ELECTRONIC PUBLISHING, VOL. 5(3), 143-155 (SEPTEMBER 1992)

Granularity in structured documents

FRANS C. HEEMAN 1

Department of Mathematics and Computer Science
Vrije Universiteit

De Boelelaan 1081

1081 HV Amsterdam

The Netherlands

SUMMARY

Structured documents have become a widely accepted concept for document manipulation
applicationslike editing, for matting, and ar chiving. However, some aspectsof structured docu-
ments are still not well under stood. I n particular, the transition in structured documentsfrom
logical structureto contents, isa grey area in which different systemsuse different inter preta-
tions.

In thisarticle, we discussthis granularity aspect of structured documents. We focus on the
under lying conceptsof structured documentswithout referring to any application, so that this
discussion iskept clear from aspectsthat are not related to structured documents.

KEY WORDS Structured documents Granularity Genericlogica structure Grif ODA SGML

1 INTRODUCTION

In the definition of structured documents, a document is not just a sequence of characters.
Rather, a document consists of a structure and of contents. The structure of a document is
defined by dividing adocument into parts: thisdivisioninto partsand there ations between
the parts reflect the logical structure of the document. At the lowest level of this structure,
the actua contents are to be found. For example, the paper you are now reading can be
divided into atitle, the author’s name and &ffiliation, an abstract and five sections. Each
section can be divided into a section title and a number of paragraphs. A paragraph may
contain actual contents, such as the text of this paragraph.

Sincethelogica structureisbased onthe‘meaning’ of the parts of adocument, thereis
no single, unique, logical structurefor agiven document. M ost people agree on the concept
of alogical structure, though different people may define a different logical structure for
one and the same document. For the most part these different approaches do not giverise
to problems. However, as we approach the vague transition from logical structureto actual
contents, these differences giveriseto different interpretations of the concepts of structure
and content.

In Sections2 and 3, we giveaquick overview of the (usua) terminol ogy involved when
discussing structure and contents. More extensive introductions can be found in [1,2,3].
In a way, Section 2, on logica structure, presents a top-down approach of structured

1 Present address: Centre of Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands.

CCC 0894-3982/92/030143-13 Received 20 September 1990
01992 by John Wiley & Sons, Ltd. Revised 5 June 1992

© 1998 by University of Nottingham.



144 FRANS C. HEEMAN

documents, whereas Section 3, on contents, presents a bottom-up approach. These two
approaches should meet somewhereinthemiddle, but thisis precisely where the problems
arise. These problems are discussed in Section 4, using examples from three existing
systemsthat handl e structured documents: Grif [4], ODA [5,6], and SGML [7,8]. Section5
summarizes the results.

2 LOGICAL STRUCTURE

Wefirst givetheterminology related tothelogical structure, and summarizethisinFigure 1.
Readers familiar with the concept of structured documents may want to glance over the
figure and skip therest of this section.

primary structure:  ‘consists-of’ relations article
logical denoted by —
structure front body-—--. back
secondary structure: attributes
denoted by itext! section section
floats
denoted by -~ title pars ;
references figure
denoted by par pe‘lr A
figref. o

Figurel. A schematic overview of the terminology on logical structure used in this article. On the

left, the terminology on logical structureis listed, together with a legend for the tree-figure on the

right. This tree shows an example document. A Document Type Definition, or DTD, is a generic
description of a class of documents

As stated in the introduction, a document is defined to consist of alogical structure
and of contents. The structure of a document is defined by dividing a document into parts,
subdividing these parts, etc. Each part in this structure defines a part of a document that
has some specific meaning. From now on, we define the parts as objects that have a type
[9]. For example, if part of a document is to represent a chapter consisting of an ordered
sequence of achapter titleand one or more paragraphs, we have an object of type ‘ chapter’
(or ssimply an object ‘ chapter’) that may have objects of type‘ chaptertitle’ and ‘ paragraph’
as descendants. When an object istheroot of the structure, its type represents the type of
the entiredocument, i.e. the document type. Exampl es of document types might be‘ article’,
‘memo’, or ‘manual’.

Uptothispoint, wehaveonly talked about specific documentsand their logical structure.
However, the logica structure of similar documents can be described in a generic way.
Consider ajourna that contains severa articles. One article may have three chapters and
another article may have five chapters, but in genera all articles contain a sequence of
one or more chapters. The generic structure of these articles can be defined by a title,
followed by a sequence of one or more author names, followed by an abstract, followed by
asequence of one or more chapters, etc. It can besaid that al articlesinajourna fall inthe
same class of documents, or alternatively, that they are of the same type. Thus, a generic
structure describes atype of document. We cdll thisstructure the document type definition,
or DTD. A DTD containsdefinitions of objectsand adocument containsinstances of these



GRANULARITY IN STRUCTURED DOCUMENTS 145

objects. A useful analogy for a DTD is the definition of a programming language: in the
same way that programs are written in some syntax defined by a grammar, documents are
to conform to the definition given by aDTD. In thisanalogy, a document type (e.g. article,
memo) corresponds to a specific programming language (e.g. Pascal, C). Thisanalogy can
be extended even further, by comparing software engineering with document engineering
[10].

The availability of a generic structure together with documents that conform to this
structure offersanew way for devising applicationsfor documents. An example is format-
ting. Itisno longer necessary toincludein each document all kindsof formatting directives,
since these can be defined once for the generic structure. For instance, if some part of a
document is indicated as being the title, the generic structure may contain directives to
typeset this part in Times Roman Bold, pointsize 14. Using the generic structure, ageneric
layout can be constructed that defines the layout for al documents conforming to that
generic structure. Another application area is databases. To store the title and authors of
all articles into a database, an application can be devised that scans the articles for the
necessary fields and deposits their contents into that database. Using the generic structure,
an application has knowledge of where it can find some specific kind of informationin a
document.

A model similar to the model of structured documents is that of nested environments.
Anenvironmentisalogical part of adocument, likeasection or quotation, that can befredy
nested within some other environment, i.e. the hierarchy isnot restricted by agrammar. This
model originates from Scribe [11], and is currently used by the well-known IATEX system
[12]. Although IATEX is often referred to as supporting structured documents, this is not
the case, because it does not enforce ageneric or logica structure.

Within the logica structure, two kinds of structure can be distinguished: the primary
and secondary structure. The primary structure of a document consists of the relationships
used to describe the logical structure of a document, such as ‘ consists-of . The secondary
structure defines additional supporting rel ationships, such as ‘refers-to’. The followingtwo
subsections describe these structures.

2.1 Primary structure

The most common primary structureisahierarchy: adocument isdivided into parts, which
are subdivided, etc. The relations between the parts denote that one part consists of other
parts. An dternative, more general, primary structure is that of a directed acyclic graph
(DAG), in which parts can be shared.

The primary structure can be homogeneous (all parts use the same relationships) or
heterogeneous (different parts use different relationships). For example, if amathematical
formula is described using a tree-structure and a table is described using some matrix
structure, then documents containing formulae and tables have a heterogeneous primary
structure.

In general, the following constructs are offered to define the primary structure of a
document:
sequence: an ordered sequence of objects, possibly of different type; .
aggregate: an unordered sequence of objects, possibly of different types; the precise order

of the objectsin a document is not determined by the DTD, any permutation of these
objectsin adocument is correct;



146

FRANS C. HEEMAN

list: an ordered sequence of 0, 1 or more objects of the same type;
choice: one object whose type may be any of agiven list of types;
combinations: the above constructs may be combined, for example a choice of two lists.

2.2 Secondary structure

In addition to the primary structure, a secondary structure can be defined. This contains
relationshipsthat cannot be expressed within the primary structure. An exampleisacross-
reference from one part in the primary structure to another, which defines the relation
‘refers-to’ between these parts, in addition to the relation ‘ consists-of’ that is defined by
the primary structure. The secondary structure is mainly defined using three constructs:
attributes, floating objects and references to objects:

attributes. Attributes are used to denote semantic information that is not provided by

the primary structure. Examples are the status of a document (draft or final), or the
languageitiswrittenin (French or English). The use of these attributesis not defined,

they merely offer extrafacilitiesthat can be used if so desired.
Attributes have a type and some common types are ‘ numeric’, ‘textual’ and ‘enu-

meration’. The DTD specifies which attribute(s) are defined for an object and what
values are alowed. A specific valueis defined in a document. Thisvalue may bein-
herited from another object, or specified relativeto the value of some other attribute.
Furthermore, systems may define that a value is required, optional, defaultable,
assumed to be supplied by the application, etc.

floating objects. A floating object is an object for which the DTD does not determine

the exact position in a document. The object is alowed to appear at a more or less

arbitrary placein part or al of the document. . ) o
As an example, SGML defines a construct called an inclusion. The definition of

an object in a DTD can have zero or more included objects associated with it. The
definition of such an included object appears somewhere else in the DTD and is
similar to that of regular objects. Zero or more different instances of an included
object may appear anywhere within the subtree that is an instance of the object
at which the included object was declared. Thus, in SGML, instances of included
objectsare contained intheprimary structure. Asan example, consider thefollowing:

<l ELEMENT chapter (title, paragraph*) +(figure) >

This defines an object called ‘chapt er’ asbeinga‘ti t| e’ followed by zero or
more (indicated by ‘*’) instances of the object ‘par agr aph’. This ‘chapt er’
object defines an inclusion (‘+(fi gure)’) which means that anywhere in the
subtreestarting at object ‘chapt er ’, zero or moreinstances of theobject ‘f i gur e’

magGappear . . . . . . . . .

ML aso defines exclusions. this are the opposite of inclusions, i.e. certain
objectsare not allowed to appear in some part of the document. The use of inclusions
and exclusionsis further restricted because of ambiguities that may arise (see[13]).



GRANULARITY IN STRUCTURED DOCUMENTS 147

references. A fina construct is that of a reference to a specific instance of an object.
References may be defined among objects within one document, or they may be
defined among objects in multiple documents. References can be used to define

hy[)ertext documents [9]. ) -
n Grif, areference isaseparate construct that refers to an instance of one specific

type of object. For example, when a DTD defines an object ‘Figure', it may define
‘RefFig = REFERENCE(Figure)’ to refer to an object of type ‘Figure . Using the

type‘ ANY’, references to any type of object are possible. )
In SGML and ODA, references are defined asaspecial kind of attribute. In SGML,

an attribute of the predefined type ‘1D’ must have some unique value. The value of
an attribute of the predefined type ‘' IDREF must correspond to exactly one value
of an ID-attribute. With this mechanism, one can refer to the object for which this
| D-attribute was defined. For example:

<! ELEMENT figure ... >
<I ATTLI ST figure nane |D #REQU RED >

<! ELEMENT figref ... >
<I ATTLI ST figref refto | DREF #REQU RED >

The above DTD defines an object ‘fi gur e’ that has an attribute ‘nane’: this
attributeisrequired to have some uniquevalue. Theobject ‘f i gr ef * hasan attribute
‘ref t o', whose value must be an ID-vaue. The following outline of a document is
avalid instance of the above DTD (text between angled brackets indicates the start
of the named object):

<figure nane=tree> ... <figref refto=tree> ..

This document contains an instance of ‘f i gur e’ that has thevaue ‘t r ee’ as its
name, and thereference ‘f i gr ef ’ refersto thisfigure by specifying the same vaue
for itsattribute. Referencesin SGML are limited, in that they can only refer to objects
inthecurrent document, and may only refer to entireobjectsthat have an | D-attribute.
HyTime[14], an ISO/IEC internationa standard built on SGML, among other things
defines an extension of SGML that alows references to objectsin other documents
or to part of an object, thusfacilitating hypermedia.

3 CONTENTS

Following thetop-down approach of the previous section on logical structure, we now view
structured documents bottom-up, by giving terminology related to contents. Again, readers
familiar with the concept of structured documents may want to skip therest of this section
and just glance over Figure 2, that summarizes thisterminol ogy.

We distinguish three concepts, namely atoms, basic content and content types:

atoms. By atoms, we mean the most basic recognizable objects that are present in doc-
uments, for example a character or a circle. One might argue that a character or a
circleisnot a basic object because one can distinguish even finer parts within them.
For instance a character may have adescender or may have some accent mark. That
iswhy the definition containsthe qualifier ‘ recognizable’ . Although thisdefinitionis
till not watertight, we may reasonably expect that we have conveyed our intention.



148 FRANS C. HEEMAN

diagram
contents {atoms labelled_object

denoted by text
basic content label shape body associativit

is a set of atoms ] \ ) \
content type associativity formula

text, formula, diagram...

+ +
a b b a

Figure2. A schematic overview of the terminology on contents used in this article. On the left, the
terminology on contents is listed, together with a legend for the tree-figurein the middle. This tree
shows an example document, of which a possible layout is shown on the right

basic content: Similar atoms can be grouped into sets, for instance a set of characters, or
aset of graphical objects. Such aset isreferred to as basic content.

content types. Basic content can be used to build more complex objects, like text, math-
ematical formulae, tables, and diagrams. These objects are called content types. For
example, the content type ‘text’ could be defined to consist of a linear sequence of
characters, a content type ‘mathematical formulae’ could consist of a tree-structure
of characters and a content type‘image’ could consist of atwo-dimensiona matrix of
black-and-white values. Another interesting example is the content type ‘ diagram’.
This could consist of some graph-structure of graphical objects; however, diagrams
often contain text as well, so a diagram would a so contain instances of the content
type‘text’.

To summarize, content types can be characterized by the components they use (basic
content and other objects) and by the internal structure they define between these compo-
nents. Content types are treated as atomic objects when composing higher-level objects.

4 WHERE LOGICAL STRUCTURE ENDSAND CONTENT BEGINS

In this section, wewill discuss some problems regarding the logical structure, the contents,
and the grey area in between. Following Sections 2 and 3, we first give a top-down
discussionin Section 4.1, followed by abottom-up discussion in Section 4.2. Both sections
use examples from Grif, ODA, and SGML.

The root of the problems lies in the fact that, although logicd structure should by
definition be expressed within the primary structure, it may also be expressed within the
secondary structure or within the contents. Since logical structure is derived from the
‘meaning’ of parts of a document, it is not possible to define an agorithm for defining
logicdl structures, neither has a document one uniquelogical structure. Thisleavestheway
open for different interpretations by different people.

Besides being an inherently intuitiveconcept, logica structureis not always separable
from physical structure. In [15], logical structureis contrasted with the graphic and visual
structure of a document. For example, in text, severa conventions and levels of meaning



GRANULARITY IN STRUCTURED DOCUMENTS 149

can be distinguished. Aspects such as spelling, semantic attribute encoding (e.g. denoting
emphasis or even : -) irony in some graphic way), punctuation, and graphic relations
between blocks of contents, are all levels of graphic encoding of meaning (i.e. logical
structure) within contents, blurring the distinction between logical and physical structure,
and between logical structure and contents.

4.1 From structureto contents

Inthissection, we will give some examples of problemswith logicd structure. To illustrate
that thereis not one uniqueway of defining logica structure, we use the earlier example of
an article. An articleis defined to consist of a sequence of atitle, one or more authors, one
or more chapters and one or more appendices; a chapter consists of a sequence of atitle
and one or more paragraphs. However, this same type of document can also be structured
in quite another way by grouping objects differently (see Figure 3).

article article
tittle author+ y)te\ﬁ appendix+ /fro\nt chapter+ ba‘ck
chaptertitle par+ title author+ appendix+

chaptertitle  par+

Figure 3. Two different but related document types (‘ author+’ means one or more authors)

Another problem with DTDs is that the logical structure of a document can also be
expressed in the secondary structure using attributes, or within contents. This is often
encountered in parts that have a fine-grained structure. As an example, take the definition
of a variable with a name and a type, as found in many programming languages (e.g.
Pascal). This structure can be defined in three ways (see Figure 4). There is no consensus
as to which of the three is ‘correct’. Probably the definition using attributes is preferred,
not because of reasons concerned with the logical structure on its own, but for example
because the user-interface for editing then becomes easier.

var_decl var_decl(name="ch"; type=char) var_decl

N | |
name tyfe empty “ch:char;"
"ch"  “char"

Figure4. Threeways to define the logical structure of a variable declaration in Pascal: using the

primary structure (left), attributes (middle) or a content type for text (right). In this last case, the

string is assumed to be in some syntax; this isanalogous to the NOTATION attribute of SGML, as
discussedin Section 4.2

The example of Figure 4 leads to the granularity problem, in which the boundary
between logical structure and contents beginsto blur. What happensisthat logical structure
isincorporated within contents. This has its effects on defining basic contents and content
types, asis shown in the following paragraphs.



150 FRANS C. HEEMAN

In Figureb, the object called ‘ paragraph’ isdefined to consist of ‘text’. Inthisexample,
a content type ‘text’, consisting of a sequence of characters, is assumed. Alternatively, a
‘paragraph’ could consist of zero or moreobjects called ‘ sentence’, which inturn consist of
zero or more objectscalled ‘word’, and aword consists of oneor more objects‘ char’ which
represent one single character. Now we have the concept of one character as a content type,
instead of a sequence of characters. This exampleissimilar totheonein Figure 3, but as it
occurs at the lower levels of the structure, it interacts with the definition of contents.

par par
t!xt sentt‘ence*
wo‘rd*
cer+
cha)acter

Figure5. The granularity problem hasits effects on content types. At the left, the logical structure
stops at the level of a paragraph, and a content type ‘text’ takes over. At the right, the logical
structure continues down to the level of a single character, which is defined as a content type

The above example uses a content type for text, one of the more frequently used
content types. However, the problem is not confined to only text. As an example, we take
mathematical formulae. Sincethelogical structure of aformulaisinherently atree-structure,
and the primary structure of documents a so happens to be a tree-structure, most systems
use the primary structure to denote the structure of a formula, and combine this with a
content type for text. However, we believe thisto be an accidental match and not a correct
structural approach. At the lower levels of aformula, when we encounter expressions, this
|eads to two approaches (see Figure 6):

formula A=411? formula

|
AN\

r 2 A X

N

4 X

A=4m square

T square

/N

r 2

Figure6. The granularity problemin a mathematical formula. At the left, the ‘logical’ structure of
the formula A = 4xr? is shown, in which expressions are regarded as strings. At the right, the
(more) logical structure of the formula is shown, that correctly reflectsits meaning

o thefirst approach regards thelevel of expressionswithinaformulaasbasic, i.e. asa
linear sequence of characters;



GRANULARITY IN STRUCTURED DOCUMENTS 151

o the second approach considers expressions also to be tree-structured, deriving this
structure from the priority of the operators used in the expression.

The first approach is used in Grif. Although the logical structure of expressions is a
tree-structure, they are more easily edited as if they were strings. However, this leads
to an unnatural grouping, as shown in the left part of Figure 6, which makes interactive
mani pulation of the formulaby the user more cumbersome. If Grif were to use the second
approach, editing of expressionswould become inconvenient. Thisisthe familiar problem
of editing fine-grained structures in a structured editing environment.

An example of a system that uses the second approach isINFORM [16], an interactive
editor for mathematical formulae. INFORM does not adapt the definition of the logica
structure of expressions so that editing becomes easy. Rather, the editor isdesigned in such
away, that expressionsareinternally always represented astrees, whilethe user editsthem
as strings [17]. In thisway, other applications, such as formula manipulation systems, are
still able to use the logical structure of expressions. In our opinion, problems with editing
should not influence the definition of logical structure. Instead, systems that manipulate
logical structures, such as editors, should be designed to do this gracefully.

Other possible content types, e.g tables, music, chemical diagrams, chess positions, etc,
pose even more problems. Unlike mathematical formulag, their structure does not happen
to be a tree-structure. For example, in Grif aDTD for tables can be defined as a heading
followed by a number of rows that consists of a number of cells, using the list, choice,
and aggregate constructs of the primary structure. Using the reference construct of the
secondary structure, each cell islinked to the heading of its column (see also [18]).

However, thisDTD for tables still allowsinvalid tablesto be expressed that are nonethe-
lessvalidwithrespect totheDTD, sincethe DTD cannot enforcethat atable specificationin
adocument containsthe correct number of entriesfor each row. Grif solvesthisproblem by
attaching user-defined functions to some types of components. These functions are called
when certain events occur, such as adding or removing columns. Using this mechanism, it
is possible to maintain the correct number of cells in each row when column headings are
added or removed. However, the structure of tablesis still not enforced by the DTD inthe
same way that the DTD enforces a document structure. Applications external to the DTD
are assumed to maintain correctness.

The approach used by Grif to incorporate tables is smilar to that of SGML [19].
Incorporating tables and other content types in ODA is till under discussion (see the
article of Bormann and Bormann in [6]).

4.2 From contentsto structure

We will now look at the content features defined by Grif, ODA and SGML, and usethisto
approach the granularity problem bottom-up. Grif defines the foll owing content features:

e text: asequence of zero or more characters;

symbol: asingle mathematical symbol that may vary in size, such asthe symbol ‘%’
used in a summation;

graphics: asingle geometric figure, such asalineor acircle;

picture: amatrix of pixels,i.e. animage. Subtypesareavailablefor EPSF (PostScript),
CGM, TIFF, XBitMaps, and other formats.



152 FRANS C. HEEMAN

In our terminology, Grif defines two types of basic content (‘symbol’ and * graphics') and
two content types (‘text’ and ‘picture’). The two content types imply two other types of
basic content, namely characters and pixels. The basic content type called ‘symbol’ is
remarkable. When describing the logica structure of a summation, one could distinguish
the lower bound, upper bound and the expression over which the summation iterates, but
one does not explicitly refer to the symbol ‘X', The layout of the formula does indeed
contain this symbol, but thisfact should not be described withinthelogica structure. The
way ‘symbol’ isusedin Grif, isby defining ageneral construct that containsalower bound,
upper bound, and an expression, in which the symbol defines the specific meaning of the
genera construct. Still, considering only the logical structure and contents of a formula
and not considering layout or implementation i ssues, one would not need to define abasic
content item such as ‘symbol’.
In ODA, there are currently three content features defined:

e character content: this defines text, consisting of a sequence of not only characters
but also of control functions that specify logica and formatting information for
subsequent characters.

e geometric graphics content: this uses CGM [20], which defines entire pictures (i.e.
linedrawings).

e raster graphics content: this defines images.

Thus, ODA has three content types, which define the three basic content ‘characters’,
‘graphica dements’, and ‘pels’ (picture elements), respectively.

In SGML, just one content feature is defined, called ‘ CDATA' (there are adso variants
‘PCDATA’ and ‘RCDATA’ but these are not fundamentally different). This is a simple
sequence of zero or more characters. Thus, in our terminology, SGML defines one content
type ‘CDATA’ that uses a basic contents for characters. Other contents, e.g. mathematical
formulag, raster graphicsor geometric graphics areto be expressed using thissinglecontent
type. This can be done by interpreting the character codes in a different way (e.g. for
bitmaps). Alternatively, a specia attribute, called the ‘NOTATION' -attribute, can be used
to specify some syntax or format within the character data. As an example, we may define
an object ‘formuld that contains character data

<INOTATION egn ... >
<INOTATION tex ... >

<! ELEMENT formul a PCDATA >
<I ATTLI ST forrmula format NOTATION (eqgn | tex) #REQU RED >

Associated with the object ‘f or mul @’ is an attribute ‘f or mat * of type ‘NOTATI ON,
with ‘egn’ or ‘t ex’ as possible values. These values are declared in the ‘NOTATI ON'
declarations (in these declarations, the dots are to be replaced by a further identification
of the notation). Depending on the (required) value of the attribute ‘f or mat ’, the object
‘f or mul @’ is supposed to contain either an eqn- or TeX-specification of a mathematical
formula

Grif, ODA, and SGML differ significantly in their content types. Grif defines two
content typesand two types of basic content. ODA defines three content types, and plansto
add other content types, in particular audio, temporal relationsand hypermedia (see a'sothe



GRANULARITY IN STRUCTURED DOCUMENTS 153

article of Bormann and Bormann in [6]). SGML defines only one content type, and allows
several waysto useit in order to support other content types (see for example the HyTime
extensions[14]). In genera, the support for content types is extensive for text, capable of
improvement for mathematical formulae, tables and pictures, and under devel opment for
chemical formulae, music, etc. The approaches currently used are suitablefor some content
types but do not extend to others.

All three systems define one kind of primary structure (hierarchy), and they define
content typesthat internally have their ownlogical structure. Alternatively, onecould define
severa kindsof primary structure (not only hierarchy, but also matrix, graph, etc.), and use
these structuresto combine basi ¢ contentsinto content types. Thisleadsto a heterogeneous
logical structure, in contrast with the homogeneous structure defined by the systems. The
advantage of using a heterogeneouslogical structure, isthat all logical structureisavailable
withinthe primary structurein awell-defined way, rather than incorporated within contents
in different ways. An example of a system that uses a heterogeneous logical structure is
pedtnt [21,2].

5 CONCLUSIONS

Structured documents are often explained in connection with formatting systems, but thisis
only one application. Also, when defining somelogical structure, itistempting to adjust the
definition so that implementation of, for instance, aformatter or a user-interface becomes
more straightforward (as in the case of expressions in mathematica formulag). However,
in order to be able to use many different applications for structured documents, one must
strictly separate the concepts of the logical structure from applications concepts and from
ad hoc practica considerations. This is the approach we took in this article. It leads to a
better understanding of the characteristics of logical structure and contents on their own,
which are not understood well enough yet, notwithstanding the appearance of standardsin
thisarea (see dso [22,23]).
The previous sections show the following problems:

e Thereisnouniquelogical structurefor somegiventypeof document. Sincethelogical
structureof adocument isderived from the meaning of partsof that document, logical
objects can be grouped differently, or can even be defined differently, by different
people.

e Aswell asdefining thelogical structure using the primary structure, one can also use
the secondary structure (e.g. attributes) for this purpose.

e There is no clear distinction between structure and contents. The granularity, the
level at which the structure part stops and the content part takes over, differs among
systems. On some occasions, the primary structureis (mis)used to express thelogical
structure of a content type, on other occasions, logical structure is enclosed within
contents. Devising applicationsthat use the logical structure becomes more difficult,
since part of thelogica structure may reside within content types.

e Content types such as tables, chemica formulae, mathematica formulae, music
scores, sound, etc. are not incorporated in current systems, or only partly and in an
ad hoc way. The current state of the art does not provide for an integrated, uniform
way to handle heterogeneous structuresin documents.



154 FRANS C. HEEMAN

The first two problems are concerned with the use of current systems. these systems
all define more or less the same mechanisms to express DTDs, but they do not prescribe
the DTDsthemselves. Different people will use the mechanismsin different ways, or may
even use them in an incorrect way. An example of the latter is the usage of attributes for
layout information, which goes against the fundamental concept of structured documents
(see for example [24], in which attributes are defined to denote the style for rulesthat are
used as borders of rows and columnsin atable).

In generd, constructinga DTD cannot be captured in some algorithm, because in order
to design a DTD one must understand the meaning of the parts of a particular type of
documents. So it seems sensible to accept this problem, and to develop guidelines for
designing DTDs (e.g. [19]), and to provide for means to convert documents from one type
to another, related type[25].

The other two problems are related and are concerned with the definition of contents.
In our opinion, the logical structure of content types, e.g. tables and formul ae, should not
be defined using thelogical structure of a document. These objects are radically different,
thereforethey should not (and cannot) be forced to be represented in one and the same way.
It is tempting to do so with mathematica formulae, but things become difficult for tables
and downright impossible for content types such as music scores.

Each content type has its own characteristic structure and set of components. For a
document, itsstructureisatree-structure combined with references and floating obj ects; its
components are other content types. A mathematical formulaalso hasatree-structurebut is
possibly supplemented with concepts like associativity and infix operators; its components
are characters.? Text hasalinear structure; itscomponents are characters and other content
types (e.g. mathematical formulae). The challenge is to find a heterogeneous model in
which these different structures can be integrated while maintaining their characteristics.

ACKNOWLEDGMENTS

| would like to thank Hans van Vliet, who hel ped me to structure the content of thisarticle
and improved the wording of my English, and Vincent Quint, who answered my questions
on Grif and read an earlier version of thistext. | am very grateful to Sylviavan Egmond for
her inval uable support which gave me the motivation | needed to finish writing this paper.
The structure and focus of the presentation of ideas was helped by the useful comments of
several anonymous referees.

REFERENCES

1. R.Furuta, ‘Conceptsand modelsfor structured documents’, in Sructured Documents, pp.7-38,
Cambridge University Press, Cambridge, (1989).

2. R. Furuta, V. Quint, and J. André, ‘Interactively editing structured documents’, Electronic
Publishing—Origination, Dissemination and Design, 1(1), 1944, (April 1988).

3. R. Furutaet. a., ‘Document formatting systems: Survey, conceptsand issues’ , ACM Computing
Surveys, 14(3), 417-472, (September 1982).

4. V. Quint and I. Vatton, ‘Grif: An interactive system for structured document manipulation’, in
Proc. of the Int. Conf. on Text Processing and Document Manipulation (EP86), ed., J.C. van
Vliet, pp. 200-213, Nottingham, England, (April 1986). Cambridge University Press.

2 Note that the components of a mathematical formula do not include mathematical or graphical symbols, since
these are only relevant for formatting, not for the logical structure.



GRANULARITY IN STRUCTURED DOCUMENTS 155

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

1S0O-8613, Information Processing—Text and Office Systems—Office Document Architecture
(ODA) and Interchange For mat, Geneva, 1989.

‘ Special issue on Office Document Architecture’, Computer Networksand 1SDN Systems, 21(3),
(May 1991).

1S0O-8879, Information Processing—Text and Office Systems—Standard Generalized Markup
Language (SGML), Geneva, 1986.

C.F. Goldfarb, The SGML Handbook, Oxford University Press, 1990. (ISBN 0-19-853737-9).
R. Furutaand PD. Stotts, ‘Object structuresin paper documents and hypertexts’, in Workshop
on Object-Oriented Document Manipulation (WOODMAN ’89), pp. 147-151, Rennes, France,
(May 1989).

V. Quint, M. Nanard, and J. André, ‘ Towards document engineering’, in Proc. of the Int. Conf.
on Electronic Publishing, Document Manipulation and Typography (EP90), ed., R. Furuta, pp.
17-29, Gaithersburg, Maryland, (September 1990). Cambridge University Press.

B.K. Reid, ‘Scribe: a document specification language and its compiler’, Technical Report
CMU-CS-81-100, Carnegie-Mellon University, Pittsburgh, (October 1980). (Dissertation).

L. Lamport, IATEX: A Document Preparation System, Addison-Wesley, 1985. (ISBN 0-201-
15790-X).

S. van Egmond and J.B. Warmer, ‘The implementation of the Amsterdam SGML parser’,
Electronic Publishing—Origination, Dissemination and Design, 2(2), 65-90, (July 1989).

S.R. Newcomb, N.A. Kipp, and V.T. Newcomb, ‘The “HyTime" hypermedia/time-based docu-
ment structuring language’, Communications of the ACM, 34(11), 67-83, (November 1991).

R. Southall, ‘Visual structure and the transmission of meaning’, in Proc. of the Int. Conf. on
Electronic Publishing, Document Manipulation and Typography (EP88), ed., J.C. van Vliet, pp.
35-45, Nice, France, (April 1988). Cambridge University Press.

S. van Egmond, F.C. Heeman, and J.C. van Vliet, 'INFORM: an interactive syntax-directed
formulae editor’, The Journal of Systems and Software, 9(3), 169-182, (March 1989).

F.C. Heeman, ‘ Incremental parsing of expressions’, The Journal of Systemsand Software, 13(1),
55-70, (September 1990).

G. Coray, K. Lemone, and C. Vanoirbeek, ‘ The use of inheritance in document specifications’,
in Workshop on Object-Oriented Document Manipulation (WOODMAN ’'89), pp. 165-1609,
Rennes, France, (May 1989).

ISO/TR-9573, Information Processing—SGML Support Facilities—Techniques for Using
SGML, Geneva, 1988.

1S0-8632, Infor mation Processing Systems—Computer Graphics—Metafilefor the Sorageand
Transfer of Picture Description Information, Geneva, 1987.

R. Furuta, ‘An integrated, but not exact-representation, editor/formatter’, in Proc. of the Int.
Conf. on Text Processing and Document Manipulation (EP86), ed., J.C. van Vliet, pp. 246259,
Nottingham, England, (April 1986). Cambridge University Press.

V. Joloboff, ‘Document representations: Concepts and standards’, in Sructured Documents,
75-106, Cambridge University Press, Cambridge, (1989).

D.M. Levy, ‘Topicsin document research’, in Proc. of the ACM Conf. on Document Processing
Systems, pp. 187193, New York, (December 1988). ACM.

Association of American Publishers, Markup of Tabular Material, April 1986.

R. Furutaand PD. Stotts, ‘ Specifying structured documentstransformations’, in Proc. of the Int.
Conf. on Electronic Publishing, Document Manipulation and Typography (EP88), ed., J.C. van
Vliet, pp. 109-120, Nice, France, (April 1988). Cambridge University Press.



	SUMMARY
	1 INTRODUCTION
	2 LOGICAL STRUCTURE
	2.1 Primary structure
	2.2 Secondary structure

	3 CONTENTS
	4 WHERE LOGICAL STRUCTURE ENDS AND CONTENT BEGINS
	4.1 From structure to contents
	4.2 From contents to structure

	5 CONCLUSIONS
	REFERENCES

