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SUMMARY

In this paper we presenta new, abstract model for textual data objects with embedded markup.
Based on the model, we propose a uniform representation for these objects that borrows its
concrete syntax from the ISO standard SGML. Such a uniform representation will greatly
facilitate the development of software that analyzes, formats or otherwise processes these
objects. We then describe a toolset that supports the retagging of existing encoded data objects
to the new uniform representation. Our experience with the toolset demonstrates a savings of
approximately 10:1 over a retagging effort without the toolset.
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1 INTRODUCTION

Digital library systems will be implemented in the next decadé. These systems
of geographically distributed users and organizations, each with its own digital library
containing information of both local and widespread interest, will make available large
collections of electronic documents to a diverse group of users and applications. For
example, a manuscriptin a digital library might be accessed by text formatters, concordance
packages, and linguistic-analysis packages. An ideal modaetadssing a library would
be similar to a client-server model. A common setlibfary-accessfunctions would
permit an application to retrieve or modify the data in the library. The application would
be restricted to thapplication-dependeritinctions required to do the desired processing
and the library would be accessed biliog a library-access function. This ideal model is
depicted inFigure 1

A prime example of this model is the X Window Systd#]j. Although the resource to
be accessed is nota library, X provides a uniform view of the funditymequired to build
a window-type interfice, independent of thenderlying hardware. The comma@atcess
functions are provided in a variety of forms such as a base function library (Xlib), toolkits
of more sophisticated functions (Xt), and predefined window classes (widgets). In writing
an application a programmer can concentrate on the application-dependent functions. The
application is created by calling the commaecess functions wibut becoming involved
in the low-level details of creating a window system.

A second example is the ISO Standard Generalized Markup Langizad&GML)
for electronic documents. SGML provides a method for defining document types and
declaring their markup. Documents in an SGML-encoded library cascbessed with a
typical SGML parser. Such a parser provides the common library-access functions, but
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Figure 1. Ideal library-access model

does not process the document. Applications to perform services such as text formatting,
validation, or linguistic analysis are written independently, using calls to the parser to
access the coponents of the document.

There are many advantages to this ideal model. It eliminates the duplication of effort in
the development of an application, because the library-access functions already exist. Also,
it permits a single version of the library-access functions to be used by all applications that
access the library.

In the electronic-document domain, the current situation is far from this ideal model,
despite the existence of SGML and other document standards. A large number of
nonuniform representations currently exist in the domain of electronic documents. There
are different encoding schemes for specialized humanities document colleetietis
corpora[8,9], and dictionarie$10]. There are assorted text-formatting langud@és13]

To complicate matters, concordance-building progrdi?s15] permit the users to define

their own restricted encoding scheme. Applications usually contain both the application-
dependent functions and the necessary library-access function&i(gee 2. In this
scenario, if an application has to access more than one data representation, a different set
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Figure 2. Current access model




A MODEL AND TOOLSET FOR THE UNIFORM TAGGING OF ENCODED DOCUMENTS 65

of library-access functions has to beitten for each representation. Thus, there is much
duplication of effort within an application to access the different representations. There
is duplication of effort among applications as well, since the same access code must be
written for each.

A step toward approaching the ideal model in the electronic-document domain is to
define a uniform representation of the data. The characteristics of this representation are
dictated by the needs of application package&dation 2we describe the characteristics
of a uniform representation and provide an abstract and a sample concrete syntax for this
representation.

Once such a uniform representation is in placenconforming document represen-
tations must be converted, oetagged into the desired representation. An essential
component of the retagging process is the lexical analysis of an encoded document. With
the availability of code-generation tools like Lg§%6], most computer scientists consider
the problem of lexical analysis essentially solved. This may be true for programming
languages, but it is not true for other encoded data objectSettion 3we describe the
current model of lexical analysis and why it is inadequate for data objects with embedded
commands. IrSection 4we give specific examples of how difficult the automatic gener-
ation of code is with current code-generation toolsSkttion 5Swe briefly review other
code-generation tools relevant to retagging.

Based on our analysis of the inadequacy of existing retagging toolsets, we designed
and implemented a new toolset describedSiection 6 In Section 7we summarize
our experiences in using the toolset to generate retagging programs for six different
document encoding schemes. These encoding schemes represent a broad spectrum of
electronic-document encoding schemes in terms of applications and levels of complexity.
We demonstrate savings in coding effort ranging from a factor of 4.3 to a factor of 23.2,
measured in terms of lines of code generated for each line of high-level specification. We
also demonstrate that with the toolset, the user must provide only two percent of the C
source code required to do the retagging without the tools8ettion 8ve describe some
of the practical applications of the uniform representation. We summarize the contributions
and future directions of the work presented in this pap&dation 9

2 A UNIFORM REPRESENTATION FOR ELECTRONIC DOCUMENTS

All applications in the electronic-document domain minimally must recognize the signif-
icanttokensor character strings in an electronic document. The two primary classes of
such strings in documents are the markup tokens and the content tokens. For example,
in a document database for text-formatters, a markup token mighthethor-" and a
content token “Julie Barnes”.

An application needs to separate the markup from the content tokens. A word-frequency
application, for example, needs to recognize and separate the markup tokens from the
content tokens to build its table of words and counts. Similarly, a translation application
needs to recognize the significant tokens before it can rename and possibly reorder them
for a different target representation. The Chameleon translation project has refafted
that the primary hindrance to automatically generating translation code was the inability to
automatically generate tokenizers for representations to be translated.

The process by which input data is scanned for significant clusters of characters is
calledlexical analysis Because lexical analysis is thenidamentahccess function for
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all applications in the electronic-document domain, the uniform representation should be
lexicallybased, i.e., not based on some other properties of documents like their structure or
layout features. For this reason, we call our proposed representédtixical intermediate

form (LIF).

In this section we present a detailed model of the token classes that exist in electronic
documents and that, therefore, have to be recognized in their lexical analysis. A description
of each class is given along with examples taken fromTthesaurus Linguae Graecae
(TLG) [7]. Based on this model we derive the required abstract syntax of a LIF and give
one example of a possible concrete syntax.

2.1 Token classes in encoding schemes

The coarsest partition of token classes in a document encoding scheme exploits the
distinction between the markup tokenstags and the text that constitute the document
(seeFigure 3. Tags may indicate the structure of the document, processing to be done by
an application, or some other characteristic of a portion of text.

The major tag classes are based on the relationship of a tag with the surrounding text.
Tags that break the text into smaller segments are caflgthenting tagSegmenting tags
indicate some structural or physical property of the text segment, such as page divisions in
a document or that a string of text is to be italicized.

There are two methods in which segmenting tags can mark a portion of text. When
both the start and the end of the text segment are explicitly marked by tags, these tags are
calledexplicit segmenting tag&or example,{1 ' marks the start andt1 ' marks the end
of a title in theTLG. Explicit segmenting tags always occur as start-tag/end-tag pairs.

In other cases only the start or the end of the string, but not both, are explicitly marked
by a tag. In these instances the segments are ust@itjguous meaning that the end of
such a segment implies the start of the next similar segment. These tags aremallied
segmenting tagbecause either the start or the end of the segment is implied by another
tag. Examples of this type of tag ai®’ to indicate the start of a text segment in normal
Greek font and ‘@1’ to indicate the end of a page in a manuscript. In both cases no mate
tag exists to indicate the corresponding end or start of the designated segment.

Tags which do not segment the text amnsegmenting tag$hese tags can be viewed

t oken cl asses

t ags t ext

explicit implicit synbol nonsynbol

start end start end

Figure 3. Partitions of the token classes in document encoding schemes
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as insertionsin the text. These tags do not encapsulate a text segment or attach any meaning
to a segment like segmenting tags.

A major subclass of the nonsegmenting tags issyrabol tagsThese tags represent
characters or symbols in the document that do not occur on the keyboard of the input
device and include the representations of any keyboard symbols whose use is restricted to
markup. In theTLG, ‘% represents the dagger character,

The other subclass of nonsegmenting tagsoissymbol tagsThese tags may serve a
variety of purposes, such as general processing instructions for an application. An example
would be ‘@’ which is used as an indentation marker inThé&.

2.2 The proposed lexical intermediate form

The token classes defined above indicate those classes that must appear in a lexical
intermediate form (LIF) to serve the electronic-document domain. When deriving a syntax
for the LIF, the ease with which a document in the LIF can be processed is the foremost
concern.

We require that tags bexplicit because the token classes associated with implicit
tags cannot always be easily determined. For example, the section commands from most
text formatters can imply different tags depending on the context. For the purpose of this
example, we will use chapter, section, and subsection. The first chapter command in a
document does not imply the end of any previous sections. The next chapter command
implies the end of the previous chapter plus the end of the last section and the last subsection
in that chapter. So, a chapter command can imply from zero to three different end tags.
Determining which tags are implied requires information of what previously occurred, i.e.,
the context in which the chapter command appeared. Because implicit tags edways
be determined without this auxiliary information, they should not be permitted in the LIF.

We require the token classes to satisfy the propert)igibintnessTwo token classes
aredisjointif their intersection is empty. This is important because, if the token classes are
disjoint, there will be no ambiguity during the lexical analysis. Each token will belong to a
unique token class. Ambiguity complicates the lexical-analysis phase of accessing encoded
documents. For example, a right parenthesis can be a text string or a tag in B&jbe
Hence, the LIF should satisfy the property of disjointness.

2.2.1 Abstract syntax of the LIF

The construction of the abstract syntax of the LIF is driven by a partitioning of the token
classes similar to that iRigure 3for current encoding classes. The first partition of the
token classes is that between tags and text. In a survey of current encoding schemes,
one feature stands out as distinguishing tags and text. Each scheme reserves at least one
printable keyboard character for the exclusive function of signaling the existence of a tag
in the data stream. Scribe uses the symbol ‘@TgX [11] restricts the use of many
characters, most notably ™. A reserved character ensures that the tag token classes and
the text token classes are disjoint. We require that the LIF provide reserved characters to
indicate the start and the end of a tag.

Further partitions, as seenfigure 4 eventually divide the tags into segmenting start
tags, segmenting end tags, symbol tags, and nonsymbol tagaue one of the goals in
designing the LIF is that all markup be explicit, the class of implicit segmenting tags is
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token cl asses

/K t ext
segnmenting nonsegnenti ng
start end synbol nonsynbol

Figure 4. Partitions of the LIF token classes

eliminated. For each of these classes, the judicious selection of start and end characters
will ensure disjointness of the different tag classes.

A final requirement is to make each of the tags unique, and hence each of the tag token
classes will be pairwise disjoint. Each tag has a unique, special meaning to the application
forwhich the tag was originally designed. For example, the commantsg@m(math) '
and ‘@begin(up) ’are both start tags, butitis the identifiersath’ and ‘up’ that make
the commands different and unique. A unique identifier is required in a LIF tag to preserve
this meaning.

The final abstract syntax for LIF tags can be sedfigure 5 The upper-case strings in
Figure 5represent the start and end characters for each of the tags. These characters will
be assigned their final values in the concrete syntax.

tag ;= segment_tag

| nonsegment_tag
segment_tag = start_tag

| end_tag
nonsegment_tag ::= symbol

| nonsymbol
start tag ;= S_TAG_START identifier S_TAG_END
end_tag = E_TAG_START identifier E_TAG_END
symbol = SYM_START identifier SYM_END
nonsymbol ::= NSYM_START identifier NSYM_END

Figure 5. Abstract syntax of the LIF tags

2.2.2 Concrete syntax of the LIF

To specify a concrete syntax for LIF tags, we will adopt part of the reference concrete
syntax of SGML, because it satisfies most of the requirements specified in the abstract
syntax of the LIF tags. For example, start tags, end tags, and symbols all have direct
counterparts in SGML.

SGML includes a list of identifiers for a set of widely used graphic characters. Symbols
are calleccharacter entity referencéa SGML and their declarations are grouped into ISO
public entity setsWe will use these identifiers in the LIF when possible.



A MODEL AND TOOLSET FOR THE UNIFORM TAGGING OF ENCODED DOCUMENTS 69

SGML does not specify identifiers for start and end tags because these are usually
application or data-object dependent. We define an identifier as a string starting with a
letter followed by zero or more letters and digits.

The SGML construct that most closely resembles the class of nonsymbol tags is
processing instructiondMe adapt the notation for processing instructions in SGML for
nonsymbol tags. This SGML markup is used for system-specific data. The LIF honsymbol
tag serves as a marker for such data and an identifier similar to those for the start and end
tags is used to indicate its function.

The concrete syntax for the LIF is givenkigure 6 This concrete syntax satisfies all
of the syntactic properties described for the abstract syntax.

start_tag ::= ‘<’ identifier >’

end_tag = ‘< identifier >’
symbol = ‘& identifier *}
nonsymbol ::= ‘<?’ identifier ‘>’

Figure 6. Concrete syntax of the LIF tags

2.2.3 A sample document

A sample Scribe document is presentedrigure 7 A corresponding LIF version of this
document can be seen Figure 8 The amount of information retained in a LIF version
is dependent in how the tags are classified and the choice of an idenfififerent
classifications of the tags will yield different LIF versions of the document.

3 AN OVERVIEW OF LEXICAL ANALYSIS

Given a uniform representation of electronic documents, the next task is to convert existing
documents to that representation. We defietaggingas the process of replacing the
markup in an encoded document with its LIF equivalent. In general, retagging is a complex
process because many existing encoding schemes contaiguenabior context-sensitive
markup. Thus, techniques like global string @e@ments are not applicable in a large
number of cases, and special, sophisticated software tools are needed to supportthe process.
We examine current theory and practice in lexical analysis as a prelude to proposing the
development of a customized toolset for our purposes.

3.1 Theoretical model for lexical analysis

The current techniques for implementing lexical analyzers are based on the theory of
regular expressions and finite-state automdi8]. A regular expression is often used
to describe a pattern that specifies the set of strings that constitute a token class. The

1 In this example, the device and libraryfile commands have been mapped to nonsymbol tags which do not retain
the information in their parameters. If it is necessary to retain the parameter data, then a different identifier

could be chosen to reflect the value, i.e., gavfor @device(postscript), or the commands could be classified
differently.
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@device(postscript)

@make(article)
@libraryfile(mathematics10)
@section(In-text Math Formulas)

This is an example of a formula that
appears as a part of the text:
@begin(math)

@sum{from <n=1>, to <@infty >}
@over{num <(-l)@begin(up)n@end(up)>,
denom <n>}

@end(math)

@section(Display Math Formulas)

Note the difference in this display
version of the same formula:
@begin(mathdisplay)

@sum{from <n=1>, to <@infty >}
@over{num <(-l)@begin(up)n@end(up)>,
denom <n>}

@end(mathdisplay)

Figure 7. Example Scribe document

<?device>

<article>

<?libfile>

<sec><st>In-text Math Formulas</st>
<p>This is an example of a formula that
appears as a part of the text:

<f>
<sum><lI>n=1</lI><ul>&infin;</ul></sum>
<fr><nu>(-1)<sup>n</sup></nu>
<de>n</de></fr>

</f></p></sec>

<sec><st>Display Math Formulas</st>
<p>Note the difference in this display
version of the same formula:

<fd>
<sum><IlI>n=1</lI><ul>&infin;</ul></sum>
<fr><nu>(-1)<sup>n</sup></nu>
<de>n</de></fr>

</fd></p>

</sec></article>

Figure 8. LIF version of example document
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expressionA-Za-z][A-Za-z0-9]* describes the token clasdentifie® in many
programming languages.

Finite-state automata are used as a tool to design and model the actual code of the
desired lexical analyz€8]. They represent the actions to be taken upon reading the next
input character. A finite-state automaton can be represented as either a directed graph or a
transition table[19].

The theory of regular expressions and finite-state automata includes theorems which
show the equivalence of regular expressions and finite-state automata. The proofs of
these theorems include algorithms for constructing finite-state automata from regular
expressions. This forms the basis for tools to generate automatically the code for a lexical
analyzer.

3.2 Current lexical-analyzer generators

With this well-understood model of lexical analysis irapé, several tools have been
developed to assist in the writing of code for lexical analyzers. These tools, known as
lexical-analyzer generators, usually take a high-level specification and generate code for a
lexical analyzer. The high-level specification often has the format of a lisaotlation

rules each containing aegular expressiorfollowed by anaction routine The action
routine is a program fragment that is to be executed when the lexical analyzer matches a
segment of the input stream with the regular expression. The program fragment is written
in a target implementation language. The Uttixtool Lex [16] accepts action routines
written in the C programming language and generates a lexical-analyzer routine written in
C. An example of a translation rule in Lex for the token claesntifierwould be:

[A-Za-z][A-Za-z0-9]* {yylval=install_id(); return(ID);}

where the action routindyylval=install_id(); return(ID);} , updates the
symbol table and notifies the parser that an identifier has been found.

Lexical-analyzer generators, such as Lex, automatically generate the transition table
representing the required finite-state automaton from the specified regular expression and
the necessary code to simulate the finite-state automaton. They do not automatically
generate the action routines. In the above example, the furiottall_id must be
written by the implementor. In some domains, like programming languages, the token
classes and their requisite action routines are well-defined. In these cases, the action
routines can be automatically generated.

4 DIFFICULTIES WITH THE AUTOMATIC GENERATION OF
ACTION ROUTINES

Because we desire taigport the automatic generation of retagging code, reasonable
candidates for this support are the currently existing lexical-analyzer generators. However,
these tools are inadequate for the task, as we illustrate below.

2 This regular expression describes an identifier as a string that starts with an alphabetic character and may be
followed by zero or more alphanumeric characters. Strings that satisfy this regular expresstonlaram, X,
or Dd12x
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4.1 Specific examples
4.1.1 Delimiters

Delimiter characters play an important role in text-formatting languages. They mark the
start and end of strings to be modified and encapsulate arguments of commépas. L
reserves one pair of delimiter characters for this purpose and they are always part of a
markup string. In Scribe, this is not the case. A regular expression denoting a delimiter,
such as)’, does not represent a unique token class. To determine if the delimiter character
is part of the text or part of a tag, it is necessary to check the left context in which
the delimiter character occurs, i.e., the tokens which have occurred prior to the delimiter
character. For example, to be a tag, a right delimiter character must have been preceded by
a command and the matching left delimiter. Because commands may be nested in Scribe,
it is necessary to remember more than one of these corttexts.

The matching of delimiters requires a more powerful formal model than regular
expressions and finite-state automata. Push-down automata have a memory stack that can
be used to record previously seen tokens. In a Lex-like specification, a programmer must
implement a stack in the action routines to achieve this functionality. In our specification of
a lexical analyzer for a subset of Scribe commands, we were required to write 370 lines of
code in the action routines and auxiliary functions, primarily to create and manage a stack
required for matching delimiters. We saw a ratio of approximately 6:1 for lines of code to
Scribe tokens to generate the desired lexical anafylrecomparison, we estimate that for
Pascal, the ratio would be approximately 1.5:1. The size of the task is further emphasized
when one observes that the average number of tokens in a typical programming language
(e.g., Pascal has 101) is considerably smaller than that for the typical document encoding
schemes (e.g., Scribe has over 300 tokens and the TLG has over 1100).

4.1.2 Scope rules

In IATEX, there is a subset of commands caltkstlarationghat affect the way a string of

text is printed. The text is said to be in theopeof the declaration. The declaration itself
marks the beginning of the scope, but there is not a single, definitive markup to denote the
end of the scopelable 1shows several different methods used to denote or imply the end
of the scope of theém’ command.

Table 1. Examples of how to end a scope

Example: End of scope is indicated by:
{\em text} the end of scope charactér,
{\em some \bf text} a new declarationpf
\begin{itemize} \em the end of an environment,
\item some \end{itemize}

\item text

\end{itemize}

3 The start-condition mechanismin Lex to handle left context-sensitivity is not suffieeatise the left contexts
may nest and start conditions do not.

4 These tokens were a subset of the simpler forms of markup. The ratio of 6:1 would probably be much higher if
more complicated forms were included.



A MODEL AND TOOLSET FOR THE UNIFORM TAGGING OF ENCODED DOCUMENTS 73

In order to retag aATEX document, we need to know where the scope ends, since the
LIF requires an explicit tag to mark the end. To do this, it is necessary to keep track of the
scopes of all of the commands. In a Lex specification, the accessingpalading of the
necessary data structure involved over 250 lines of code in the various action rg@fihes
The action routine for just the token clags tontained over 120 lines of code.

4.1.3 Additional information

Occasionally, adtional information that is not part of the original text is added to an
electronically encoded document. In the TLG, citation records are added for identification
and navigation purposes. These records occur on separate lines and are indicated by a
™ (tilde) as the first character. The record is divided into fields, aadh field contains
a level identifier followed by an optional value. An example of a citation record is
"a"0059"b"034"c"Leg"x1

The problem is that the scanning algorithm for these records is different than that for
the rest of the encoded document. A separate, special scanning procedure is required. This
procedure can be placed in the action routine of a regular expression for citation records.
Such a scanning procedure to analyze and process the record requires at least 35 lines of
code.

4.2 General problems

These problems are not atypical with document encoding schemes. In our work with
text-formatting languages, we discovered several general categories of lexical analysis
problems[21], all requiring the writing of sometimes lengthy and complex action routines.
Broad descriptions of these would be (1) context-sensitive markup, (2) implicit markup,
(3) white space, and (4) matching start/end tag pairs.

Context-sensitive markup refers to the fact that some tags change meaning in different
environments within text-formatters. When an environment changes, a particular tag may
(1) retain its current meaning, (2) take on a new meaning, or (3) no longer be regarded
as a tag but must be recognized as part of the text. In Scribe, for example, in certain
mathematical forms the wordrom ' has special meaning, but outside these forms it is
considered to be part of the text. Because environments can be nested, it is hecessary to
record nesting information as well as the current context.

Implicit markup is markup implied by other tags. An example of implicit markup is
the declaration scope problem iATEX (see Section 4.1.2 The lexical analyzer must
determine the end of the string that is not marked by the segmenting tag, but is implied by
some other markup. This often requires keeping track of the scopes of certain tags.

White space is used to indicate certain types of processing in many text-formatting
languages. The most common example of this is the use of a blank line to separate
paragraphs in the body of a document. White-space tags are particularly difficult to analyze
for a variety of reasons. First, they frequently occur in text strings, so it must be determined
if the white space is a tag or part of the text. Second, in the newline case, single newlines
have to be distinguished from various classes of consecutive newlines: we have found
the classe®neg two, andtwo or moremay be significant from a lexical analysis point
of view. Third, the analysis of white-space characters is sometimes context-sensitive. In
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IATEX, consecutive newlines are ignored in the preamble of the document and in the list
environments, but they have special meaning elsewhere in the document.

Another basic problem is the need to pair explicit segmenting tags. S(ATIFEK,, land
the encoding scheme for tibéctionary of the Old Spanish Langua¢eOSL) [6] all have
explicit segmenting tags in which the end tags are not unique. All three permit the nesting
of explicit segmenting tags. It has been proven that such languages cannot be recognized
using finite-state automaf48].

4.3 Need for a new toolset

As we have shown, when Lex-like tools are used exclusively to build lexical analyzers in
the electronic-document domain, the automatic generation of code for the lexical analyzers
has to be complemented in large degree by code that is hand-written by the specifier.
What is required to reduce this effort is a toolset for generating lexical analyzers that
is domain-specific. Such a toolset would be based on the token classes relevant to the
particular domain and would provide libraries of already-coded action routines commonly
required in that domain. The specifier is thus relieved of writing or rewriting this commonly
occurring code.

5 RELATED WORK

Many lexical-analyzer generators have been developed. These existing tools fall into one
of two categories: general-purpose or domain-specific.

5.1 General-purpose lexical-analyzer generators

Lexical-analyzer generators similar to Lex are general-purpose tools in the sense that the
user can specifgnyaction in the translation rule. Such general-purpose tools often provide
too much general functionality, and too little aid in generating actions for more specific
function sets. Action routines can become very complicated in order to determine the token
class of a given token.

RWORD [22], Lex [16], LAWS [23], Flex [24], Rex [25], and Wart[26] are all
general-purpose lexical-analyzer generators. They each use regular expressions as their
specification mechanism. They all accept arbitrary action routines and generate code for
a lexical analyzer that may be used in conjunction with a parser routine [EIMRalso
has the capability of recognizing arbitrary regular languages, but it generates a regular
language parser.

5.2 Domain-specific lexical-analyzer generators

In certain domains, such as programming languages, the token classes and their corre-
sponding action routines are well-defined. The use of a general-purpose lexical-analyzer
generator in these domains requires the programmer to rewrite existing code for the action
routines. For this reason, domain-specific lexical-analyzer generators have been developed
that facilitate the definition of token classes and provide libraries of action routines.
Programming languages is one domain where the token classes are clearly defined and
each token class has a specific action to be performed in the lexical-analysis phase. For
example, the token clagdentifierrequires specific actions to be performed. These include:
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(1) installing the string that represents an identifier into the symbol table and (2) notifying
the parser that an identifier has been found. These actions can easily be automatically
generated. For example, R-GLA [28], a translation rule for identifier would be:

$[A-Za-z][A-Za-z0-9]* [mkidn]

wheremkidn is a library routine that performs the appropriate processing for an iden-
tifier. Lexical-analyzer generators that have been designed specifically for programming
languages are—GLA [28], Alex [29], Mkscan[30], and LexAGen[31].

These specialized lexical-analyzer generators for programming languages will not meet
our requirements for digital libraries. They are limited to understanding the set of token
classes in the programming-language domain. The domain of electronic documents has a
different set of token classes that require different action routines.

6 THE RETAGGING TOOLSET

We have identified two major tasks in the process of retagging a document: (1) identifying

and replacing the existing markup strings and (2) inserting missing start and end tags in
order to satisfy the LIF requirement that all segmenting tags have explicit start and end

tags. Each task requires a different type of information be provided in order to generate
a program that performs that task. For this reason the Retagging Toolset consists of two
major tools: the Replace Tag Tool and the Insert Tag Tool.

Each of the current prototypes of the tools in the Retagging Toolset consist of an
editor interface and a specification compiler. The interface permits the user to enter and
modify statements in the high-level specification. Once the user is satisfied with the
specification, the compiler can be invoked in order to check the specification and generate
the corresponding program modules.

The Retagging Toolset is used fdevelopinghe necessary program modules for the
retagging process. Once the development process has been completed, the modules can be
used as independent programs. In this section we describe the different parts of each tool,
the typical user, and a sample session using the tool.

6.1 The Replace Tag Tool

The primary objective of the Replace Tag Tool (RTT) is to generate automatically a
program that willreplace all existing markup in a document with the LIF equivalent.
For this discussion we will call the generated program Replacge In order to achieve
this objective, the RTT facilitates the entry of a high-level specification of thacegiag
process. This high-level specification is based on the tag classes descrsatian 2

6.1.1 The intended user

Since the generated program is based upon a specification given by the user, the quality of
the Replacelag program depends upon the expertise of the RTT user. The user must have
expert knowledge of the encoding scheme in order to describe the tag strings. Without
some specification of the tag strings, retagging cannot take pkmaibe it would not be
possible to find the tags to replace. The user rkastv the composition of the existing
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tag strings and be able to translate that knowledge into simple strings or more elaborate
regular expressions.

Another aspect of the encoding scheme of which the user must be aware is the partition
of the keyboard characters with regard to their use in markup. There are three alphabets that
may occur in encoding schemes. The text alphabet includes the alphanumeric characters
plus some subset of the nonalphanumeric characters. The reserved-for-markup alphabet
contains those characters that only appear in tag strings of the encoded document. Examples

of this alphabet aré@} for Scribe and$,&,%,",@,[.],<,>.{,},#} intheTLG.
The ambiguous alphabet includes characters that are used as markup, but not reserved for
that purpose. In Scribe, this alphabe{(3.[.].{.}.<,>.,",'} . Since each of

these alphabets requires different actions to be performed in the Reaggqeogram, the
user must specify each.

In order to transfer the user’s knowledge of the encoding scheme to the purpose of
retagging, the user must assign each tag string to one of the categories: symbol tag,
nonsymbol tag, implicit segmenting tag, or explicit segmenting tag. This assignment can
be difficult and may not be unique. The assignment can be further complicated by questions
about what constitutes the text of the document.

Toillustrate this problem, we will consider the citation records ofith&. These records
are used to identify the document and its different parts. As such, they are not actually part
of the text of the original document. Based on this perception, an RTT user may classify a
citation record as a nonsymbol tag and map a record suai@859"b"034"x1  tothe
LIF tag < ?tilde>, discarding the information in the record. Anoti&Gexpert may decide
to classify the citation record as data surrounded by segmenting tags. In this case the record
"a"0059"p"034"x1  might be mapped tetilde>a"0059"b"034"x1  </tilde>. Both
of these retag mappings are valid, but the viability of future applicationsatwdss the
LIF version of the document will depend on which one is chosen.

A final consideration on the part of the RTT user is the set of identifiers to be used in the
LIF tags. Many SGML tag sets already have been established. For example, the ISO has
established a set of identifiers for the common graphic characters used in pub[&hing
The Association of American Publishers has developed sets of SGML tags for tabular
material [32], mathematical formula§33], and several types of documerit]. Rather
than invent a new set of identifiers, the user may wish to incorporate an existing tag set.

6.1.2 Parts ofthe RTT

The RTT has three major areas of activity: the command buttons, the alphabet definition
windows, and the tag mapping editors. The general layout of the RTT can be seen in
Figure 9

The command buttons There are six buttons at the top of the RTT. (See tdpigfire 9)

These buttons are used to permit the input (Load) and output (Save) of specification files
with the user interface, tmvoke the Replacdag program generator (Make), to execute a
compiled Replacdag program (Run), to reset the components of the RTT to their default
values (Reset), and to exit the tool (Quit).

The alphabet definition windows There are three dialog windows provided for the input
of the character alphabets describedection 6.1.1These windows can be seen in the
middle ofFigure 9 The first alphabet definition window contains the text alphabet. It has a
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default value when first instantiated or when reset. The second alphabet definition window
is used to input the reserved character alphabet and the third window is used to input the
ambiguous character alphabet. There are special rules that permit the specification of a
range of characters and govern the specification of certain special characters.

The tag mapping editors There are four tag mapping editors in the RTT, one for each
of the four tag classes. These editors are shown at the bottétigofe 9 Each of these
windows is instantiated as a text widget from the Athena widget set of the X Window
System [35]. A set of basic commands is provided with the widget for traversing the
contents of the window and for editing the text.

Statements in the Symbol, Nonsymbol, and Implicit Segmenting Tags Editors have the
same structure. Simple statements consist of a regular expression followed by a LIF tag
identifier. In our current prototype, the rules for constructing regular expressions are those
used for Lex[16]. In Figure 9 the first statement in the Symbol Tags Editor contains
aregular expression for the percent character and the LIF identifier “dagger”. This statement

Replace Tag Tool | Conmmand
>
Load ” Sawve ” Make Fun Reset Quit | But t ons
Text Alphabet - Default: a-za-E0-9,.;:7%! =
[20-0R-E [ ., 1:_( /=71 |
Reserved Characters used in Encoding A phabet
S Lo
[FEEello e | Df-:'fl nition
* W ndows
Embiguous Characters used in Encoding
Symbol Tags Editor
dagger
lsgh
rsgh
1 lpar
1 rpar
2 1t
2 gt
Nonsymbol Tags Editor
ind
Tag Mappi ng
Editors

Implicit Seqmenting Tags Editor

(IN: TILLE
(IN: TILLE
(IN: TILLE

title

tilde :DEFINES: TILLE
af (IN: TILDE
bf (IN: TILDE
cf (IN: TILDE
wi (IN: TILDE
=f (IN: TILDE

Figure 9. The RTT loaded with a TLG specification
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generates code that will replace all occurrence®fwith “ &dagger; ”. In the Implicit
Segmenting Tags Editor (ISTE), the user must preface the LIF identifier Witifithe tag
is an end tag.

In the Explicit Segmenting Tags Editor (ESTE), it is necessary to specify two regular
expressions, one for the start tag and another for the end tRgyure 9 the first statement
in the ESTE generates code that will replace all occurrencefldfwith “ <title>" and
all occurrences of}1 ” with “ </title>".

It is also possible to define and reference contexts by using special clauses with the
statements. The second statement in the ESTE defines a context called TILDE for citation
records in theTLG. The scope of the context begins when a “™ is found in the document
and terminates with the newline character ) that follows. The last three statements in the
ISTE and the last five statements in the ESTE define the tag strings that are to be recognized
only in the TILDE context. Note that the characters a, b, and c are interpreted as field
start tags in the TILDE context. Outside of this context, they are viewed as text characters.
Additional information about these types of statements can be found in RefdZ8jce

6.1.3 A sample session

When the RTT is firstinvoked, it comes up with most of its editor windows empty. The user
may enter a new specification directly into the RTT by typing in the appropriate windows.
Or, the user may load a previously defined specification by using the Load Button. After
editing the specification, the user must click the Save Button to save the current version of
the specification.

Once the specification has been saved, the user may generate a Replgmegram
by using the Make Button. This invokes the Repldeg program generator which checks
the specification file for possible problems and generates a Repdacprogram. If there
are no errors, the Repladag program is compiled. In order to execute the compiled
ReplaceTag program from the RTT, the user clicks the Run Button. At this point, the user
is prompted for input and output files. If results of executing the Replageprogram are
not satisfactory, the specification can be modified and the process repeated.

6.2 The Insert Tag Tool

The objective of the Insert Tag Tool (ITT) is to generate automatically a program that will
insertthe missing start or end tag of the previously specified implicit segmenting tags. We
call this generated program Inséidg. This definition of the ITT implies that the input

of an InsertTag program is the output of a Replatag program or some other partially
marked-up LIF document.

6.2.1 The intended user

The ITT views a document as a set of properly nested delimited strings. For this reason, the
user must also be aware of the relationships among the text segments associated with the
segmenting tags. There are three categories of interaction between tagged text segments:
contiguous, nested, and overlapping.

Tagged text segments arentiguousf the end of one segment implies the beginning
of the next segment. This is the case inTh&s with font tags. Only the beginning of a text
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segment is tagged. The next font tag indicates the end of the text segment for the previous
font tag.

A tagged text segment isestedif it is enclosed within a larger tagged segment. An
example from thd&OSLis the folio-reference tag. This tag only appears within the scope
of the heading tag. The heading end tag implies the folio-reference end tag.

Tagged text segmentserlapwhen the start and end of one segment is not encapsulated
inside the start and end of the other segment. This is the case with the font and page tags in
the TLG. A string of text in one font may start in the middle of a page and run many pages
before ending on another page.

The ITT has no problems with contiguous or nested tagsabse they fit the model
of properly nested delimited strings. It cannot handle overlapping tag segments directly.
For a set of tags with overlapping text segments, the ITT must be used repeatedly to create
InsertTag programs for different subsets of implicit segmenting tags. These subsets would
contain only tags with nested or contiguous text segments. In the case of the TLG, the user
could build one Inserffag program for the font tags and another Ingexty program for the
page tags, where each individual program is concerned with only a subset glumargior
nested tags.

6.2.2 Parts ofthe ITT and a sample session

The ITT has the same general layout as the RTT [sgere 10. The command buttons
are the same as those for the RTT and provide the same functionality.

The ITT has only one editor window, the Insert Tags Editor. The contents of this
window are a list of statements describing the implicit segmenting tags that require mate
tags to be inserted. This set of statements must list the segmenting tags to be considered
and the nesting hierarchy between the specified tagBidare 1Q the tags<article>
and </p> require mate tags to be inserted where the start<gg;, may be implied by
the <st*> and <fig> tags. A detailed explanation of these statements can be found in
Reference36].

A sample session with the ITT is similar to that for the RTT. The user creates a
specification and then makes an Inseay program that can be executed later.

[ Insert Tag Tool 2

Load || Save | Make Rurn Reset quit

Insert Tags Editor *

article:

stl>  <fstl> IN: <article>
st  <fstl> IN: <article>
stdr <fstdr IN: <article>
figr  </ffigr IN: <article>
fpx (IN: <article>

Figure 10. The ITT loaded with a TLG specification
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6.3 Functionality of the toolset

The RTT specification generates a Lex and a Yacc specification for a R&agqgogram

that will recognize the markup strings in a document and replace these strings with LIF
tags. The generated Lex specification may contain start conditions in order to recognize
markup strings defined in certain contexts. Although Lex does not support nested start
conditions, the RTT generates code to support the nesting of contexts. The generated Yacc
specification yields a general description of a document as a mixture of tags and text strings
without any formal structure. It does provide for the nesting of tagged text strings. This
permits the replacement of angiious tags like delimiter characters with the correct LIF
equivalent.

The ITT specification generates Lex and Yacc specifications describing adocument as a
hierarchy of tagged strings. These generated specifications are used to create Aradnsert
program that will insert missing mate tags of any implicit segmenting tags listed in the ITT
specification.

Althoughthe RTT and ITT tools generate programs that are implemented with Lex and
Yacc, the existence of these tools represents a significant improvement compared to the
prevailing situation. With the RTT and ITT, a user is able to specify retagging and insertion
at a higher cognitive level, with no knowledge of Lex and Yacc and with virtually no need
to write any C code. Without the toolset, the user woulddmel with either using Lex and
Yacc directly or, if Lex and Yacc are not used, writing hundreds of lines of C code to scan
and parse a document. The user would also have to create a model for encoded documents,
write a fair amount of C code for the action routines to perform the retagging and insertion
tasks, as well as manage any interface issues.

7 EXPERIENCES WITH THE TOOLSET

The Retagging Toolset was used to retag a variety of document encoding schemes from the
humanities, linguistics, and text-formatting domains. In particular, the Toolset was used
to build retagging software for documents encoded forfthesaurus Linguae Graecae
(TLG), theDictionary of the Old Spanish LanguagBOSL), the Lancaster-Oslo/Bergen
Corpus(LOB), theWaterloo Concordance Packa/ ATCON-2, theOxford Concordance
Program (OCP), and Scribe These encoding schemes represent a diverse level of data-
entry technologies and syntactic sophistication. A complete description of how the Toolset
was used to build the retagging software for each of these cavubd in Referencg36].

In Table 2we summarize the statistics gathered pertaining to the amount of work that
was required in developing retagging software for the different encoding schemes. The
number of user-specified specification statements is the total number of statements entered
into the RTT and ITT. The number of user-specified C code statements represents the
additional C code that had to be written. This additional code consisted of preprocessors
that converted physical records to logical records, for those schemes limited to fixed length
records for data entry, and processors that inserted missing tags which were not implied by
other tags.

The lines of generated code reflect the effort that would be required to use Lex and
Yacc directly to build the same retagging software. The number of specification lines
corresponds to the number of rules in the Lex and Yacc specifications. The number of lines
of C code includes the statements in the action routines of the Lex and Yacc specifications,
auxiliary functions, and any additional processors.
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Table 2. Results of the experiences with the toolset

Number of user Lines of

Encoding scheme specified statements generated code Savings

Specification C code Specification C code
TLG 46 0 192 500 15.0:1
DOSL 63 16 165 461 79:1
LOB 478 23 846 1332 43:1
WATCON-2
—Garaa-Lorca 8 10 33 119 84:1
—Woolf 22 0 80 183 12.0:1
OCP
—COCOAEX. 1 11 3 37 113 11.0:1
—COCOAEX. 2 7 0 29 105 19.1:1
—COCOAEXx. 3 11 0 36 116 138:1
—Start String Ex. 5 1 27 112 232:1
Scribe 177 15 403 937 70:1

The entries for the concordance building packag@SRandWATCON-2 differ from
the other entries, because these packages do not have one specific encoding scheme. Each
permits the user to set different parameters, thus creating a different encoding scheme for
each document that we retagged.

The savings is calculated by dividing the lines of generated code by the number of
user specified statements. The savings range from a factor of 4.3 to a factor of 23.2. The
savings factor is in part a reflection of either the complexity or the number of tags in an
encoding scheme. Schemes that require a large number of statements in their specifications
to describe the tag sets or the relationships between tags will have smaller savings factors.
Encoding schemes that require a large number of context clauses will have more substantial
savings.

An average savings can be calculated by totaling the lines of specification and the
lines of C code. This process yields an average savings of 6.5:1. This value is not totally
representative because of thedue influence of the values for th©B Corpus® If the
LOB Corpusvalues are removed from the calculations, then the average savings becomes
9.2:1.

Overall, the amount of C code that must be generated by the user is substantially
reduced. By comparing the 68 lines of C code that the user had to generate while using the
toolset to the 3978 lines of C code without the toolset, we see that over 98 per cent of the
required retagging code was automatically generated.

8 PRACTICAL SIGNIFICANCE OF THE LIF

The Retagging Toolset significantly reduces the time to develop software to convert
encoded documents to LIF. Once a document is encoded in LIF, it becomes accessible

5 The savings for theOB Corpuss deflated. Because they appeared at different levels in the hierarchy of nesting
tags, approximately 155 tags had to be specified twice, rather than only once, in the ITT specification. Planned
enhancements to the specification language of the ITT to reduce the number of statements necessary for this
situation will substantially improve the savings.
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to more applications. The structure of the LIF tags facilitates the development of new
applications by eliminating many of the lexical idiosyncrasies found in existing encoding
schemes.

For many applications, the LIF version of a document is sufficient. New applications
can be generated, or existing ones applied directly, without any further manipulation of
the tag set. For example, if a document was originally encoded for a corpus, then the
LIF version still contains tags denoting parts oéeph. Lhguistic analysis packages such
as those yielding certain word counts can be written based on the LIF tags, without any
further manipulation of the tagset.

Also, because the LIF is encoded using SGML-like tags, some existing applications
can access LIF-encoded documents. An example is the searchinBAoptleveloped at
the Centre for the New Oxford Dictionary at the University of Water[@0]. PAT is used
to search for instances of a specified string. It can match SGML-like tags similar to those
in the LIF. ThusPAT can be used to extract information from LIF-encoded documents.

For other applications, converting documents to their LIF equivalents may be only a
first step in a more complex analysis process. An example of one such application is the
Integrated Chameleon Architecture (ICA) developed at the Ohio State University. One
activity of the ICA is the generation of translators among different data representations.
The ICA can be used to build translators for documents in syntactically different, but
philosophically similar, encoding schemes such &'@L and Scribe. The Retagging
Toolset and LIF address and solve only dcal analysis step of this translation process.
Another tool in the ICA is then applied to address issues relatipgtsingof the tagset,

e.g., the ordering and occurrence rules for tf814.

9 SUMMARY AND FUTURE WORK

There exist many document encoding schemes and software applications to process
electronically encoded documents. The plethora of schemes complicates the development
of applications that must access documents in more than one representation. A uniform
representation of electronic documents would greatly facilitate software development.

Unfortunately, the retagging of existing electronic documents is difficult, given the
current development tools. The fundamental problem of distinguishing the markup from
the text strings is complicated by problems such as context-sensitive markup, implicit
markup, white spce, and the matching of start and end tags. Lexical-analyzer generators
such as Lex are based on formal models that are inadequate to handle these problems.
Because of this, much of the retagging code must ligemrby hand.

Based on a generalization of these problems, we developed a new model for textual
data objects with embedded markup. We then proposed a uniform representation called a
Lexical Intermediate Form, LIF. The LIF borrows its concrete syntax from the ISO standard
SGML, but it is not encumbered with the SGML concept of document-type definitions.
Based on our model and the proposed LIF, we identified two steps in the retagging process:
the replacement of existing tags with their LIF equivalents and the insertion of missing
implicit segmenting tags. We developed software tools that automatically generate the code
for each of these steps.

The toolset was exercised by using it to specify the retagging of six encoding schemes
of varying complexity. The resulting savings indicated an increase in productivity ranging
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from 4.3:1 to 23.2:1. Overall, any additional C code that had to be written by hand
represented less than two percent of the C code generated by the toolset.

Theusefulnessf the Retagging Toolset has been established by the work in this paper.
A study of theusabilityof the Retagging Toolset would provide an indication of the effect
the Retagging Toolset’s interface has on the task of developing retagging software. The
results of this study may identify additions, enhancements, or deletions to the Retagging
Toolset’s interface.

Further experimentation with the Retagging Toolset in building retagging software
for other electronic-document encoding schemes is also warranted. The text-formatting
Ianguage/LTEX is an excellent candidate for this work and this retagging effort is under
way. IATEX has a level of sophistication similar to that of Scribe plus it has its own
idiosyncrasies, whereas the encoding schemes in the humanities and linguistic domains
usually have a simpler structure. The results of this study may identify enhancements or
discrepancies in the specification languages of the Retagging Toolset.

Another area of evaluation is the applicability of the toolset to other domains. There
is currently an effort under way to create an exchange format for patient records in the
medical community, called Patient Record Exchange Format (PRES}) The existing
database records must be converted to the PREF format and the Retagging Toolset may be
useful in the development of the conversion software.

Other enhancements to the toolset currently under consideration are to: (1) provide a
method of importing a predefined set of LIF tag identifiers into the RTT; (2) provide a
method of importing a set of implicit segmenting tags into the ITT from the tags specified
inthe RTT; (3) provide additional supportin the RTT to identify improperly formed regular
expressions; (4) expand the ITT specification language to eliminate the need to specify
an implicit segmenting tag more than once when it appears in more than one level of the
hierarchy; and (5) design and implement a tool that will generate a program that will insert
tags implied by other tags or the end-of-file.
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