint). While the stem hint is applicable to Chinese fonts, the arc hint and the reference
line hint are not suitable because Chinese fonts do not have strictly shaped arc strokes and
reference lines. Chinese fonts require a more sophisticated hinting mechanism than the
stem hint of Latin fonts if we are to solve the anomalies caused by the complex character
shapes.

The hintingmechanism we focus on in this paper is stem regularization in order to solve
the anomalies shown in (a) – (d). This mechanism maintains stroke widths and intervals
close to those of the original shape by regularizing the horizontal and vertical strokes.

2.3 Stem regularization hinting

2.3.1 Basic concept

The main components of Chinese fonts are the horizontal and vertical strokes. About 37%
of the components are horizontal strokes and 26% of them are vertical strokes. The average
number of horizontal and vertical strokes in a character is 6 and 5 respectively[1]. In
general, these horizontal and vertical strokes tend to have equal widths and intervals in a
font.

Let us begin by supposing that X1 and X2 are two original coordinate values, and SF
is the scaling factor. If the difference of these two values is less than half of 1/SF then the
integer value of the difference of the scaled coordinate values will become zero, as follows.

abs(X1 − X2) < (1/SF) ∗ 1/2,SF > 0

abs((X1 − X2) ∗ SF) < 1/2

Therefore,
integer(abs(X1 ∗ SF− X2 ∗ SF)) = 0

Here, integer(X) is the largest integer value less than or equal to X + 0.5 and abs(X) is the
absolute value of X.

Even if the integer difference becomes zero, the scaled integer coordinate values of X1

and X2 may still differ by one pixel, because of rounding error (and this error is sensitive
to the choice of the coordinates).

However, if a point is calculated relative to other points we can eliminate the coordinate-
sensitive round-off error, and the one-pixel difference can be avoided. A relative positioning
of each point can also maintain equal strokes and intervals, as explained later.

It is important to select the proper reference points (in this paper, we call them Base
Points) in order to control the coordinate-sensitive round-off error. Stem regularization
hinting maintains equal stroke widths and intervals by selecting and controlling the Base
Points properly and by using them to calculate other coordinate values in the form of a
relative offset.

Figure 3 shows a simple example. Let us begin by focusing on the X coordinate values.
If each point is calculated from the absolute values, then a difference of 1 pixel width can
occur as a result of coordinate-sensitive round-off error, even though the real difference of
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A = integer(15/10) = integer(1.5) = 2
B = integer(14/10) = integer(1.4) = 1
C = integer(44/10) = integer(4.4) = 4

B = integer(2+(14-15)/10)=integer(1.9)=2
C = integer(2+(44-15)/10)=integer(4.9)=5
D = integer(2+(46-15)/10)=integer(5.1)=5

A(15,70) D(46,70)

B(14,0) C(44,0) A = integer(15/10)           =integer(1.5)=2

(b) Scaled shape
Calculated from absolute position
(scaled down by 10 times, sf=0.1)

(c) Scaled shape
Calculated from relative position of A
(scaled down by 10 times, sf=0.1)

(a) Original shape

D = integer(46/10) = integer(4.6) = 5

A(2,7) D(5,7)

B(1,0) C(4,0)

A(2,7)

B(2,0)

D(5,7)

C(5,0)

Figure 3. Basic grid fitting mechanism

the two points is less than 0.5. To avoid this, we select a point such as A to be our Base
Point, and calculate the coordinate values of the other points as relative offsets from point
A.

2.3.2 Definition of points

To calculate the relative offset, all points in an outline font must be categorized by the
following attributes for X and Y coordinates.

1. Primary Base Point (denoted PBP)
2. Secondary Base Point (denoted SBP)
3. Relative Point of PBP (denoted RelPBP)
4. Relative Point of SBP (denoted RelSBP)
5. Isolated Point (IP) (denoted IP)

PBPs are the basic reference points for calculating the other points, which are then
worked out as follows (there must be one PBP per stroke).

If the attribute of ith point is PBP, then

X′i = ScaledCoord(Xi) = integer(Xi ∗ XSF)

Y′i = ScaledCoord(Yi) = integer(Yi ∗ YSF)

In the above equations, XSF and YSF are the scale factors of the X and Y coordinates.
Xn represents the original X coordinate value of the nth point in the outline description. X′n
and ScaledCoord(Xn) represent the scaled X coordinate values of the nth point. Similarly,
Yn, Y′n and ScaledCoord(Yn) are for Y coordinate values.

SBPs are the (optional) reference points for calculating stem widths and there must be
zero or one SBP per stem. The coordinate value of an SBP is always calculated from an
offset relative to some chosen PBP (which we shall call the ‘coupled’ PBP from now on).
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The calculation goes as follows:

If the ith point is chosen to be an SBP, then

Xi = ScaledCoord(Xi)
= ScaledCoord(PBP(Xi)) + integer((Xi − PBP(Xi)) ∗ XSF)

Yi = ScaledCoord(Yi)
= ScaledCoord(PBP(Yi)) + integer((Yi − PBP(Yi)) ∗ YSF)

In the above equations PBP(Xn) returns the X coordinate value of the coupled PBP
corresponding to the SBP denoted as Xn. These are the basic equations for calculating
scaled coordinate values for PBPs and SBPs but further details are given in the next
section.

RelPBPs are those points which have not been chosen as SBPs but which are still
calculated as an offset relative to some fixed PBP. For this reason the procedure for
calculating the scaled coordinate value of a RelPBP is the same as above, but with the
difference that multiple RelPBPs can exist for any chosen PBP.

If the ith point is to be a RelPBP, then

X′i = ScaledCoord(Xi)
= ScaledCoord(PBP(Xi)) + integer((Xi − PBP(Xi)) ∗ XSF)

Y′i = ScaledCoord(Yi)
= ScaledCoord(PBP(Yi)) + integer((Yi − PBP(Yi)) ∗ YSF)

Continuing with our categorization of the various types of point we now come to
RelSBPs which are those points calculated as an offset relative to some SBP. The procedure
for calculating the scaled coordinate value of a RelSBP is as follows, and, again, multiple
RelSBPs can be exist for any one SBP.

If the ith point is to be a RelSBP, then

X′i = ScaledCoord(Xi)
= ScaledCoord(SBP(Xi)) + integer((Xi − SBP(Xi)) ∗ XSF)

Y′i = ScaledCoord(Yi)
= ScaledCoord(SBP(Yi)) + integer((Yi − SBP(Yi)) ∗ YSF)

In the above SBP(Xi) returns the X coordinate value of the SBP that is coupled to a
particular RelSBP.

Finally, we come to points denoted as IP, i.e. independent points, which have relationship
with any other point, and which are calculated as follows.
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X′i = ScaledCoord(Xi) = integer(Xi ∗ XSF)

Y′i = ScaledCoord(Yi) = integer(Yi ∗ YSF)

All of the types of points that we have just described are gathered together in a basic
data structure called the Base Point Table (BPT). This exists for each stem regularization
of every character and it contains information about all the Base Points. In fact, there are
two kinds of BPT for each of X and Y coordinates: the Primary BPT contains information
for PBPs, while the Secondary BPT contains information for SBPs. Each row of the table
corresponds to one point and each point is given a unique numeric identifier (see Figure 4).

X Y

BPT X (PBP,SBP)

Y (PBP,SBP) (1,2),(5,6)

(3,10)

PBP
SBP

RelPBP
RelSBP

2
3

4

7

8 9

10
11

1�

6

5

12

2
3

4

7

8 9

10
11

1�

6

5

12
for X coordinate for Y coordinate

  Attr
RelPBP
RelPBP
PBP
RelPBP
RelPBP
RelPBP
RelSBP
RelSBP
RelSBP
SBP
RelSBP
RelSBP

Point
Id
1
2
3
4
5
6
7
8
9

10
11
12

Index
1
1
1
1
1
1
1
1
1
1
1
1

  Attr
PBP
SBP
RelSBP
RelPBP
PBP
SBP
RelSBP
RelPBP
RelPBP
RelSBP
RelSBP
RelPBP

Index
2
2
2
1
1
1
1
1
1
2
2
2

Figure 4. Examples of BPT and attribute of each point

2.3.3 Grid-fitting mechanism for base points

The scaled coordinate value for each type of point, calculated as shown in Section 2.3.2,
can remove the staircase anomaly shown in Figure 2(a). However, the problems of stroke
disappearance, unequal stroke width and irregular stroke intervals, shown in the remainder
of that figure, still remain. These, in turn, can be removed by a method of repositioning the
PBPs and SBPs, but a new data structure is required for this process.

The representative Stem Width Table (RSWT) is a table for calculating an SBP’s offset
value and it contains the representative width values of the vertical and horizontal strokes
occurring in a font. There exist two RSWTs for the two kinds of strokes and the stroke width
is calculated from the difference of the coordinate values of the SBP and its coupled PBP.
We regard widths below a given threshold value as having the same value. For example, if
the threshold value is 4 pixels and 8 horizontal stems exist in a font, and the stem widths
are 22, 24, 23, 23, 21, 35, 37 and 37 pixels respectively, then the horizontal RSWT contains
two elements of 23 and 37. Using this table an SBP is now calculated as follows.

Modified method for calculating an SBP

If the ith point is chosen to be an SBP, then
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X ′i = ScaledCoord(Xi) = {
StemWidth = Xi − PBP(Xi)

;; Calculate the original vertical stem width containing Xi.
ScaledStemWidth =

integer(NearestValue(Vertical RSWT, StemWidth) ∗ XSF)
;; Calculate the scaled stem width by finding the nearest value in RSWT.
;; NearestValue(T,V) returns a value, T, from RSWT
;; which is nearest to the value V.

if ScaledStemWidth = 0, then ScaledStemWidth = 1
;; if the scaled stem width is zero, it is corrected to be 1.

returns ScaledCoord(PBP (Xi)) + ScaledStemWidth
;; SBP has the relative offset (ScaledStemWidth) of PBP

}

The Y′i values are calculated by the same method as the X′is.

To avoid the total disappearance of the stroke, a stem width of 1 is returned whenever this
method delivers a zero-pixel stem width. In this way the problem of stroke disappearance
is eliminated. Furthermore, since all the stem widths are calculated from the RSWT, all the
strokes within a given threshold value have the same stem width. This, in turn, means that
the problem of differing stroke widths has also been solved (see Figure 5).

Figure 5. Examples of stem regularization

The final anomaly, that of irregular stroke intervals, can be removed by deliberately
regularizing the intervals between strokes. To do this, each PBP has to be calculated relative
to the differences between PBP coordinate values, rather than the absolute method shown
in the previous section. The detailed procedure for relocating PBPs can be illustrated, for
X coordinates, as follows.

Step 1. Suppose there are n PBPs. Sort them into ascending order of coordinate values.
Step 2. Calculate the scaled coordinate value of X1, the first PBP.

X′1 = integer(X1 ∗ XSF)

Step 3. Calculate the scaled coordinate value of the final PBP, Xn as a relative offset from
X1.

X′n = X′1 + integer((Xn − X1) ∗ XSF)

Step 4. Calculate the relative differences and error terms between successive PBPs.
For each i from 1 to n − 1 perform

1. DIFFi = integer((Xi+1 − Xi) ∗ XSF)
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Modified

X1   X2   X3   X4 X'1 X'2 X'3 X'4 X'1 X'2 X'3 X'4 X'1 X'2 X'3 X'4

Comment

77

12   34   55   81 1   3   6   8

22   21   26 2   3   2 2   2   3

1   3   5   8

2   2   3

1   3   5   8

69 777
m = 0, integer(Xn * XSF) = X'n

m = 1

m = -1

m = 0, integer(Xn * XSF) <> X'n

16   41   62   84
25   21   22

68

2   4   6   8
2   2   2

2   5   7   9
3   2   2

6

27   41   53   64

14   12   11
37

3   4   5   6

1   1   1
3

14   29   49   67

15   20   18

53

1   3   5   7

2   2   2

6

2   5   7   9
3   2   2

3   5   6   7

2   1   1
4

1   2   4   6

1   2   2

5
2   2   2

6

1   3   5   7

1   1   1
3

3   4   5   6

same as above

same as above

same as above

Difference of X1 and Xn

Scale factor = 0.1
X1 ~ X4 are
X coordinate values of PBPs

 Coordinate value lists 

Difference of neighbor points

Original value

Scaled value

Absolute
calculation

Relative
calculation

Figure 6. Examples of PBP relocation

2. ERRi = (Xi+1 − Xi) ∗ XSF−DIFFi

Step 5. Calculate the error term, m, to be compensated.

m = (X ′n − X ′1)−
∑

i=1n−1

DIFFi = integer
( ∑

i=1n−1

ERRi

)
where−n/2 < m ≤ n/2
If m is non-zero, distribute the error term as follows.

if m < 0, select the m PBPs with the lowest ERRi values,
and decrease the corresponding DIFFi values by one.
if m > 0, select the m PBPs with the largest ERRi values,
and increase the corresponding DIFFi values by one.

Step 6. For each PBP, calculate the scaled coordinate value by accumulating the relative
offset values as follows.

for i = 2 to n − 1

X′i = X′i−1 + DIFFi

The Y coordinates for the PBPs are calculated by the same method.
Another new data structure called the OLPBP (Ordered List of Primary Base Points)

helps in implementing the above methods. There exist two OLPBPs, for X coordinates and
Y coordinates respectively Each of these lists is sorted by coordinate value and the existence
of the two lists allows us to skip step 1 in the algorithm given above. Several examples for
relocating PBPs are shown in Figure 6.

We are now in a position to summarize the entire point relocation procedure as follows:

Stage 1. Relocate the PBPs using OLPBP.
This regularizes the intervals between strokes.
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Stage 2. Relocate the SBPs using the RSWT.
This regularizes the stroke widths It also eliminates stroke disappearance

Stage 3. Calculate other types of points, such as RelPBPs and RelSBPs as relative offsets
using BPT.
This last procedure eliminates abnormal ‘staircase’ effects

Each point on a character outline is recalculated as a grid-fitted point, in a postprocessing
phase, using the methods we have described. The outline is then drawn with the grid-fitted
points and the interior pixels are filled during the scan conversion phase. Since the stem
regularization hinting is performed in a postprocessing phase, there are several efficient
algorithms which can be adopted in earlier phases. In this paper, for example, we use the
adaptive forward-difference algorithm of [21] for the Bézier curve drawing, together with
an enhanced inside-fill algorithm which is based on the edge-flag algorithm of [31].

The hinting information explained previously is essential to our intelligent rasterizer,
but it is hard to generate the data manually, and takes too much time, especially for Chinese
fonts. In the next section we show how to automate the generation of hinting information.

3 AUTOMATIC GENERATION OF A HINTED OUTLINE FONT

3.1 Introduction

To construct hinted outline fonts with our intelligent rasterizer, the horizontal and vertical
strokes must be extracted from the plain outline fonts. Chinese characters are generally
composed with complex forms intersecting each other but, because the plain outline fonts
do not contain any information about stroke structure, it is hard to detect near-horizontal
and near-vertical components in these characters.

We shall now propose a scheme for detecting horizontal and vertical strokes by decom-
posing the outline font into several basic strokes. Once the horizontal and vertical strokes
have been correctly identified the required information for our stem regularization hinting
can be generated automatically.

The source material for our scheme is a set of plain outline fonts as explained in Section
2. The plain outline fonts must satisfy the following conditions.

1. There must be no intersection points within a single path, i.e., it must be a single
contour.

2. Paths must not intersect each other.
3. The right part of the winding direction of a path must be the inside of the character.

The basic stroke extracted from a plain outline character can be regarded as the trajectory
made by a single movement of a brush.

3.2 Automatic decomposition of a plain outline font

We shall use the term visible segments for all line segments and curve segments that are part
of an outline. We assume also that there are hidden segments which are inside an outline.
A hidden segment is generated by connecting the end points of two visible segments and



78 SEUNG WOON PARK AND SEUNG RYOUL MAENG

there exist many such hidden segments in an outline. The particular hidden segment which
is used to decompose an outline is called the cut segment.

The process of outline decomposition consists of finding the cut segments among the
various candidate hidden segments and then generating the connected components from a
subset of visible segments and cut segments. The scheme for decomposing a plain outline
font into its basic strokes is organized as two procedures. A global decomposition procedure
is carried out first, followed by a local decomposition procedure.

The global decomposition procedure detects the strictly decomposable strokes and
proceeds to decompose them. A strictly decomposable stroke has at least one hidden
segment but there will also be some visible segments connected to it which can be regarded
as straight lines within some given threshold value for stroke linearity. Most of the strokes
in a given outline are decomposed into basic strokes using this procedure; the intersecting
and branching strokes of Figure 7 are examples of strictly decomposable strokes. Any
strokes which are not decomposed in this procedure are called compound strokes and these
can be analyzed using the local decomposition procedure.

Visible segment
Cut segment

Global
decomposition

Intersecting stroke Branching stroke

Local
decomposition

Figure 7. Examples of global and local decomposition

The idea of the local decomposition procedure is to detect those cut segments which
are not part of a strictly decomposable stroke but which are nevertheless needed for
decomposing a compound stroke into a basic stroke. The reason for separating the procedure
into these two steps is that the approach for selecting the cut segment is different in the two
cases. Figure 7 shows an example of global and local decomposition.

3.2.1 Global decomposition

The global decomposition procedure consists of five steps. Up to step 3, it tries to detect
points of intersection and branching points. In the later steps the outline is decomposed into
smaller outlines, each of which is a basic stroke or a compound stroke.

Step 1. Find the serif segments

A serif, as explained here, means the component located as the final part of a Chinese stroke
with the following characteristics.

1. It generally consists of curve segments and the sum of the segment lengths does not
exceed a given threshold value.2

2 This threshold value is different for each typeface. For example, it is 80 units for the Myungjo typeface in a
512×512 mesh size.
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2. In the case of curve segments, the angle of the tangent vector at both end points of a
curve segment is less than 90◦.

3. In the case of line segments, any two successive segments make an angle of less than
90◦.

The segments satisfying the above conditions are joined as a path. An example of a
serif is shown in Figure 8.

Serif

Cut point

Figure 8. Examples of serif and cut point

Step 2. Find the cut points

A cut point as defined here is the joining point of two connected basic strokes or two
intersecting basic strokes in a character (Figure 8). The candidates for cut points are any
two successive segments for which the angle of intersection is greater than 180◦. All points
satisfying the above conditions are joined into a path.

Step 3. Select two cut points

In this step we identify a pair of cut points which meet all of the conditions show below.
This pair of points will be used later for decomposing a character into its constituent strokes.
(We assume that at least two such cut points will exist for each character, resulting from
two connected strokes or two intersecting strokes.)

Let us define the two desired cut points as CPi and CPj. CPi is called as Start Cut Point
(SCP) and CPj as End Cut Point (ECP). The pair of SCP and ECP is expressed as (SCP,
ECP) and defines the cut segment.

Condition 1. CPi and CPj must not be points on the same segment.
Condition 2. CPi and CPj must not be points on the same serif stroke.
Condition 3. The distance between the CPi and CPj must be less than some given threshold

value which is typeface-dependent.3

Condition 4. The tangent vectors of the two segments containing CPi and CPj must be
parallel to one another. The angle between any two such tangent vectors should be
less than some given threshold value.4

Condition 5. The line CPiCPj must not contain any other segment point on the contour of
the character.

3 80 units for Myungjo, 120 units for Bold Myungjo, 90 units for Gothic, 130 units for Bold Gothic.
4 20◦ for the above typefaces.
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Condition 6. The line CPiCPj must lie totally inside the boundary of the character. 5

Condition 7. Suppose there is a second candidate, (CPk,CPj), for being the cut segment,
where CPj is already marked as ECP and the distance of CPiCPj is less than the
distance of CPkCPj and the tangent vector angle of (CPi,CPj) is less than the an-
gle of (CPk,CPj). Under these conditions (CPi,CPj) would be chosen as the cut
segment.

Condition 8. If CPi is already marked as SCP, then any candidate cut segment, (CPi,CPj),
is to be compared with the previously chosen ‘best’ cut segment using the criteria
laid down in condition 7.

The two cut points which satisfy the above conditions are entered into the cut segment
list. The nature of each condition is illustrated in Figure 9.

CPj

Segment n

SerifCPi

CPi

CPj CPj

CPi
CPi

CPj

Cond. 2 Cond. 3 Cond. 4

CPi CPj

CPi CPj

CPi(SCP) CPj(ECP) CPi(SCP) CPj(ECP)

CPk(ECP)

Cond. 1

Cond. 5 Cond. 6 Cond. 7 Cond. 8(CPi,CPj) is selected (CPi,CPj) is selected

CPk(SCP)

Threshold value

Figure 9. Example of conditions for identifying a cut segment during global decomposition. The
symbol O denotes a satisfied condition and X an unsatisfied condition

Step 4. Duplicate the cut segment

If two cut points, CPi and CPj, appear only once in the cut segment list, then create a new
cut segment whose SCP and ECP are CPj, CPi respectively. Cut points on intersecting
strokes will already have been registered twice using the algorithm in step 3, so these must
not be duplicated. Only the cut points on the branching strokes need to be duplicated.

Step 5. Decompose outline

In this step we decompose the plain outline character using the chosen cut segments. The
decomposed outlines will also be plain outline characters. The overall procedure is as
follows.

unmark all Segments.
while (each Segment is marked) {

Choose an unmarked segment as Start Segment.
Set Start Segment to Current Segment and mark it.

5 This can be verified by scan converting a sufficiently big outline.
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do {
if the last point of the Current Segment is the SCP of cut segment, CS, which is unmarked.

Set cut segment CS as Current Segment.
else

Set next segment of Current Segment as Current Segment.
Mark Current Segment.

} while (Current Segment is not Start Segment)
Note down the newly marked segments as new outline
}

In this procedure, the newly acquired outlines are either basic strokes or compound
strokes (which consist of several basic strokes). The compound strokes can then be decom-
posed more precisely in the local decomposition step as described in the next subsection.

3.2.2 Local decomposition

The steps of the local decomposition procedure are similar to those for global decomposi-
tion. The procedure for decomposing compound strokes into basic strokes is to select one
candidate for a cut point and to identify a hidden segment which includes this cut point
and satisfies the conditions given below. (In global decomposition, both end points of the
selected hidden segment are always cut points.)

To separate the connected strokes, repeat the following steps for each outline that has
already been identified by the global decomposition procedure.

Step 1. Find cut point

Recalculate the cut points using the procedure described in step 2 of the global decompo-
sition method.

Step 2. Select cut segment

This step is similar to step 3 of the global decomposition procedure, but the conditions
are different. As only one cut point (CPi) exists on the connected strokes for making a cut
segment, it is necessary to select some other candidate point, Pj, arbitrarily from among
the other points on the outline.
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Condition 1. CPi and Pj must not be points on the same segment.
Condition 2. The absolute value of the angle subtended by two segments including Pj

should be greater than some given threshold value,6 i.e., two segments must not
form a single straight line.

Condition 3. The distance between CPi and Pj must be less than a given threshold value.7

For every CPi in each of the decomposed outlines, step 2 finds all points Pj which
satisfy the above conditions. The pair (CPi, Pj) whose length is the shortest is entered into
the cut segment list as (SCP, ECP). If there are no more candidate pairs to be considered,
the decomposition process for that outline is complete.

Each of the conditions set out above is illustrated in Figure 10.

Cond. 1 Cond. 2 Cond. 3

Segment n

CPi CPi

Pj

Pj

Pj

CPi CPi

Pj Pj

CPi
CPi

Pj
Pk

Pl

(CPi,Pj) is selected

Candidates
     (CPi,Pj)
     (CPi,Pk)
     (CPi,Pl)

Threshold value

Figure 10. Example of conditions for cut segments in local decomposition

Step 3. Duplicate the cut segment

If the two points of a chosen cut segment are CPi and CPj, then enter an additional cut
segment in the cut segment list whose SCP and ECP are CPj and CPi respectively.

Step 4. Decompose the outline

An outline is decomposed into two basic strokes using the same procedure employed in
step 5 of the global decomposition. If the total length of the decomposed stroke is less
than a given threshold value, that outline is not decomposed any further. Each decomposed
stroke is regarded as a new outline and steps 1 to 4 of this section are repeated.

Figure 11 shows the decomposed basic strokes of a sample Chinese character. In this
example, the sample outline is decomposed into 33 basic strokes.

3.3 Detection of vertical and horizontal strokes

The main operation for stem regularization hinting involves recognizing horizontal and
vertical strokes (and those that are nearly horizontal or vertical) and locating a PBP and
SBP for them (see Section 2.3). The horizontal and the vertical strokes are identified from

6 10◦ for Myungjo, Bold Myungjo, Gothic and Bold Gothic.
7 60 units for Myungjo, 120 units for Bold Myungjo, 90 units for Gothic, 130 units for Bold Gothic.



STRUCTURE EXTRACTION AND AUTOMATIC HINTING OF CHINESE OUTLINE CHARACTERS 83

Original outline Decomposed strokes

Figure 11. Example of outline decomposition

the decomposed basic strokes using methods described below. Since stem regularization
involves the equalization of certain stroke widths it follows that we need at least two
strokes, of a given type, before we can apply the method. We begin with the conditions for
recognizing vertical strokes.

Condition 1. There character must have at least two segments each of which is parallel
to the y axis and which lie in the opposite direction to each other as the character is
traversed.

Condition 2. The horizontal distance8 between the segments in a pair is less than a maxi-
mum threshold value and greater than some minimum threshold value.9

If a basic stroke is identified as a vertical stroke, a pair of points which has the smallest
horizontal displacement from each other is selected as the PBP and SBP. For convenience
we select the point with the larger X coordinate value as the PBP.

The method for identifying a horizontal stroke is similar to the above:

Condition 1. There must be at least two segments each of which is parallel to the x axis
and which lie in opposite directions to each other as the character is traversed.

Condition 2. The vertical distance between the two segments in a pair must be less than a
maximum threshold value and greater than some minimum threshold value.10

If a basic stroke is identified as a horizontal stroke, a pair of points which has the shortest
vertical displacement from each other is selected as the PBP and SBP. For convenience, we
select the point which has the larger Y coordinate value as the PBP.

In addition to the strict vertical and horizontal strokes there are other strokes which
feature in the stem regularization hinting as shown in Figure 12. These slightly slanted
strokes are called semi-vertical and semi-horizontal respectively. They are classified as
follows.

(a) Semi-vertical stroke
8 The horizontal distance is the difference of x coordinate values.
9 Maximum threshold values are 60 units for Myungjo, 120 units for Bold Myungjo, 80 units for Gothic and 120

units for Bold Gothic. The minimum threshold value is 20 units for each typeface.
10 Maximum threshold values are 50 units for Myungjo, 80 units for Bold Myungjo, Gothic and Bold Gothic.

Minimum threshold values are 10 units for Myungjo and Bold Myungjo, 20 units for Gothic and Bold Gothic.
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(a-1) (a-2) (b-1) (b-2)

(a) Semi-vertical strokes (b) Semi-horizontal strokes

Figure 12. Examples of semi-vertical strokes and semi-horizontal strokes

1. The stroke branching from a strict horizontal stroke (a-1 in Figure 12)
2. The stroke intersecting with a strict horizontal stroke (a-2 in Figure 12)

(b) Semi-horizontal stroke

1. The stroke branching from a strict vertical stroke (b-1 in Figure 12)
2. The stroke intersecting with the strict vertical stroke (b-2 in Figure 12)

The PBP and SBP for these strokes are the points which branch from, or intersect with,
a strict horizontal or vertical stroke (see Figure 12).

3.4 Attribute assignment to points

Once the horizontal and vertical strokes have been identified, the decomposed strokes need
to be classified and an attribute assigned to each point. The X and Y coordinates of each
point are tagged with an attribute to denote whether it is a PBP, SBP etc. (see Section 2.3).
The attribute assignment for the X coordinate of each point is performed as follows.

Case 1. Vertical stroke containing PBP and SBP.
For each X coordinate on this stroke, an attribute of RelPBP or RelSBP is assigned.
if the X coordinate value of a point is close to the PBP X value,

the point is assigned an attribute of RelPBP in the X-coordinate part of the Primary
Base Point table.

if the X-value of a point is close to that of an SBP,
it is assigned an attribute of RelSBP in the table.

Case 2. Non-vertical stroke with no PBP.
(a) if the stroke does not contain any cut segment,

an arbitrary point is selected as PBP for the X coordinate
and the other points are assigned as RelPBPs with respect to that point.

(b) if the stroke contains a cut segment,
(a-1) if there is a corresponding stroke

which has the same hidden segment and also has a PBP and SBP,
assign attributes as in case 1.

(a-2) else
assign attributes as in case 2(a).
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The attributes for Y coordinates are assigned using similar methods. The procedure is
repeated until the attributes of all points are determined.

As a final step, all the generated information is stored in the data structures of BPT,
RSWT and OLPBP (defined in Sections 2.3.2 and 2.3.3) Examples of these tables are
shown in Figure 13.
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Figure 13. Example of attribute assignment

We have now completed the description of our methods for detecting horizontal and
vertical strokes within complex structured outline fonts of Chinese characters. We have
introduced the idea of decomposing each character into its basic strokes. Most of the vertical
and horizontal strokes (including semi-horizontal and semi-vertical strokes) are correctly
detected by this scheme. The next section presents some further results and analyses.

4 IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.1 Overview of implementation

Our automatic hinting system is the fourth module of an Outline Font Production System
(OFPS), which has been developed by Human Computers, Inc. The OFPS consists of a
Scanning Station, an Automatic Curve Fitting Station, an Outline Inspection Station, an
Automatic Hinting Station and a Hinting Inspection Station.

The Scanning Station scans in the original fonts, drawn on paper, and stores them
as bitmaps after filtering out any noise. The Automatic Curve Fitting Station is a batch-
processing module which extracts the outlines as lines and 3-D Bézier segments from the
bitmap characters. The Outline Inspection Station is an interactive outline font editor with
which a font designer inspects and modifies the outline fonts generated by the Automatic
Curve Fitting Station. The Automatic Hinting Station is implemented according to the
scheme set out in this paper. Finally, the Hinting Inspection Station is also an interactive
editor with which a font designer inspects and modifies the hinted outline fonts generated
by the Automatic Hinting Station. The fonts produced by OFPS are used in commercially
available Korean laser beam printers.
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The simulator for our intelligent rasterizer is implemented in the C language on a 486
PC, and the results from performance analysis are shown in Sections 4.3 and 4.4. The
kernel of our rasterizer is embedded in the laser beam printer described above.

4.2 Results of hinting

We show some of our rasterizing results in the Appendix. The upper row in each pair
of rows is generated by the primitive rasterizer and the lower row is generated by our
intelligent rasterizer using the hinting information. The sample fonts are selected from
representative Chinese characters, and the hinted outline font is directly generated by the
Automatic Hinting Station with no further retouching at the Hinting Inspection Station.

4.3 Storage overhead analysis

In this section, we analyze the additional storage overhead for the hinting information
needed for stem regularization hinting. The results of analyzing four sets of Chinese
characters are shown in Table 1. Each font set contains 4888 Chinese characters.

The average size of the plain outline fonts is 393.0 bytes and that of the hinted outline
font is 504.1 bytes. The extra 28.3% space required for storing the hinting information is
not excessive compared to the total size of an outline font.

Table 1. Additional storage overhead for hinted outline fonts

49.3
30.7

5.1
4.4

450.8 bytes

569.8 bytes

26.4 %

Number of
line segments
curve segments

Number of
vertical strokes
horizontal strokes

Non hinted data size

Hinted data size

Additional
storage overhead

Myungjo Gothic

42.1
20.1

5.5
4.8

337.1 bytes

440.8 bytes

30.8 %

Bold Myungjo

43.0
34.2

5.5
4.6

453.5 bytes

571.3 bytes

26.0 %

Bold Gothic

40.8
20.0

5.6
4.9

330.6 bytes

434.3 bytes

31.3 %

4.4 Run-time overhead analysis

The additional time for generating the bitmap from a hinted outline font, using our intelligent
rasterizer, is shown in Table 2. The generation time was measured on a 486 PC system and
is the average elapsed time for generating one Chinese character of the Myungjo typeface.
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Table 2. Additional run-time overhead for hinted outline fonts

Scaling

Filling

Total

Scaling

Filling

Total

Additional Overhead

Outline DrawingHinted
fonts

Non
hinted
fonts

Outline Drawing

256x256

1.37

88.12

17.97

107.46

2.43

87.88

17.90

108.21

0.75

(1.3)

(82.0)

(16.7)

(100)

(2.3)

(81.2)

(16.5)

(100)

(0.7)

16x16

1.38

14.16

0.09

15.63

2.43

14.46

0.09

16.98

1.35

(8.8)

(90.6)

(0.6)

(100)

(14.3)

(85.2)

(0.5)

(100)

(8.6)

24x24

(7.8)

(91.2)

(1.0)

(100)

(12.8)

(86.2)

(1.0)

(100)

(7.2)

1.38

16.16

0.18

17.72

2.43

16.38

0.18

18.99

1.27

32x32

1.38

18.64

0.31

20.33

2.44

18.64

0.31

21.39

1.06

(6.8)

(91.7)

(1.5)

(100)

(11.4)

(87.2)

(1.4)

(100)

(5.2)

40x40

1.38

20.90

0.47

22.75

2.43

20.80

0.47

23.71

1.14

(6.0)

(91.9)

(2.1)

(100)

(10.3)

(87.7)

(2.0)

(100)

(4.2)

48x48

1.38

23.24

0.67

25.29

2.43

23.24

0.67

26.34

1.05

(5.4)

(91.9)

(2.7)

(100)

(9.2)

(88.2)

(2.5)

(100)

(4.1)

128x128

1.38

47.70

4.57

53.65

2.45

47.64

4.54

54.63

0.98

(2.6)

(88.9)

(8.5)

(100)

(4.5)

(87.2)

(8.3)

(100)

(0.8)

Units : milliseconds.

Figures in parentheses are percentages of the total time.

As shown in the table, stem regularization hinting is an efficient scheme with low over-
heads. For the example of a 32×32 bitmap, the additional overhead for stem regularization
hinting is 5.2% of total time, which is minor compared to the total processing time.

5 CONCLUSIONS AND FURTHER STUDY

The quality of a font generated mathematically, from an outline description, cannot initially
be expected to be better than bitmap fonts carefully designed for a specific size. Various
researchers have been trying to enhance the quality of automatically generated characters
to match that of hand-edited bitmaps. Good results have already been obtained for Latin
fonts but Chinese fonts require a different hinting mechanism and a different automated
methodology owing to the complexity of the fonts and the large number of characters for
each typeface.

In this paper we have proposed and implemented an intelligent rasterization scheme,
with an efficient hinting mechanism, and automation scheme for generating hinted outline
characters for the rasterizer. Our rasterization scheme can be summarized as ‘width and
interval control for stems’, and this seriously influences the quality of Chinese characters
at small sizes. To solve this, we devised an automatic detection mechanism for horizontal
and vertical strokes by decomposing the plain outline characters into several basic strokes.
The quality of the fonts generated by our scheme is satisfactory; the additional overheads
for storage and time are reasonable and entirely satisfactory for use in a practical system.

Research on enhancing the quality of Chinese fonts is only just beginning and we can
expect further improvements. For example, we are attempting to minimize the storage
requirements for a set of characters by sharing any duplicated strokes in a typeface. Our
existing results for automatic decomposition of outline fonts is a starting point for this
new work and the enhanced automatic decomposition will be based on a structural glyph
analysis of Chinese characters.
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APPENDIX

Figure 14. 12× 12 bitmaps enlarged

Figure 15. 16×16 bitmaps enlarged
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Figure 16. 20× 20 bitmaps enlarged

Figure 17. 24× 24 bitmaps enlarged
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Figure 18. 32× 32 bitmaps enlarged

Figure 19. 40× 40 bitmaps enlarged
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