
ELECTRONIC PUBLISHING, VOL. 5(2), 91–96 (JUNE 1992)

Teaching electronic publishing to computer
scientists
H. BROWN AND I. A. UTTING

Computing Laboratory,
University of Kent at Canterbury
Canterbury, Kent CT2 7NF, UK

SUMMARY
This paper discusses some of the issues involved in teaching electronic publishing to under-
graduates specializing in computer science. It attempts to identify the significant differences
between a course designed primarily for users and a course designed for specialists who may
also become future developers and implementers.

KEY WORDS Computer scientists Electronic publishing Principles Design

1 INTRODUCTION

Introductory electronic publishing courses are typically designed to teach students how to
use a particular system. More advanced courses may include elements of document design,
and a survey of available systems and technologies with a comparison of their capabilities,
but they are still normally designed to teach specific skills and so may be considered as
‘service’ courses.

An electronic publishing course for undergraduate computer scientists needs to cover
a significantly wider range of topics. In order to be considered academically respectable
it must provide an appropriate balance between theory and practice and—in addition to
teaching specific skills—it should:

• identify and teach the fundamental techniques and principles used by electronic
publishing systems;

• cover areas that are often carefully hidden from users (such as document structures,
font information, and page description languages);

• take a broad definition of electronic publishing, covering hypermedia and active
documents as well as high-quality formatting systems;

• look at existing and emerging standards.

The advent of all-electronic documents and the incorporation of active elements into
these and into documents intended for paper is leading to an integration of electronic pub-
lishing and other areas of computing. For instance, documents with processable elements
can be viewed as interfaces to other systems, and hypertext and user interface design over-
lap substantially. Computer science undergraduates are in an ideal position to appreciate
the possibilities of these advances, and to understand some of the more general technical
problems associated with hypermedia.

CCC 0894–3982/92/020091–06 Received March 1992
1992 by John Wiley & Sons, Ltd.

© 1998 by University of Nottingham.



92 H. BROWN AND I. A. UTTING

The sections below discuss the goals of undergraduate electronic publishing courses,
and attempt to show how their content can be tailored to exploit the background and
knowledge of computer science students. The discussion is based primarily on a current
course at the University of Kent, but draws on experience we have gained from teaching
electronic publishing in New Zealand, North America and elsewhere.

2 TEACHING ELECTRONIC PUBLISHING AT KENT

We have been teaching electronic publishing to undergraduate students for some ten years
now, and to computer science undergraduates for six years. The course currently occupies
one unit (one-eighth of a year’s work) in the final year, and is optional for most students. It
has regularly proved to be one of the most popular options.

Since the course was set up, we have attempted to combine the service and academic
elements introduced above. In deciding on the balance we consider the situations the
students are likely to find themselves in during their future careers. Nearly all of them
will become users of electronic publishing systems, many will find themselves responsible
for such users (as advisers and managers), and we hope a significant number will become
developers of innovative systems. We thus attempt to combine a general ‘literacy’ approach
with a study of principles and design decisions, and to identify and describe relevant
standards.

The students have all used document preparation systems in earlier courses, and perhaps
in previous careers, but they have no background in design. It is thus essential to cover the
basic principles of digital typography and document design near the start of the course. Even
for design, however, the skills of the computer scientists can be exploited in translating
designs into the increasingly complex notations used by electronic publishing systems, and
in understanding how the limitations and advantages of current and future technologies can
affect design.

Given the above considerations, our electronic publishing course covers the principles
of the following areas:

• imaging device technologies;
• digital typography;
• basic document design;
• paragraph and page layout (based on the TEX model[1]);
• penalty copy (tables, diagrams, mathematics, etc.);
• device independence;
• page description languages;
• structured documents and standards;
• hypertext and active documents.

Throughout the course the principles are reinforced with practical experience and assess-
ment exercises. Time and financial constraints, as well as a recent rapid increase in student
numbers (90 in 1991, 125 in 1992), mean that we cannot make this as wide-ranging as
we would like. In the early stages of the course, students use troff (plus preprocessors),
LATEX, and a small range of interactive systems, all running on our workstation network.
At this stage they are encouraged to compare and contrast the facilities and user interfaces
provided. Later on they write a PostScript[2] program and use Guide[3] and an SGML[4]
parser.



TEACHING EP TO COMPUTER SCIENTISTS 93

3 DESIGN/LAYOUT

This is undoubtedly the area in which the average computing undergraduate student is
weakest. Experience has shown that, although all of them are readers, few if any have
noticed that the design of the documents they read is the product of a rational process, let
alone developed an awareness of what such a process involves.

Given the disagreement between design practitioners as to what constitutes ‘good’
design, this undiscerning approach is hardly surprising. But it does mean that ‘principles
of good design’ are hard to expound, ambiguous when they can be discerned, and hedged
around with many caveats as to their applicability. There is no silver bullet, even on issues
as basic as the preferability of ragged or flush-right margins.

Fortunately (in an argument taken from Pirsig’s Zen and the Art of Motorcycle Main-
tenance [5]) there is an amazing degree of agreement as to whether any particular example
is of ‘high’ or ‘low’ quality—which can be a useful lifeline for those lost in a twisty maze
of conflicting advice. This approach can be combined with physiological and cognitive
arguments (such as those rehearsed in Rubinstein[6]) to which computing students are
particularly susceptible.

Unfortunatelydesign issues are also the area in which most computing staff are weakest.
It can be difficult to justify spending a large large amount of course time on design, but
asking colleagues in design institutions to recommend or teach a useful (and usable) subset
of document design to occupy just a few hours is not likely to elicit an encouraging
response. The approach we have adopted is to provide an overview of current practice, and
to reinforce this with examples from as wide a spectrum of opinion as possible.

4 CHOICE OF SYSTEMS

Teaching of general principles is often supported by the use of particular systems which
embody them. This is the method which we have attempted to follow in our teaching of
electronic publishing: using document preparation and hypertext systems to reinforce and
practice the underlying ideas being expounded in lectures.

In the area of hypertext, the choice of which particular system to use is essentially a
pragmatic one; many of the available ones display appropriate behaviour at the depth to
which they are likely to be investigated. In the area of paper-based systems, however, there
is a more sharp delineation to be addressed.

Document preparation systems based on mark-up (such as LATEX), while making explicit
the crucial distinction between logical and physical structures of a document, are difficult
for beginners to use, and provoke the frequent cry from those more interested in use than
principle of ‘why use this, it’s so much easier using [my favourite word processor]’. This
argument will be familiar to anyone who has attempted to introduce new concepts to
those with skills in an associated (but simpler) paradigm. However, it can be effectively
combatted by setting exercises involving changes to an existing large piece of work, which
has the added advantage of letting the students see the use of techniques beyond the scope
of the assessment.

We make relatively little use of the simpler DTP systems because they tend to obscure
the logical/physical distinction and encourage students to invent design elements on a case-
by-case basis as they create a document, leading to incoherent and inflexible document
structures. On a more pragmatic note, using a DTP system for coursework requires that



94 H. BROWN AND I. A. UTTING

students have access to workstation or PC/Macintosh screens (of which we have dozens)
for all stages of the assessment, whereas using markup-based systems most of the work can
be performed from simpler terminals (of which we have hundreds).

Despite this, the choice we make must be based on the degree to which the system
exhibits the principles we are teaching. The recent negotiation by UK universities of
favourable educational licences for Interleaf[7] will enable us to take advantage of its
object-oriented and highly structured approach to document specification, while giving
students a much more attractive and easy-to-learn interface.

5 DOCUMENT AND INFORMATION STRUCTURES

Throughoutour course we place a strong emphasis on the logical structure of information
and on the document and hypertext structures available to support it. Computing students are
particularly strong in this area. Trees and directed graphs come naturally to them; they can
understand the use of simple grammars to describe document classes and readily appreciate
issues of object-oriented design, inheritance, and dangling cross-references. Similarly,
when moving into areas of hypertext and active documents, they quickly understand how
scripts or methods can be associated with active document elements and how these may
launch other programs in order to provide database searching or other forms of specialized
processing.

There is little time within our course for students to experiment with information design
in any serious way, but those who also undertake their major undergraduate project in this
area frequently become ambitious in experimenting with complex information structures.
Possibly they are apt to become too ambitious—they rarely succumb to the disease of
‘fontitis’ but are only too apt to have bad attacks of ‘linkitis’ and ‘activitis’. This is an
illustration of the well-known problem of computer scientists becoming so enthralled with
their own inventions that they lose sight of the needs of users.

6 STANDARDS

At present there is little doubt about the important standards that need to be covered in
an electronic publishing course. SGML and ODA[8] are essentially the only two well-
established official standards in the field. Currently the course covers PostScript as the de
facto standard for page description languages, and introduces ODA and SGML as examples
of standards for structured documents and as a vehicle for illustratinghow to derive multiple
views of a document from a single logical description.

The picture will be a lot less clear in the near future. Many standards related to document
processing have just been published or are currently going through the later stages of the
ISO process on their way to becoming official standards. These can be divided into three
distinct groups as follows:

• ODA-related—document application profiles (DAPs)[9] and formal specifications;
• SGML-related—DSSSL[10] for SGML document formatting and processing, SGML

applications for hypermedia and music, and many miscellaneous support facilities;
• Document printing, filing and retrieval—the standard page description language

(SPDL)[11], font information, and document handling in a distributed environment.



TEACHING EP TO COMPUTER SCIENTISTS 95

In addition, a number of hypermedia frameworks have been proposed, including Hy-
Time[12] which is an application of SGML for hypermedia and time-based documents.

While no electronic publishing course can hope to cover the whole field, students
should have some idea of the existence and relationships of all these standards. Within two
years our course will probably include SPDL, a brief coverage of the ODA DAPs, and one
hypermedia framework. DSSSL is a standard aimed at an important area, but including
this may be a longer-term change as the current draft standard is unusable (there were 300
pages of adverse comments submitted during the recent international ballot).

7 CONCLUSION

Electronic publishing is a rapidly growing area with a multitude of different systems and
techniques available. Our course makes no serious attempt to cover all areas that could
reasonably come under the electronic publishing umbrella—database publishing, network
information services, and (perhaps more seriously) CD-ROM publishing techniques are
only given passing mentions.

In spite of the incomplete coverage, however, we believe our students acquire a good
understanding of most of the important basic principles and techniques. Their background
makes it easy for them to appreciate and exploit the latest advances in active documents,
and to see how document standards and document handling fit into the wider computing
scene. Their experience of programming and software engineering enables them to accept
the need for discipline and good design, and to understand the problems of handling really
large documents.

Although we cannot expect them to become typographers or graphic designers, we do
believe that even in the short time available during our course we can give them what might
be called an aesthetic awareness that will enable them to make reasonable decisions in their
future work.

ACKNOWLEDGEMENTS

We would like to thank our colleagues, Peter Brown, Dick Jones, and Eve Wilson (who
also teach on our undergraduate electronic publishing courses) for their help and ideas, and
our students for keeping us on our toes.

REFERENCES

1. D. E. Knuth and M. F. Plass, ‘Breaking paragraphs into lines’, Software—Practice and Experi-
ence, 11(11), 1119–1184, (1981).

2. Adobe Systems Incorporated, PostScript Language Reference Manual, Addison-Wesley, 1985.
3. P. J. Brown, ‘A hypertext system for Unix’, Computing Systems, 2(1), 37–53, (1989).
4. ISO 8879, Information Processing—Text and Office Systems—Standard Generalized Markup

Language, 1986.
5. R. M. Pirsig, Zen and the Art of Motorcycle Maintenance, William Morrow, 1974.
6. R. Rubinstein, Digital Typography—An Introduction to Type and Composition for Computer

System Design, Addison-Wesley, 1988.
7. P. M. English, E. S. Jacobson, R. A. Morris, K. B. Mundy, S. D. Pelletier, T. A. Polluci,

and H. D. Scarbro, ‘An extensible, object-oriented system for active documents’, in EP90—
Proceedings of the International Conferenceon Electronic Publishing, Document Manipulation
and Typography, Cambridge University Press, (1990).



96 H. BROWN AND I. A. UTTING

8. ISO 8613, Information Processing—Text and Office Systems—Office Document Architecture
(ODA) and Interchange Format, 1989.

9. ISO/IEC DISPs 10610–1, 11181–1, and 11182–1, International Standardized Profile
FOD11/FOD26/FOD36—Office Document Format, 1991.

10. ISO/IEC DIS 10179, Information Technology—Text and Office Systems—Document Style Se-
mantics and Specification Language (DSSSL), 1991.

11. ISO/IEC DIS 10180, Information Technology—Text Communication—Standard Page Descrip-
tion Language (SPDL), 1991.

12. ISO/IEC DIS 10744, Information Technology—Hypermedia/Time-based Structuring Language
(HyTime), 1991.


	SUMMARY
	1 INTRODUCTION
	2 TEACHING ELECTRONIC PUBLISHING AT KENT
	3 DESIGN/LAYOUT
	4 CHOICE OF SYSTEMS
	5 DOCUMENT AND INFORMATION STRUCTURES
	6 STANDARDS
	7 CONCLUSION
	REFERENCES

