
ELECTRONIC PUBLISHING, VOL. 5(3), 143–155 (SEPTEMBER 1992)

Granularity in structured documents

FRANS C. HEEMAN 1

Department of Mathematics and Computer Science
Vrije Universiteit
De Boelelaan 1081
1081 HV Amsterdam
The Netherlands

SUMMARY
Structured documents have become a widely accepted concept for document manipulation
applications like editing, formatting, and archiving. However, some aspects of structured docu-
ments are still not well understood. In particular, the transition in structured documents from
logical structure to contents, is a grey area in which different systems use different interpreta-
tions.

In this article, we discuss this granularity aspect of structured documents. We focus on the
underlying concepts of structured documents without referring to any application, so that this
discussion is kept clear from aspects that are not related to structured documents.

KEY WORDS Structured documents Granularity Generic logical structure Grif ODA SGML

1 INTRODUCTION

In the definition of structured documents, a document is not just a sequence of characters.
Rather, a document consists of a structure and of contents. The structure of a document is
defined by dividing a document into parts: this division into parts and the relations between
the parts reflect the logical structure of the document. At the lowest level of this structure,
the actual contents are to be found. For example, the paper you are now reading can be
divided into a title, the author’s name and affiliation, an abstract and five sections. Each
section can be divided into a section title and a number of paragraphs. A paragraph may
contain actual contents, such as the text of this paragraph.

Since the logical structure is based on the ‘meaning’ of the parts of a document, there is
no single, unique, logical structure for a given document. Most people agree on the concept
of a logical structure, though different people may define a different logical structure for
one and the same document. For the most part these different approaches do not give rise
to problems. However, as we approach the vague transition from logical structure to actual
contents, these differences give rise to different interpretations of the concepts of structure
and content.

In Sections 2 and 3, we give a quick overview of the (usual) terminology involved when
discussing structure and contents. More extensive introductions can be found in [1,2,3].
In a way, Section 2, on logical structure, presents a top-down approach of structured

1 Present address: Centre of Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands.

CCC 0894–3982/92/030143–13 Received 20 September 1990
1992 by John Wiley & Sons, Ltd. Revised 5 June 1992

© 1998 by University of Nottingham.



144 FRANS C. HEEMAN

documents, whereas Section 3, on contents, presents a bottom-up approach. These two
approaches should meet somewhere in the middle, but this is precisely where the problems
arise. These problems are discussed in Section 4, using examples from three existing
systems that handle structured documents: Grif [4], ODA [5,6], and SGML [7,8]. Section 5
summarizes the results.

2 LOGICAL STRUCTURE

We first give the terminology related to the logical structure, and summarize this in Figure 1.
Readers familiar with the concept of structured documents may want to glance over the
figure and skip the rest of this section.

references
denoted by

denoted by
floats

denoted by
attributes

denoted by

secondary structure:

primary structure:

structure
logical

text

‘consists-of’ relations

back

section

bodyfront

section

title

par

figref

articlestatus=draft )

par

pars

figure

Figure 1. A schematic overview of the terminology on logical structure used in this article. On the
left, the terminology on logical structure is listed, together with a legend for the tree-figure on the
right. This tree shows an example document. A Document Type Definition, or DTD, is a generic

description of a class of documents

As stated in the introduction, a document is defined to consist of a logical structure
and of contents. The structure of a document is defined by dividing a document into parts,
subdividing these parts, etc. Each part in this structure defines a part of a document that
has some specific meaning. From now on, we define the parts as objects that have a type
[9]. For example, if part of a document is to represent a chapter consisting of an ordered
sequence of a chapter title and one or more paragraphs, we have an object of type ‘chapter’
(or simply an object ‘chapter’) that may have objects of type ‘chaptertitle’ and ‘paragraph’
as descendants. When an object is the root of the structure, its type represents the type of
the entire document, i.e. the document type. Examples of document types might be ‘article’,
‘memo’, or ‘manual’.

Up to this point, we have only talked about specific documents and their logical structure.
However, the logical structure of similar documents can be described in a generic way.
Consider a journal that contains several articles. One article may have three chapters and
another article may have five chapters, but in general all articles contain a sequence of
one or more chapters. The generic structure of these articles can be defined by a title,
followed by a sequence of one or more author names, followed by an abstract, followed by
a sequence of one or more chapters, etc. It can be said that all articles in a journal fall in the
same class of documents, or alternatively, that they are of the same type. Thus, a generic
structure describes a type of document. We call this structure the document type definition,
or DTD. A DTD contains definitions of objects and a document contains instances of these



GRANULARITY IN STRUCTURED DOCUMENTS 145

objects. A useful analogy for a DTD is the definition of a programming language: in the
same way that programs are written in some syntax defined by a grammar, documents are
to conform to the definition given by a DTD. In this analogy, a document type (e.g. article,
memo) corresponds to a specific programming language (e.g. Pascal, C). This analogy can
be extended even further, by comparing software engineering with document engineering
[10].

The availability of a generic structure together with documents that conform to this
structure offers a new way for devising applications for documents. An example is format-
ting. It is no longer necessary to include in each document all kinds of formatting directives,
since these can be defined once for the generic structure. For instance, if some part of a
document is indicated as being the title, the generic structure may contain directives to
typeset this part in Times Roman Bold, pointsize 14. Using the generic structure, a generic
layout can be constructed that defines the layout for all documents conforming to that
generic structure. Another application area is databases. To store the title and authors of
all articles into a database, an application can be devised that scans the articles for the
necessary fields and deposits their contents into that database. Using the generic structure,
an application has knowledge of where it can find some specific kind of information in a
document.

A model similar to the model of structured documents is that of nested environments.
An environment is a logical part of a document, like a section or quotation, that can be freely
nested within some other environment, i.e. the hierarchy is not restricted by a grammar. This
model originates from Scribe [11], and is currently used by the well-known LATEXsystem
[12]. Although LATEX is often referred to as supporting structured documents, this is not
the case, because it does not enforce a generic or logical structure.

Within the logical structure, two kinds of structure can be distinguished: the primary
and secondary structure. The primary structure of a document consists of the relationships
used to describe the logical structure of a document, such as ‘consists-of’. The secondary
structure defines additional supporting relationships, such as ‘refers-to’. The following two
subsections describe these structures.

2.1 Primary structure

The most common primary structure is a hierarchy: a document is divided into parts, which
are subdivided, etc. The relations between the parts denote that one part consists of other
parts. An alternative, more general, primary structure is that of a directed acyclic graph
(DAG), in which parts can be shared.

The primary structure can be homogeneous (all parts use the same relationships) or
heterogeneous (different parts use different relationships). For example, if a mathematical
formula is described using a tree-structure and a table is described using some matrix
structure, then documents containing formulae and tables have a heterogeneous primary
structure.

In general, the following constructs are offered to define the primary structure of a
document:

sequence: an ordered sequence of objects, possibly of different type;
aggregate: an unordered sequence of objects, possibly of different types; the precise order

of the objects in a document is not determined by the DTD, any permutation of these
objects in a document is correct;



146 FRANS C. HEEMAN

list: an ordered sequence of 0, 1 or more objects of the same type;
choice: one object whose type may be any of a given list of types;
combinations: the above constructs may be combined, for example a choice of two lists.

2.2 Secondary structure

In addition to the primary structure, a secondary structure can be defined. This contains
relationships that cannot be expressed within the primary structure. An example is a cross-
reference from one part in the primary structure to another, which defines the relation
‘refers-to’ between these parts, in addition to the relation ‘consists-of’ that is defined by
the primary structure. The secondary structure is mainly defined using three constructs:
attributes, floating objects and references to objects:

attributes: Attributes are used to denote semantic information that is not provided by
the primary structure. Examples are the status of a document (draft or final), or the
language it is written in (French or English). The use of these attributes is not defined,
they merely offer extra facilities that can be used if so desired.

Attributes have a type and some common types are ‘numeric’, ‘textual’ and ‘enu-
meration’. The DTD specifies which attribute(s) are defined for an object and what
values are allowed. A specific value is defined in a document. This value may be in-
herited from another object, or specified relative to the value of some other attribute.
Furthermore, systems may define that a value is required, optional, defaultable,
assumed to be supplied by the application, etc.

floating objects: A floating object is an object for which the DTD does not determine
the exact position in a document. The object is allowed to appear at a more or less
arbitrary place in part or all of the document.

As an example, SGML defines a construct called an inclusion. The definition of
an object in a DTD can have zero or more included objects associated with it. The
definition of such an included object appears somewhere else in the DTD and is
similar to that of regular objects. Zero or more different instances of an included
object may appear anywhere within the subtree that is an instance of the object
at which the included object was declared. Thus, in SGML, instances of included
objects are contained in the primary structure. As an example, consider the following:

<!ELEMENT chapter (title, paragraph*) +(figure) >

This defines an object called ‘chapter’ as being a ‘title’ followed by zero or
more (indicated by ‘*’) instances of the object ‘paragraph’. This ‘chapter’
object defines an inclusion (‘+(figure)’) which means that anywhere in the
subtree starting at object ‘chapter’, zero or more instances of the object ‘figure’
may appear.

SGML also defines exclusions: this are the opposite of inclusions, i.e. certain
objects are not allowed to appear in some part of the document. The use of inclusions
and exclusions is further restricted because of ambiguities that may arise (see [13]).



GRANULARITY IN STRUCTURED DOCUMENTS 147

references: A final construct is that of a reference to a specific instance of an object.
References may be defined among objects within one document, or they may be
defined among objects in multiple documents. References can be used to define
hypertext documents [9].

In Grif, a reference is a separate construct that refers to an instance of one specific
type of object. For example, when a DTD defines an object ‘Figure’, it may define
‘RefFig = REFERENCE(Figure)’ to refer to an object of type ‘Figure’. Using the
type ‘ANY’, references to any type of object are possible.

In SGML and ODA, references are defined as a special kind of attribute. In SGML,
an attribute of the predefined type ‘ID’ must have some unique value. The value of
an attribute of the predefined type ‘IDREF’ must correspond to exactly one value
of an ID-attribute. With this mechanism, one can refer to the object for which this
ID-attribute was defined. For example:

<!ELEMENT figure ... >
<!ATTLIST figure name ID #REQUIRED >

<!ELEMENT figref ... >
<!ATTLIST figref refto IDREF #REQUIRED >

The above DTD defines an object ‘figure’ that has an attribute ‘name’: this
attribute is required to have some unique value. The object ‘figref’ has an attribute
‘refto’, whose value must be an ID-value. The following outline of a document is
a valid instance of the above DTD (text between angled brackets indicates the start
of the named object):

... <figure name=tree> ... <figref refto=tree> ...

This document contains an instance of ‘figure’ that has the value ‘tree’ as its
name, and the reference ‘figref’ refers to this figure by specifying the same value
for its attribute. References in SGML are limited, in that they can only refer to objects
in the current document, and may only refer to entire objects that have an ID-attribute.
HyTime [14], an ISO/IEC international standard built on SGML, among other things
defines an extension of SGML that allows references to objects in other documents
or to part of an object, thus facilitating hypermedia.

3 CONTENTS

Following the top-down approach of the previous section on logical structure, we now view
structured documents bottom-up, by giving terminology related to contents. Again, readers
familiar with the concept of structured documents may want to skip the rest of this section
and just glance over Figure 2, that summarizes this terminology.

We distinguish three concepts, namely atoms, basic content and content types:

atoms: By atoms, we mean the most basic recognizable objects that are present in doc-
uments, for example a character or a circle. One might argue that a character or a
circle is not a basic object because one can distinguish even finer parts within them.
For instance a character may have a descender or may have some accent mark. That
is why the definition contains the qualifier ‘recognizable’. Although this definition is
still not watertight, we may reasonably expect that we have conveyed our intention.



148 FRANS C. HEEMAN

+ +

=

formula

bodyshape

diagram

a b b a

associativity
a+b=b+a

associativity

content type
is a set of atoms

basic content
denoted by

atoms

text, formula, diagram...

contents
text

label

labelled_object

Figure 2. A schematic overview of the terminology on contents used in this article. On the left, the
terminology on contents is listed, together with a legend for the tree-figure in the middle. This tree

shows an example document, of which a possible layout is shown on the right

basic content: Similar atoms can be grouped into sets, for instance a set of characters, or
a set of graphical objects. Such a set is referred to as basic content.

content types: Basic content can be used to build more complex objects, like text, math-
ematical formulae, tables, and diagrams. These objects are called content types. For
example, the content type ‘text’ could be defined to consist of a linear sequence of
characters, a content type ‘mathematical formulae’ could consist of a tree-structure
of characters and a content type ‘image’ could consist of a two-dimensional matrix of
black-and-white values. Another interesting example is the content type ‘diagram’.
This could consist of some graph-structure of graphical objects; however, diagrams
often contain text as well, so a diagram would also contain instances of the content
type ‘text’.

To summarize, content types can be characterized by the components they use (basic
content and other objects) and by the internal structure they define between these compo-
nents. Content types are treated as atomic objects when composing higher-level objects.

4 WHERE LOGICAL STRUCTURE ENDS AND CONTENT BEGINS

In this section, we will discuss some problems regarding the logical structure, the contents,
and the grey area in between. Following Sections 2 and 3, we first give a top-down
discussion in Section 4.1, followed by a bottom-up discussion in Section 4.2. Both sections
use examples from Grif, ODA, and SGML.

The root of the problems lies in the fact that, although logical structure should by
definition be expressed within the primary structure, it may also be expressed within the
secondary structure or within the contents. Since logical structure is derived from the
‘meaning’ of parts of a document, it is not possible to define an algorithm for defining
logical structures, neither has a document one unique logical structure. This leaves the way
open for different interpretations by different people.

Besides being an inherently intuitive concept, logical structure is not always separable
from physical structure. In [15], logical structure is contrasted with the graphic and visual
structure of a document. For example, in text, several conventions and levels of meaning



GRANULARITY IN STRUCTURED DOCUMENTS 149

can be distinguished. Aspects such as spelling, semantic attribute encoding (e.g. denoting
emphasis or even :-) irony in some graphic way), punctuation, and graphic relations
between blocks of contents, are all levels of graphic encoding of meaning (i.e. logical
structure) within contents, blurring the distinction between logical and physical structure,
and between logical structure and contents.

4.1 From structure to contents

In this section, we will give some examples of problems with logical structure. To illustrate
that there is not one unique way of defining logical structure, we use the earlier example of
an article. An article is defined to consist of a sequence of a title, one or more authors, one
or more chapters and one or more appendices; a chapter consists of a sequence of a title
and one or more paragraphs. However, this same type of document can also be structured
in quite another way by grouping objects differently (see Figure 3).

article

chapter+author+title appendix+

chaptertitle par+

par+chaptertitle

article

chapter+

title author+ appendix+

backfront

Figure 3. Two different but related document types (‘author+’ means one or more authors)

Another problem with DTDs is that the logical structure of a document can also be
expressed in the secondary structure using attributes, or within contents. This is often
encountered in parts that have a fine-grained structure. As an example, take the definition
of a variable with a name and a type, as found in many programming languages (e.g.
Pascal). This structure can be defined in three ways (see Figure 4). There is no consensus
as to which of the three is ‘correct’. Probably the definition using attributes is preferred,
not because of reasons concerned with the logical structure on its own, but for example
because the user-interface for editing then becomes easier.

"char""ch"

name type "ch:char;"empty

var_decl var_decl(name="ch"; type=char) var_decl

Figure 4. Three ways to define the logical structure of a variable declaration in Pascal: using the
primary structure (left), attributes (middle) or a content type for text (right). In this last case, the
string is assumed to be in some syntax; this isanalogous to the NOTATION attribute of SGML, as

discussed in Section 4.2

The example of Figure 4 leads to the granularity problem, in which the boundary
between logical structure and contents begins to blur. What happens is that logical structure
is incorporated within contents. This has its effects on defining basic contents and content
types, as is shown in the following paragraphs.



150 FRANS C. HEEMAN

In Figure 5, the object called ‘paragraph’ is defined to consist of ‘text’. In this example,
a content type ‘text’, consisting of a sequence of characters, is assumed. Alternatively, a
‘paragraph’ could consist of zero or more objects called ‘sentence’, which in turn consist of
zero or more objects called ‘word’, and a word consists of one or more objects ‘char’ which
represent one single character. Now we have the concept of one character as a content type,
instead of a sequence of characters. This example is similar to the one in Figure 3, but as it
occurs at the lower levels of the structure, it interacts with the definition of contents.

par

character

word*

sentence*

par

text

char+

Figure 5. The granularity problem has its effects on content types. At the left, the logical structure
stops at the level of a paragraph, and a content type ‘text’ takes over. At the right, the logical

structure continues down to the level of a single character, which is defined as a content type

The above example uses a content type for text, one of the more frequently used
content types. However, the problem is not confined to only text. As an example, we take
mathematical formulae. Since the logical structure of a formula is inherently a tree-structure,
and the primary structure of documents also happens to be a tree-structure, most systems
use the primary structure to denote the structure of a formula, and combine this with a
content type for text. However, we believe this to be an accidental match and not a correct
structural approach. At the lower levels of a formula, when we encounter expressions, this
leads to two approaches (see Figure 6):

formula

A=4π square

r 2

2

square

r

x

π

x

4

=

A

formulaA=4πr2

Figure 6. The granularity problem in a mathematical formula. At the left, the ‘logical’ structure of
the formula A = 4πr2 is shown, in which expressions are regarded as strings. At the right, the

(more) logical structure of the formula is shown, that correctly reflects its meaning

• the first approach regards the level of expressions within a formula as basic, i.e. as a
linear sequence of characters;



GRANULARITY IN STRUCTURED DOCUMENTS 151

• the second approach considers expressions also to be tree-structured, deriving this
structure from the priority of the operators used in the expression.

The first approach is used in Grif. Although the logical structure of expressions is a
tree-structure, they are more easily edited as if they were strings. However, this leads
to an unnatural grouping, as shown in the left part of Figure 6, which makes interactive
manipulation of the formula by the user more cumbersome. If Grif were to use the second
approach, editing of expressions would become inconvenient. This is the familiar problem
of editing fine-grained structures in a structured editing environment.

An example of a system that uses the second approach is INFORM [16], an interactive
editor for mathematical formulae. INFORM does not adapt the definition of the logical
structure of expressions so that editing becomes easy. Rather, the editor is designed in such
a way, that expressions are internally always represented as trees, while the user edits them
as strings [17]. In this way, other applications, such as formula manipulation systems, are
still able to use the logical structure of expressions. In our opinion, problems with editing
should not influence the definition of logical structure. Instead, systems that manipulate
logical structures, such as editors, should be designed to do this gracefully.

Other possible content types, e.g tables, music, chemical diagrams, chess positions, etc,
pose even more problems. Unlike mathematical formulae, their structure does not happen
to be a tree-structure. For example, in Grif a DTD for tables can be defined as a heading
followed by a number of rows that consists of a number of cells, using the list, choice,
and aggregate constructs of the primary structure. Using the reference construct of the
secondary structure, each cell is linked to the heading of its column (see also [18]).

However, this DTD for tables still allows invalid tables to be expressed that are nonethe-
less valid with respect to the DTD, since the DTD cannot enforce that a table specification in
a document contains the correct number of entries for each row. Grif solves this problem by
attaching user-defined functions to some types of components. These functions are called
when certain events occur, such as adding or removing columns. Using this mechanism, it
is possible to maintain the correct number of cells in each row when column headings are
added or removed. However, the structure of tables is still not enforced by the DTD in the
same way that the DTD enforces a document structure. Applications external to the DTD
are assumed to maintain correctness.

The approach used by Grif to incorporate tables is similar to that of SGML [19].
Incorporating tables and other content types in ODA is still under discussion (see the
article of Bormann and Bormann in [6]).

4.2 From contents to structure

We will now look at the content features defined by Grif, ODA and SGML, and use this to
approach the granularity problem bottom-up. Grif defines the following content features:

• text: a sequence of zero or more characters;
• symbol: a single mathematical symbol that may vary in size, such as the symbol ‘Σ’

used in a summation;
• graphics: a single geometric figure, such as a line or a circle;
• picture: a matrix of pixels, i.e. an image. Subtypes are available for EPSF (PostScript),

CGM, TIFF, XBitMaps, and other formats.



152 FRANS C. HEEMAN

In our terminology, Grif defines two types of basic content (‘symbol’ and ‘graphics’) and
two content types (‘text’ and ‘picture’). The two content types imply two other types of
basic content, namely characters and pixels. The basic content type called ‘symbol’ is
remarkable. When describing the logical structure of a summation, one could distinguish
the lower bound, upper bound and the expression over which the summation iterates, but
one does not explicitly refer to the symbol ‘Σ’. The layout of the formula does indeed
contain this symbol, but this fact should not be described within the logical structure. The
way ‘symbol’ is used in Grif, is by defining a general construct that contains a lower bound,
upper bound, and an expression, in which the symbol defines the specific meaning of the
general construct. Still, considering only the logical structure and contents of a formula
and not considering layout or implementation issues, one would not need to define a basic
content item such as ‘symbol’.

In ODA, there are currently three content features defined:

• character content: this defines text, consisting of a sequence of not only characters
but also of control functions that specify logical and formatting information for
subsequent characters.

• geometric graphics content: this uses CGM [20], which defines entire pictures (i.e.
line drawings).

• raster graphics content: this defines images.

Thus, ODA has three content types, which define the three basic content ‘characters’,
‘graphical elements’, and ‘pels’ (picture elements), respectively.

In SGML, just one content feature is defined, called ‘CDATA’ (there are also variants
‘PCDATA’ and ‘RCDATA’ but these are not fundamentally different). This is a simple
sequence of zero or more characters. Thus, in our terminology, SGML defines one content
type ‘CDATA’ that uses a basic contents for characters. Other contents, e.g. mathematical
formulae, raster graphics or geometric graphics are to be expressed using this single content
type. This can be done by interpreting the character codes in a different way (e.g. for
bitmaps). Alternatively, a special attribute, called the ‘NOTATION’-attribute, can be used
to specify some syntax or format within the character data. As an example, we may define
an object ‘formula’ that contains character data:

<!NOTATION eqn ... >
<!NOTATION tex ... >

<!ELEMENT formula PCDATA >
<!ATTLIST formula format NOTATION (eqn | tex) #REQUIRED >

Associated with the object ‘formula’ is an attribute ‘format’ of type ‘NOTATION’,
with ‘eqn’ or ‘tex’ as possible values. These values are declared in the ‘NOTATION’
declarations (in these declarations, the dots are to be replaced by a further identification
of the notation). Depending on the (required) value of the attribute ‘format’, the object
‘formula’ is supposed to contain either an eqn- or TEX-specification of a mathematical
formula.

Grif, ODA, and SGML differ significantly in their content types. Grif defines two
content types and two types of basic content. ODA defines three content types, and plans to
add other content types, in particular audio, temporal relations and hypermedia (see also the



GRANULARITY IN STRUCTURED DOCUMENTS 153

article of Bormann and Bormann in [6]). SGML defines only one content type, and allows
several ways to use it in order to support other content types (see for example the HyTime
extensions [14]). In general, the support for content types is extensive for text, capable of
improvement for mathematical formulae, tables and pictures, and under development for
chemical formulae, music, etc. The approaches currently used are suitable for some content
types but do not extend to others.

All three systems define one kind of primary structure (hierarchy), and they define
content types that internallyhave their own logical structure. Alternatively, one could define
several kinds of primary structure (not only hierarchy, but also matrix, graph, etc.), and use
these structures to combine basic contents into content types. This leads to a heterogeneous
logical structure, in contrast with the homogeneous structure defined by the systems. The
advantage of using a heterogeneous logical structure, is that all logical structure is available
within the primary structure in a well-defined way, rather than incorporated within contents
in different ways. An example of a system that uses a heterogeneous logical structure is
pedtnt [21,2].

5 CONCLUSIONS

Structured documents are often explained in connection with formatting systems, but this is
only one application. Also, when defining some logical structure, it is tempting to adjust the
definition so that implementation of, for instance, a formatter or a user-interface becomes
more straightforward (as in the case of expressions in mathematical formulae). However,
in order to be able to use many different applications for structured documents, one must
strictly separate the concepts of the logical structure from applications concepts and from
ad hoc practical considerations. This is the approach we took in this article. It leads to a
better understanding of the characteristics of logical structure and contents on their own,
which are not understood well enough yet, notwithstanding the appearance of standards in
this area (see also [22,23]).

The previous sections show the following problems:

• There is no unique logical structure for some given type of document. Since the logical
structure of a document is derived from the meaning of parts of that document, logical
objects can be grouped differently, or can even be defined differently, by different
people.

• As well as defining the logical structure using the primary structure, one can also use
the secondary structure (e.g. attributes) for this purpose.

• There is no clear distinction between structure and contents. The granularity, the
level at which the structure part stops and the content part takes over, differs among
systems. On some occasions, the primary structure is (mis)used to express the logical
structure of a content type, on other occasions, logical structure is enclosed within
contents. Devising applications that use the logical structure becomes more difficult,
since part of the logical structure may reside within content types.

• Content types such as tables, chemical formulae, mathematical formulae, music
scores, sound, etc. are not incorporated in current systems, or only partly and in an
ad hoc way. The current state of the art does not provide for an integrated, uniform
way to handle heterogeneous structures in documents.



154 FRANS C. HEEMAN

The first two problems are concerned with the use of current systems: these systems
all define more or less the same mechanisms to express DTDs, but they do not prescribe
the DTDs themselves. Different people will use the mechanisms in different ways, or may
even use them in an incorrect way. An example of the latter is the usage of attributes for
layout information, which goes against the fundamental concept of structured documents
(see for example [24], in which attributes are defined to denote the style for rules that are
used as borders of rows and columns in a table).

In general, constructing a DTD cannot be captured in some algorithm, because in order
to design a DTD one must understand the meaning of the parts of a particular type of
documents. So it seems sensible to accept this problem, and to develop guidelines for
designing DTDs (e.g. [19]), and to provide for means to convert documents from one type
to another, related type [25].

The other two problems are related and are concerned with the definition of contents.
In our opinion, the logical structure of content types, e.g. tables and formulae, should not
be defined using the logical structure of a document. These objects are radically different,
therefore they should not (and cannot) be forced to be represented in one and the same way.
It is tempting to do so with mathematical formulae, but things become difficult for tables
and downright impossible for content types such as music scores.

Each content type has its own characteristic structure and set of components. For a
document, its structure is a tree-structure combined with references and floating objects; its
components are other content types. A mathematical formula also has a tree-structure but is
possibly supplemented with concepts like associativity and infix operators; its components
are characters.2 Text has a linear structure; its components are characters and other content
types (e.g. mathematical formulae). The challenge is to find a heterogeneous model in
which these different structures can be integrated while maintaining their characteristics.

ACKNOWLEDGMENTS

I would like to thank Hans van Vliet, who helped me to structure the content of this article
and improved the wording of my English, and Vincent Quint, who answered my questions
on Grif and read an earlier version of this text. I am very grateful to Sylvia van Egmond for
her invaluable support which gave me the motivation I needed to finish writing this paper.
The structure and focus of the presentation of ideas was helped by the useful comments of
several anonymous referees.

REFERENCES

1. R. Furuta, ‘Concepts and models for structured documents’, in Structured Documents, pp.7–38,
Cambridge University Press, Cambridge, (1989).

2. R. Furuta, V. Quint, and J. André, ‘Interactively editing structured documents’, Electronic
Publishing—Origination, Dissemination and Design, 1(1), 19–44, (April 1988).

3. R. Furuta et. al., ‘Document formatting systems: Survey, concepts and issues’, ACM Computing
Surveys, 14(3), 417–472, (September 1982).

4. V. Quint and I. Vatton, ‘Grif: An interactive system for structured document manipulation’, in
Proc. of the Int. Conf. on Text Processing and Document Manipulation (EP86), ed., J.C. van
Vliet, pp. 200–213, Nottingham, England, (April 1986). Cambridge University Press.

2 Note that the components of a mathematical formula do not include mathematical or graphical symbols, since
these are only relevant for formatting, not for the logical structure.



GRANULARITY IN STRUCTURED DOCUMENTS 155

5. ISO-8613, Information Processing—Text and Office Systems—Office Document Architecture
(ODA) and Interchange Format, Geneva, 1989.

6. ‘Special issue on Office Document Architecture’, Computer Networks and ISDN Systems, 21(3),
(May 1991).

7. ISO-8879, Information Processing—Text and Office Systems—Standard Generalized Markup
Language (SGML), Geneva, 1986.

8. C.F. Goldfarb, The SGML Handbook, Oxford University Press, 1990. (ISBN 0-19-853737-9).
9. R. Furuta and P.D. Stotts, ‘Object structures in paper documents and hypertexts’, in Workshop

on Object-Oriented Document Manipulation (WOODMAN ’89), pp. 147–151, Rennes, France,
(May 1989).

10. V. Quint, M. Nanard, and J. André, ‘Towards document engineering’, in Proc. of the Int. Conf.
on Electronic Publishing, Document Manipulation and Typography (EP90), ed., R. Furuta, pp.
17–29, Gaithersburg, Maryland, (September 1990). Cambridge University Press.

11. B.K. Reid, ‘Scribe: a document specification language and its compiler’, Technical Report
CMU-CS-81-100, Carnegie-Mellon University, Pittsburgh, (October 1980). (Dissertation).

12. L. Lamport, LATEX: A Document Preparation System, Addison-Wesley, 1985. (ISBN 0-201-
15790-X).

13. S. van Egmond and J.B. Warmer, ‘The implementation of the Amsterdam SGML parser’,
Electronic Publishing—Origination, Dissemination and Design, 2(2), 65–90, (July 1989).

14. S.R. Newcomb, N.A. Kipp, and V.T. Newcomb, ‘The “HyTime” hypermedia/time-based docu-
ment structuring language’, Communications of the ACM, 34(11), 67–83, (November 1991).

15. R. Southall, ‘Visual structure and the transmission of meaning’, in Proc. of the Int. Conf. on
Electronic Publishing, Document Manipulation and Typography (EP88), ed., J.C. van Vliet, pp.
35–45, Nice, France, (April 1988). Cambridge University Press.

16. S. van Egmond, F.C. Heeman, and J.C. van Vliet, ‘INFORM: an interactive syntax-directed
formulae editor’, The Journal of Systems and Software, 9(3), 169–182, (March 1989).

17. F.C. Heeman, ‘Incremental parsing of expressions’,The Journal of Systems and Software, 13(1),
55–70, (September 1990).

18. G. Coray, K. Lemone, and C. Vanoirbeek, ‘The use of inheritance in document specifications’,
in Workshop on Object-Oriented Document Manipulation (WOODMAN ’89), pp. 165–169,
Rennes, France, (May 1989).

19. ISO/TR-9573, Information Processing—SGML Support Facilities—Techniques for Using
SGML, Geneva, 1988.

20. ISO-8632, Information Processing Systems—Computer Graphics—Metafile for the Storage and
Transfer of Picture Description Information, Geneva, 1987.

21. R. Furuta, ‘An integrated, but not exact-representation, editor/formatter’, in Proc. of the Int.
Conf. on Text Processing and Document Manipulation (EP86), ed., J.C. van Vliet, pp. 246–259,
Nottingham, England, (April 1986). Cambridge University Press.

22. V. Joloboff, ‘Document representations: Concepts and standards’, in Structured Documents,
75–106, Cambridge University Press, Cambridge, (1989).

23. D.M. Levy, ‘Topics in document research’, in Proc. of the ACM Conf. on Document Processing
Systems, pp. 187–193, New York, (December 1988). ACM.

24. Association of American Publishers, Markup of Tabular Material, April 1986.
25. R. Furuta and P.D. Stotts, ‘Specifying structured documents transformations’, in Proc. of the Int.

Conf. on Electronic Publishing, Document Manipulation and Typography (EP88), ed., J.C. van
Vliet, pp. 109–120, Nice, France, (April 1988). Cambridge University Press.


	SUMMARY
	1 INTRODUCTION
	2 LOGICAL STRUCTURE
	2.1 Primary structure
	2.2 Secondary structure

	3 CONTENTS
	4 WHERE LOGICAL STRUCTURE ENDS AND CONTENT BEGINS
	4.1 From structure to contents
	4.2 From contents to structure

	5 CONCLUSIONS
	REFERENCES

