ELECTRONIC PUBLISHING, VOL . 4(2), 109-118 (JUNE 1991)

Using logical objectsto control hypertext
appear ance

P. J. BROWN

Computing Laboratory
The University
Canterbury

Kent, CT2 7NF, UK

SUMMARY

It isaccepted wisdom that documents should be represented in terms of their logical structure
rather than their appearance. Nevertheless most of the popular document processing systems
concentrate on appearance rather than structure, mainly because most users opt for a user
interface that isinteractive, simple and direct.

This paper considersissuesrelated to fonts and other appearance attributes within hyper-
text documents. It first presentsthe relevant differences between hypertext systems and doc-
ument preparation systems whose end product is paper. It then goes on to describe a scheme
for representing appearance through logical structure. The scheme aims to meet the extra
needs of hypertext systems, and yet still to be smple enough to attract wide usage.

KEY WORDS Hypertext Logical object Font Guide

INTRODUCTION

This paper is about introducing fonts, colours and other attributes into hyperdocuments.
We shall start, however, by reviewing the perceived wisdom for document preparation
systemsin general, since there is now a considerable experience of their use.

SOME PERCEIVED WISDOM ABOUT FONTSIN DOCUMENTS

When a user says ‘| want to introduce fonts into my document’ he is thinking at the
wrong level. What he should say is ‘| have several different kinds of logical object in my
document. | wish to distinguish these. When | display the document | want to use fontsto
make the logical abjects look different’. The logical objects might be components of the
presentation structure of the document, such as section headings, or they could be objects
that relate to the topic of the document, e.g. book titles that are referenced in the docu-
ment, part numbers, or, in a document about programming, variable names.

The best approach is therefore for a document processing system to allow the user to
define and use logical objects. These logical objects will have several properties, one of
which isthe font (or fonts — maybe screen fonts are different from paper fonts) in which
itisdisplayed. The advantages of this approach are twofold:

(1) It iseasy to make systematic change, e.g. to change the font in which book
titles are to be represented. This can be done even if book titles are currently
displayed in the same font as, say, section headings. Overall it is easier to

0894-3982/91/020109-10$05.00 Received 6 September 1991
(] 1991 by John Wiley & Sons, Ltd. Revised 13 November 1991

© 1998 by University of Nottingham.

110 P.J BROWN

convert the document between different representations and even between
different source formats.

(2) The meaning of the document, rather than just its appearance, is captured. This
advantage is somewhat abstract, but can be expressed as a more concrete
example: it would be easy to write atool that extracted al the book titles refer-
enced in a document.

Users should not, therefore, generally use fonts directly. Instead they should work via
logical objects, and indeed this is particularly encouraged by the SGML standard. The
redity is, however, that the average user of a word processor does use fonts directly,
because that is the ssimple way; the user worries later about any problems that this short-
sighted approach brings.

Thus most of the popular WY SIWY G document preparation systems are often con-
demned as ‘What You See Is All You Get’, but such systems are hugely successful in the
market. Recently there has been some move towards separate specification of formatting
information, typically in the form of style sheets. Nevertheless, as the very name revedls,
thereis still an emphasis on appearance rather than on logical form.

There do exist excellent WY SIWY G systems that are centred on the logical nature of
material, notably Grif [1] and Quill [2]. With these, what you see is certainly not all you
get, but they are not (yet?) a large force in the market. The design issues are well
described in [3].

To summarize, the message from document preparation systems is that, although logi-
cal objects are desirable, they must be presented in a very smple way if users are realy
going to use them.

HYPERTEXT SYSTEMS

We now focus on hypertext systems. All that has been said so far applies to hypertext
systems, but there are important differences that may affect needs. Some of these differ-
ences are;

(1) the on-line difference: in hypertext the on-line form is the primary form, and
any paper form is very much secondary.

(2) theintegration difference: following on from the above, the hypertext system
must work together with other programs. Users want solutions, not hypertext
systems per se, and the hypertext system is normally part of the solution.
Often the hypertext system is running at the same time as other systems,
exchanging documents dynamically with them.

(3) the directed graph difference: in hypertext the underlying structure is gener-
ally adirected graph, not atree.

(4) theinterlinked corpus difference: it is more common to have several different
documents open at the same time, e.g. atutorial document that linksto a refer-
ence document. More generaly, document boundaries may be blurred and a
massive body of material may be collected together in one interlinked corpus.

We shall discuss the impact of these differences as we proceed through the paper. There
are two further differences, both following from hypertext's directed graph structure,
whose impact is readily apparent:

USING LOGICAL OBJECTS TO CONTROL HYPERTEXT APPEARANCE 111

(5) thenon-linear difference: hypertext is not processed linearly. Thus techniques
such as troff's setting of global variables to represent current point-size, etc.,
as the scan proceeds through a document, are inappropriate.

(6) the chunk difference: hypertext consists of several small chunks linked
together, rather than one stand-alone document. In some hypertext systems
that use the scroll model, such as Guide, chunks are actualy inserted within
other chunks when the document is displayed on the screen. Moreover the
same chunk may be inserted at severa places in the document. It is therefore
vital that there be some concept of inheritance, whereby a chunk takes its
properties from the chunk that linked to it.

This paper describes an essay in implementing logical objects within a hypertext sys-
tem, with the dual aims of building on the experience of document processing systems,
but catering for these six differences. The hypertext system for which the implementa-
tion has been done is the UNIX version of the Guide hypertext system [4], which is a
product from the University of Kent at Canterbury. Henceforth reference to Guide should
be taken to mean this implementation of Guide, rather than the similar and better-known
PC/Mac version of Guide, which is a product of OWL [5]. It is not, however, assumed
that the reader isfamiliar with (either implementation of) Guide.

GUIDE’'SAPPROACH

Guide's basic approach to logical objects is a standard one: the user chooses a name for
each type of logical object, and supplies a table which attaches properties to this name.
Properties include fonts, colours, etc. A property that is not specified takes on a default
value. It was astruggle to find a suitable term for these logical objects — the term ‘logi-
cal object’ isnot in itself one to set the blood tingling. In the end they were called ‘ con-
texts', a term which aptly describes what happens when other material is inserted within
them, but nevertheless is far from perfect. The table that specifies the names and proper-
ties of contexts is called the context-table. Contexts, like most Guide objects, can be
nested to arbitrary depth. If a property is not specified for a context that property isinher-
ited, for each instance of the context, from the containing context.

Document preparation systems have structural components such as paragraphs, and
hypertext systems have additional structural components concerned with linking. Thus
Guide has replacements, buttons, enquiries, etc. Such structural components are often
called objects, and one approach isto combine them with the logical objects we have just
described into one uniform mechanism. In this case matters concerned with hypertext
presentation, such as ‘thisis a button’, would simply be a property of alogical object; a
button thus becomes a way of representing a logical object, rather than a logical object
itself. (More generally, the aim of most hypertext models is to separate out the compo-
nents of hypertext into distinct layers, rather than having mechanisms that intermix con-
tent, structure and appearance [6, 7].) In spite of the attractions, Guide has not adopted
this uniform approach, mainly because unifying rather different types of object does not
make for simplicity. Thus in Guide a context is a different animal from a button or a
replacement, but nevertheless al structural components must be properly nested. Hence
if an instance of a context lies within a replacement it must lie entirely within that
replacement; thisis a natural rule as otherwise structured editing would be a nightmare to
both user and implementer alike.

112 P.J BROWN

Following systems such as Quill, properties can be set relative to properties of the
containing context. A font property might therefore be:

e thesameasthe containing font, but italic.
e the same asthe containing font, but two points bigger.

We call thisrelative inheritance.

The value of relative inheritance arises because of difference (6) — the chunk differ-
ence: for example, assume a chunk of text includes a title that is to be in a bigger font
than the surrounding text. This can be represented by a context called Title with a prop-
erty that its font is two points bigger than its containing font. The chunk of text may be
inserted into several different places in the hyperdocument. In each case the containing
font may be of a different size, but the title will adapt. As a further example, the chunk
could be used by two users, one of whom had a small default font, and the other alarge:
again the size of each Title would adapt accordingly.

It is necessary to provide some flexibility with relative inheritance: for example,
specified fonts may be unavailable or too big/small to read. To achieve this, authors of
context-tables can provide fall-back options, e.g. one point bigger rather than two points,
or, as alast fall-back, exactly the same as the containing font.

GRAMMATICAL RULESFOR CONTEXTS

In [3], Furuta et al. discuss the relative merits of the interrelationships between objects
being constrained or unconstrained. It is another discipline v. freedom issue. Bearing in
mind the reluctance of users to accept discipline, even if it isin their own long-term inter-
est, Guide has opted for freedom. There is therefore no grammar associated with con-
texts: any context can contain anything. (It often does. a complete Guide hyperdocument
can be enclosed in a context.) The only restriction is the rule for proper nesting. An
unconstrained approach is, in fact, the usual one for interactive document preparation
systems|[8].

READERS AND AUTHORS

A consegquence of difference (1) — the on-line difference — is that hypertext systems
need to cater for two classes of users:

e readers, who work solely with the document as it appears.
e authors, who need to be aware of the logical structure of the document.

Guide readers are only aware of contexts to the extent that contexts change the appear-
ance of the document. Thus readers are aware that Guide supports fonts (etc.) in some
way, but can be totally unaware of the concept of logical objects — probably a good
thing because evidence from the use of word processors indicates that if they did need to
know about logical objects, they would be put off. (Actually readers probably are sub-
consciously aware of logical objects that relate to the structure of the document, such as
chapters or sections, because of familiar typographical conventions for representing them
— assuming the author has followed these conventions.)

Authors do need to know about contexts. In Guide, authors see the document as a
reader does, but they get an enhanced view of the document, which shows structural

USING LOGICAL OBJECTS TO CONTROL HYPERTEXT APPEARANCE 113

boundaries. These structural boundaries are indicated by inverse-video metacharacters
embedded in the document. A sample line containing two instances of the context
Book-title would be seen by the author as

Jane Austen’s EElelolQiilz} Pride and Prejudiceand [l gl Northanger Abbey are

Here the ‘ metacharacters' show where each instance of a Book-title starts and ends. (The
‘}’ character indicates the end.) The reader would not see the metacharacters, i.e. the
line would appear as

Jane Austen’s Pride and Prejudice and Northanger Abbey are

The menu for creating contexts is controlled by context-tables: thus if Book-title isin
the context-table it appears in the author’ s menu.

WORKING WITH OTHER TOOLS

Following on from difference (2) — the integration difference — most real hypertext
applications involve working with other tools. Moreover it is the UNIX philosophy that
tools should not be monolithic, but instead that several tools should naturally work
together — perhaps in a pipe — on the same source file. Guide source files are therefore
textual, to allow the use of most UNIX tools. The ideal would be an accepted official
standard format, accepted by all tools that might process documents. Since this does not
exist, the next best, in a UNIX environment, is the troff style of embedded mark-up,
which is something of a de facto UNIX standard. Thus Guide uses a troff style of mark-
up: our above example of a Book-title would be stored in a source file as

.Co Book-title
Pride and Prejudice
.cO

Such a representation makes it easy to write a UNIX script to, say, extract all the Book-
titles from a Guide document, sort them into order, and delete duplicates.

Guide could equally well have been designed, like Quill, to use an SGML mark-up.
However, UNIX tools such as spell assume a troff mark-up, and this swung the balance.

The main thrust of the integration difference is that a hypertext system is often
wrapped intimately together with other software to provide a solution to a user’s need. A
good example of thisisICL's LOCATOR fault diagnosis system [9], which wraps Guide
together with (a) a system that logs fault reports from customers, and (b) a system for
controlling the dispatch of engineers to fix faults. Guide extracts information from its
hyperdocument and passes it, as each fault is diagnosed, to the dispatch system. This
information includes part numbers. Such part numbers are of no particular interest on the
hypertext side, though they form part of the text displayed on the screen, but are objects
of special interest to the dispatch system. In order to identify them they can be marked as
instances of the context Part-number. On the hypertext side this context has no properties
concerned with appearance: it istherefore displayed in the same way as normal text. The
marking of Part-numbers only comes into its own when text containing a Part-number is
passed by Guide to the dispatch system: the dispatch system can readily identify part
numbers within the material passed to it, and there is no ambiguity between true part
numbers and other strings of characters which might happen to look like part numbers.

114 P. J. BROWN

This use of contexts — marking objects that are of interest to some other system — is
afrequent usage. It ispossibleto make such objectsinvisibleto readersif they areirrele-
vant to the hypertext side. However, the existence of such objects is aways apparent to
authors, so that they are not treated wantonly when a document is edited.

SAVING

Guide supports two ways of saving material: a structural save of the hyperdocument
itself, and a what-you-see save, covering the hyperdocument as currently displayed on
the screen (i.e. with the current state of button expansions). Cut-and-paste can be consid-
ered as a specia case of save and restore, and the same two approaches are available.
One of the properties of a context is a specification of what to do on a what-you-see save:
the user might want to record some indication that the context was there. Specifically
properties can be set to insert strings before and after each instance of a particular con-
text. If, for example, the saved material was to be inserted into a troff document, each
instance of a saved Book-title could be prefixed by the string ‘\fl’ and followed by the
string ‘\fP', thus causing the book title to appear in italics when formatted by troff. (This
facility is analogous to afacility found in SGML.)

LIBRARIESAND CONTEXT-TABLES

Sometimes hypertext is used as an aid to writing or thinking, and hyperdocuments are
read by the author and no-one else. More often, however, hyperdocuments are prepared
for anumber of different readers, possibly distributed over different sites, and working in
different hardware/software environments. This leads to a requirement that hyperdocu-
ments be self-contained. In our application this requirement says that each hyperdocu-
ment should include its own context-table, which contains context-specifications for all
the contexts used in the hyperdocument. Each context-specification gives the name and
properties of a context.

If areader wants to change some properties, e.g. to make fonts bigger or to exploit
colour more, he can make a copy of a hyperdocument and edit the context-specifications
within the context-table.

The above requirement for diversity can be matched by an equally strong requirement
for centralization. If al context-tables are combined into asingle library then achange in
the properties of a context can be effected just by changing its context-specification
within the library. If, instead, there are hundreds of documents, each containing a copy
of agiven context-specification, then making the change becomes next to impossible.

The centralization versus diversity issue arises in many branches of computing (e.g.
with SGML DTD libraries, subroutine libraries, graphics libraries, etc.), as it does in
business, and there are no absolute answers. There are some possible compromises, like
centralization with selective local overriding, and Guide follows this approach.

The details are as follows. Guide has a central library of context-specifications. |de-
aly this should be the same on all Guide installations, just as, for example, ideally the
library of built-in functions for C compilers should be the same on every C installation.
Reality is of course otherwise, but the hope is that, as with C, serious problems will be
rare. The library will generally contain ‘generic’ contexts such as

USING LOGICAL OBJECTS TO CONTROL HYPERTEXT APPEARANCE 115

Emphasized for emphasized words

Greek for a Greek font

Bigger for bigger text. (Instances of this may well be nested,
to give doubly bigger text.)

In addition each Guide hyperdocument can contain its own context-table. Each
instance of a context within a document has, as we have seen, an associated context-
name, and the mark-up of the instance takes the form:

. Co Anane
sone text
.cO

On finding this mark-up within a document, Guide first looks for Aname in the context-
table (if any) for the current document, and only if thisfailsisthe library searched.

Specialized contexts, such as our Part-number example, tend to be placed in local
context-tables, as do changes made by individual readers, i.e. the reader can override the
properties of a context in the library by re-specifying the context locally within a docu-
ment.

Contexts can be local to a part of the document that the user sees on the screen: if a
file is inserted within a Guide document as the replacement of a button, its context-table
(if any) islocal to the current replacement. The replacement of a button can be generated
by running a UNIX shell script. In this case the shell-script, if it needs to, can generate a
context-table as well as some text. Context-tables use the same troff-like mark-up as the
rest of adocument. An example of aline within a context-tableis

.\" Book-title F=-*-lucida-mediumr-*-*-14-*-*-*_*_*_*_* REE=(100, 40, 250)

This gives the context-specification of the Book-title context with its font (F=) and colour
(RGB=); it is represented as a troff comment so that the line is stripped out when a spel-
ling check of the document is made. Such local context-tables are useful when the shell
script interfaces with another tool that generates material that is to be viewed in an
idiosyncratic way, e.g. using special fonts.

When replacements are nested, a particular instance of a context could lie within the
scope of several context-tables: thisis a similar situation to nested variable declarations
in a block-structured programming language, and similar rules apply, i.e. the most closely
encompassing declaration takes precedence.

In general, Guide's scroll model, with replacements within replacements, tries to give
the user a hierarchical illusion, though the underlying data structure is not a tree [10].
The scope of a context-table is based on this hierarchy, i.e. the scope is a contiguous area
of the user’s scroll. This helps surmount difference (3) — the directed graph difference:
in particular it overcomes the problem that the directed graph which underlies most
hyperdocuments is not a good base for applying such concepts as locality of scope.

As we have said, the Guide author’s menu aways contains commands for creating
instances of each context specified in the current context-table(s). The menu also
includes any library contexts used in a current document; there are mechanisms for
enhancing this to make the menu encompass all contexts in the library. The current
context-table (and therefore the menu) may grow as a document is built up. For example,
a hyperdocument, like any other document, is sometimes created using cut-and-paste

116 P. J. BROWN

from other documents. When some materia is copied from one Guide hyperdocument to
another, Guide checks for any instances of contexts within the material, and may as a
result augment the context-table of the receiving hyperdocument. Thus if an instance of
a Part-number is pasted into a hyperdocument the hyperdocument’s context-table is
automatically augmented by a specification of Part-number.

Difference (4) — the interlinked corpus difference — leads to a problem with the
name-space: one author may choose a name for an object, and another author may
choose the same name for a completely different type of object. For example two Guide
authors may choose the name Part-number for completely different contexts. The prob-
lem comes to light when the work of the two authors is combined.

The scheme we have described, which has a name-space for contexts that can be (a)
local to a replacement; or (b) local to a document, or (c) global to all documents using a
particular library, goes some way towards tackling this problem. The scheme has the
defect, however, that the name-space and the properties specified in context-tables relate
only to Guide. In our Part-number example, its properties would not be known by other
tools that used Part-numbers, except in the unlikely case that such tools made the effort
to understand Guide's context-tables.

COLOUR

One property of a context is the colour used to display material within that context. (In
fact there are several colours associated with each context, but we will not go into details
here.) Colours can be used as a complement to fonts or even as a substitute (e.g. a user
might choose to display the Emphasized context in a brighter colour rather than in a dif-
ferent font).

Colours can be defined in a relative way, e.g. 20% redder than the containing colour.
If used with considerable restraint this can be a valuable facility: it would probably be
much more vauable if Guide used an HSV (also called HSB) colour model rather than its
current RGB model.

CONCLUSIONS

A hypertext system is different from a system for preparing paper documents. We have
outlined several differences, but the most important are

e what thereader viewsis a document made up from severa disparate chunks.
e thehypertext system needs to work directly with other tools.

We have described a scheme for introducing logical objects into one hypertext system,
Guide. The scheme has many similarities (by accident rather than by design, as it hap-
pens) with the Quill system for preparing conventional paper documents. Important fea-
tures of the scheme are

e asimple embedded mark-up that can easily be used by other tools. The same
style of mark-up is used both for instances of the logical objects and for their
definitions.
relative inheritance.

a mechanism for the scope of a logical object to be local to a document plus
those documentsiit links to.

USING LOGICAL OBJECTS TO CONTROL HYPERTEXT APPEARANCE 117

e away of allowing readers to focus just on the appearance of logical objects,
but authors to be aware of them as structural entities.

ACKNOWLEDGEMENTS

Three referees of this paper made shrewd comments that have led to improvement.

REFERENCES

1

10.

Vincent Quint and Iréne Vatton, ‘ GRIF: an interactive system for structured document manipu-
lation’, in Proceedings of the International Conference on Text Processing and Document
Manipulation (EP86), ed. J.C. van Vliet, Cambridge University Press, pp. 200213, April
1986.

. Y. Wolfsthal, ‘Style control in the Quill document editing system’, Software—Practice and

Experience, 21 (6), 625-638 (1991).

. R. Furuta, V. Quint, and J. André, ‘Interactively editing structured documents’, Electronic

Publishing—Origination, Dissemination and Design, 1 (1), 1944 (1988).

. P.J. Brown, ‘A hypertext system for UNIX’, Computing Systems, 2 (1), 37-53 (1989).
. OWL, GUIDE: the ultimate way to present information, OWL International, Bellvue, Wa,,

1990.

. F. Halasz and M. Schwartz, ‘The Dexter hypertext reference model’, in Proceedings of the

Hypertext Sandardization Workshop, ed. J. Moline, D. Benigni and J. Baronas, National Insti-
tute of Standards and Technology, pp. 95-133, 1990.

. R. Furuta and P.D. Stotts, ‘A functional meta-structure for hypertext models and systems,

Electronic Publishing—Origination, Dissemination and Design, 3 (4), 179-206 (1990).

. R. Furuta, ‘An object-based taxonomy for abstract structure in document models’, Computer

Journal, 32 (6), 494-504 (1989).

. G. Rouse, ‘An application of knowledge engineering to ICL’s customer service', ICL Techni-

cal Journal, 7 (3), 546-553 (1991).
P.J. Brown, ‘High level hypertext facilities: procedures with arguments’, Hypermedia, 3 (2),
91-100 (1991).

	SUMMARY
	INTRODUCTION
	SOME PERCEIVED WISDOM ABOUT FONTS IN DOCUMENTS
	HYPERTEXT SYSTEMS
	GUIDE'S APPROACH
	GRAMMATICAL RULES FOR CONTEXTS
	READERS AND AUTHORS
	WORKING WITH OTHER TOOLS
	SAVINGS
	LIBRARIES AND CONTEXT-TABLES
	COLOUR
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

