ELECTRONIC PUBLISHING, VOL . 4(1), 3-26 (MARCH 1991)

Processing SGML documents

JOS WARMER! HANSVAN VLIET

PTT Research Faculteit Wiskunde en Informatica

DR Nehir Laboratories Department of Mathematics and Computer Science
Leidschendam, The Netherlands Vrije Universiteit, Amsterdam

SUMMARY

SGML (Standard Generalized Markup Language) is an 1SO Standard that specifies a
language for document representation. The main idea behind SGML is to strictly separate
the structure and contents of a document from the processing of that document. Thisresults
in application-independent and thus reusable documents. To gain the full benefit of this
approach, tools are needed to support a wide range of applications. The Standard itself does
not define how to specify the processing of documents. Many existing SGML systems allow
for asimpletranslation of an SGML document, which exhibits a 1-1 correspondence between
elements in the SGML document and its translation. For many applications this does not
suffice. In other systems the processing can be expressed in a special-purpose programming
language. In this paper the various approachesto processing SGML documents ar e assessed.
We also discuss a novel approach, taken in the Amsterdam SGML Parser. In this approach,
processing actions are embedded in the grammar rules that specify the document structure,
much like processing actions are embedded in grammars of programming languages that are
input to a parser generator. The appendix contains an extended example of the use of this
approach.

KEY WORDS SGML Parser generators Application generators Data translation Structured documents
Reusability
1 INTRODUCTION TO SGML

SGML is alanguage that is used at two levels. At the first level, SGML is used to write
document type definitions. A document type definition (DTD) is a grammar that defines
the structure of adocument. An example of aDTD isgivenin Figure 1.

<! doctype nenmo |

<lel enent neno - O (sender, receiver, body)>
<l el enent sender O O (person) >

<l'el enent receiver O O (person) +>

<l'el enent person O O (forenanme, surnane)>

<l el enent forenane O O (#PCDATA) >

<l el enent surnane O O (#PCDATA) >

<l el enent body O O (#PCDATA) >

1> 1. A simple document type definition

! The work covered in this paper was carried out while Jos Warmer was employed at the Vrije Universiteit,
Amsterdam.
0894-3982/91/010003-24%$12.00 Received 10 January 1990
[J 1991 by John Wiley & Sons, Ltd. Revised 18 October 1990

© 1998 by University of Nottingham.

4 JOS WARMER AND HANS VAN VLIET

The first line specifies that this DTD describes a document type called memo. The
second line says that a memo consists of a sequence-group with three consecutive ele-
ments: sender, receiver and body. sender consists of one person, receiver consists of one
or more persons. person is a forename followed by surname. All other elements are
defined as PCDATA, which means they consist of data characters. A line starting with
<l el enent iscaled an element declaration. Following <! el enent is the name of the
element being defined. The next two characters indicate whether the starttag and/or
endtag may be omitted in the actual document. The last part of an element declaration is
called the content model. The starttag and endtag are used to delimit elements in an
actual document (see also Figure 2). For an element X, they are denoted by <X> and
</ X>, respectively.

The DTD describes the logical structure of a document, using a forma grammar.
Note that it does not say anything about the layout or the meaning of the elements of a
document. It only names the structural elements and their mutual relationships.

This strongly resembles the use of grammar formalisms, such as (E)BNF, that are
used to define the syntax of programming languages. The DTD of Figure 1 thus defines
the syntax of the language memo.

At the second level, SGML is used to describe a particular document. In the
document, the structure is indicated by starttags and endtags. This structure must satisfy
the formal structure described in the DTD. An example document according to the DTD
in Figure 1isgivenin Figure 2. Theindentation in Figure 2 is not mandatory, but is used
to elucidate the structure.

<nmenn>
<sender >
<per son>
<f or enane>Jos</ f or enane>
<sur name>War ner </ sur nane>
</ person>
</ sender >
<recei ver>
<per son>
<f or ename>Syl vi a</ f or enanme>
<sur nane>van Egnond</ sur nanme>
</ person>
<per son>
<f or ename>Hans</ f or enane>
<sur nane>van VI i et </ sur nane>
</ per son>
</receiver>
<body>
Tonorrow s neeting will be postponed
</ body>
</ meno>

Figure 2. A document marked up with SGML

If we use the (programming) language analogy once more, Figure 2 gives an example
sentence in the language memo.

SGML offers numerous other features. For example, starttags or endtags may be
omitted in many cases, provided this does not render the resulting document ambiguous.

PROCESSING SGML DOCUMENTS 5

These other features are not relevant for the present discussion. The interested reader is
referred to [1] for amore elaborate introduction to SGML and to [2] for more details.

Since a DTD is aformal description, the process of verifying the conformance of the
structure of a document to its DTD can be carried out automatically. A program that
checks whether a document conforms to a DTD is caled an SGML parser. Such an
SGML parser can be generated from aDTD.

In the (programming) language analogy, we then have an SGML parser-generator. |t
takes the forma specification (DTD) of a language and generates a parser for that
language.

If a document is correct with respect to its DTD, it is said to be a conforming SGML
document. The Standard does not define how a conforming SGML document is to be
processed further. Consequently, current SGML systems do so in rather different ways.
The main approaches taken will be discussed in Section 3.

2 PROCESSING SGML DOCUMENTS

In this section, we give a model of processing SGML documents. This model closely
resembles the traditional model of processing programs written in a programming
language.

Most processing systems for programs have an identical structure. This structure is
depicted graphically in Figure 3.

semantic
processing

input parse

program tree output

Figure 3. General structure of a compiler

The task of the parser is to check whether the input is syntactically correct and to
build the parse tree. After the parser has done its task, the other part of the system will
perform the semantic processing.

For different systems, the semantic processing will be quite different. In a compiler,
the semantic processing can be split into several subtasks such as typechecking,
optimization and code generation. The output at the right-hand side can be machine code
for various processors. If the system is a cross-reference generator or a flow graph
generator, the output will be a cross-reference listing or a flow graph respectively. All
these different semantic processors may use the same parser.

An SGML processing system has the same general structure:

input SGML correct and SGML output from
SGML document complete lication SGML
document parser document ap application

Figure 4. General structure of an SGML document processing system

6 JOSWARMER AND HANS VAN VLIET

An SGML parser, as defined in the Standard, has the same task as the parser for pro-
gramming languages. It only checks the conformance of an SGML document to its DTD
and it performs no further semantic processing. The output of most SGML parsers
includes the so-called complete document. This is the document in which all starttags
and endtags are present. At this stage, the document is known to conform to the
corresponding DTD. Theinternal structure of this complete document corresponds to the
parse tree in systems for programming languages.

As with programs, the complete document is not the end-stage in processing a
document. It merely serves as an intermediate product, in which the correctness of the
document has been assessed. Subsequently, the document has to be further processed.
This is labelled SGML application in Figure 4. The SGML application may generate
code for various formatters like troff, TEX or Scribe, but it can also produce an index or a
list of figures. Again, these different semantic processors may use the same parser.
What concerns us here is the node labelled SGML application.

Current SGML systems almost always offer some formalism for expressing the
semantics of the node labelled SGML application. Such a formalism is called an
application interface. These application interfaces can roughly be categorized into three
groups:

Mapping: All starttags and endtags can be mapped onto some string. This is suitable
only for 1-1 translation of SGML documents. That is, the structure of the output
document is the same as the structure of the input document.

YAPL: YAPL stands for Yet Another Programming Language: a special-purpose
language is used to express the processing of the document. This language is
suitable only for translation of SGML documents. A wider range of translations is
possible, though, because of the programming facilities provided.

General: A genera-purpose language is used to express the processing of the
document. Thisissuitable for any kind of SGML application.

2.1 Mappings

A mapping is a formalism in which all starttags and endtags can be mapped onto some
string. The input SGML document is translated to an output document in a format that
can be processed by an external application, like troff, TEX, etc. Mappings are easy to
use and easy to implement, but the range of applications one can describe is very limited.
The main advantage is that almost anyone can use them immediately, without learning a
complete language. The Amsterdam SGML Parser [3], for example, aso has a simple
back end in which the starttag and endtag of each element can be replaced by some
string. This back end is very easy to use and is powerful enough for simple applications.
With this back end we are able to trandate SGML documents to troff. Some SGML-like
editors use a similar scheme to define the appearance of the different elements. In Figure
5 an example of a mapping table for the Amsterdam SGML Parser is given.

In the Standard, a so-called link mechanism is defined, which offers an aternative
means to specify such a trandation. Some SGML systems use the link mechanism for
specifying the further processing of documents.

PROCESSING SGML DOCUMENTS 7

<nmeno> "Menor andum \ n\ n"
<sender > "From

<recei ver> "To: "

</ per son> o

</ f or enane> "

<body> "\'n"

Figure 5. Example mapping table for Amsterdam SGML Parser

In many cases we need more than a simple 1-1 trandation. The following list gives
several cases where amore powerful translation scheme is needed.

e Theorder of elements of the SGML document might be different from the order in
which the external application expects them.

e When replacing an element’s starttag, the context might be essential. E.g., an item
might occur in both an ordered and an unordered list. The replacement could be
different for each context.

e One needs to know whether an element is the first or the last of a sequence of

elements of the same type.

After asequence of elements, one needs to take some action.

Different parts of the SGML document might go to different output streams.

Specific parts of the document might have to be ignored.

The data content of specific elements might have to conform to some specific

syntax, that cannot be described in SGML. E.g., an ISBN number has a very

specific syntax and an application may wish to check conformance to this syntax.

e Thecontents of certain constructs must be checked by a spelling checker.

As we want to use SGML documents in more contexts, the need for a more powerful
backend grows.

2.2 YAPL

Many SGML systems offer the YAPL application interface. They use a specia purpose
language, meant for one application domain. At each starttag and endtag in the document
we specify the YAPL-function to be called. Examples of this approach can be found in
[4] and [5], where YAPLs are defined for formatting SGML documents, and in [6],
where a YAPL is defined for database processing. As is explained in [5], where the
language METAFORM is defined, YAPLs contain few basic programming facilities,
since they are oriented towards domain experts rather than to expert programmers. These
languages should be relatively easy to learn and use in the domain for which they are
defined. Still, one has to learn a new language, which is a disadvantage. YAPLs are
more powerful than mappings, because of the programming facilities provided. Still their
power falls short for some applications. Most Y APLs solve some, but not all, of the prob-
lems mentioned at the end of the previous section.

Figure 6 is a small example of a function in the METAFORM language, defined in
[5]. Thisfunction will be called at the start of element person. It prints“To:” if personis
a descendant of receiver and it prints “From:” if person is a descendant of sender. The
variable G PARENT contains the name of the parent of the current element.

8 JOSWARMER AND HANS VAN VLIET

BEG N_G person
BEG N_ATT SYS. ATT
I F $d PARENT OF "sender" THEN
BEG N
WRI TE("From ");
END
ELSE
| F $4d PARENT OF "receiver" THEN
BEG N
WRI TE ("To: ");
END
END_ATT
END G

Figure 6. Example of a function in METAFORM

As argued in [3], we are reluctant to use this method. The number of programming
languages is aready too large as of now. For that reason we have chosen the simple map-
ping approach in the first place.

To avoid the YAPL-trap, the logical choice would be to use some existing general
purpose language. This brings us to the third approach.

2.3 General

The third type of application interface is the most general. It behaves like the second, but
instead of YAPL a genera purpose language is used. Examples of SGML systems that
offer this application interface are the IBM SGML Trandator [7], MARK-IT [8], PISA
[9], MARKUP [10] and the Amsterdam SGML Parser [3]. All these systems use the C
language.

This formalism is the most flexible and the most complex to use. It gives much more
control to the programmer than the other formalisms. The advantages of C over YAPLs
are numerous. C is well-known. The full power of a general purpose language becomes
available. One may use al kinds of existing C libraries and tools. The syntax and seman-
ticsof YAPL need not be defined. They need not be implemented either.

There are also severa disadvantages. Application programmers must use a genera
purpose language, which often isn't very suitable for the domain. C is, for example, not
the best language for text-processing. Furthermore, domain-experts often do not have
enough programming skills to use a general purpose language. Therefore, if only a sim-
pletranglation is needed, it is often easier to use a mapping or YAPL system.

Within the general application interface, two different methods can be distinguished.
The method used by the Amsterdam SGML Parser is grammar-driven. All other sys-
tems mentioned at the start of this section are event-driven.

These methods are described in the following sections, followed by a discussion of
their merits.

2.3.1 Event-driven application interface

The main idea in event-driven application interfaces is that an SGML document can be
seen as a sequence of so-called events. At each event a C-function iscalled. Thisis either

PROCESSING SGML DOCUMENTS 9

some default function or a function defined by the application programmer. Events are,
for example, the occurrence of a starttag/endtag/processing instruction or the occurrence
of data. The correspondence between events and C functions is usually given by atable.
The following discussion will take PISA as an example:

/*

ELEMENT STARTTAG FUNC. ENDTAG FUNC. CONTENT FUNC.

*/

"sender", start_sender, end_sender, cont ent _sender,
"receiver", start_receiver, end_r ecei ver, cont ent _recei ver,
"body", start_body, defaul t_end, defaul t _cont ent,
"person", defaul t_start, def aul t _end, def aul t _cont ent,
"meno", defaul t_start, def aul t _end, def aul t _content,
"forenane", start_forenane, end_f or enane, cont ent _f or enane,
"surnane", start_surnane, end_sur nane, cont ent _sur nane,
/~k

ENTRY TYPE FUNCTI ON

.

DATA, def aul t _dat a,

Figure 7. Specifying processing functionsin PISA

In PISA, the C functions to be called at the start and end of an element, are specified
intablesasin Figure 7.

According to the tables in Figure 7, at the starttag of element sender the C function
start_sender will be called. At the endtag of sender, end_sender will be called.
The contents of sender will be handled by cont ent _sender. For each of the events a
system-defined default function, like def aul t _end or def aul t _dat a, can be used.

Consider, for example, the document from Figure 2, where the output should look like
Figure 8.

Menmor andum

To: van Egnond, Sylvia;van Miet, Hans
From Warmer, Jos

Tonorrow s neeting will be postponed.

Figure 8. Output for document from Figure 2

In the output the sender follows the last receiver and the forename follows the sur-
name. Some newlines and some default text are added. Note that the order of the ele-
ments in the output differs from that in the SGML document. This is impossible to
achieve with a mapping interface, and with most YAPL interfaces. Figure 9 shows pos-
sible C code for some of the functions mentioned in Figure 7 to achieve the output
described above.

In order to achieve thisresult, the processing function for the contents of person hasto
save the contents in some global variable if it is inside sender. On the other hand, this

10 JOSWARMER AND HANS VAN VLIET

static char* saved forenane, *saved_sender;

content _forename(in, out)
char *in;
char **out;

{
}

saved_forenane = in;

content _surnane(in, out)
char *in;
char **out;

{
*out = allocate(strlen(saved_forenanme) + 2 + strlen(in));
sprintf(*out, "% 9%", surnane, in);
}
person_content (i n, out)
char *in;
char **out;
{
i f(string_equal (nodenanme(parent(current)), "sender")){
saved_sender = in;
} else { /* parent(current) == "receiver" */

if(siblet(current) '= NULL){ /* no sibling of sane type */
*out = allocate(strlen(in) + 3);

sprintf(*out, "%, ", in);

recei ver_start(out)
char **out ;

{
}

*out = "To: ",

recei ver _end(out)
char **out ;
{
*out = allocate(1 + strlen(saved_sender) + 1
+ strlen("From "));
sprintf(*out, "\nFrom %", saved_sender);

PROCESSING SGML DOCUMENTS 11

start_meno(out)
char **out ;

{
}

*out = "Menorandum\n\n";

start_body(out)
char **out ;

{
}

*out = "\n";
Figure 9. C Application code for PISA

same procssing function has to output its contents if it isinside receiver. Subsequently, it
has to check whether another person follows. If not, the saved contents of sender must
be output.

As the example shows, several standard functions are available to check the
environment in the document-tree of an element. The variable current denotes the
current element and the function parent returns the parent of its argument. The
function nodenane returns the name of its argument. The function si bl et returns the
next sibling element of the same type as its argument. If it returns NULL, there is no
such element. In this way it is possible to check whether current denotes the last
occurrence of arepeated element.

2.3.2 Grammar-driven application interface

The Amsterdam SGML Parser uses the same general approach as described in the
previous section, but its interface to the application programmer is quite different. As
seen in the example in Figure 11, C actions can be incorporated in the DTD. These C
actions define the processing. Their position is not restricted to the start and end of an
element; they are allowed to be placed anywhere in an element declaration. The
processing at the start and end of a sequence, for example, can be expressed at the
corresponding place inthe DTD.

<l'el enent chapter O O (heading, pp*, appendix)>
Figure 10. Sample element declaration

This alows one to view the DTD-grammar as a program. Each element declaration
behaves like a procedure. The element declarations can have user-defined parameters
and local variables. The generic identifiers in the content model of an element behave
like procedure calls. The complete document type definition, including the C code and
parameters, behaves like a C program. This allows for a quick understanding of the
interface by the programmer.

C actions can be incorporated in the DTD before and after each element, group and
occurrence indicator. That is, a each position in the content model. In Figure 11, for
example, the pp sequence is surrounded by three C actions. The first action is performed
before the pp sequence, the second action is performed after each pp, and the third action

12 JOSWARMER AND HANS VAN VLIET

<lel enent chapter O O (headi ng,

{
/* processing before pp-sequence */
}
pp(/* paraneters */)
{
/* processing for each pp */
}*
{
/* processing after pp-sequence */
}s
{
/* processing before appendix */
}
appendi x) >

Figure 11. Sample element declaration with C actions in the Amsterdam SGML Parser

after the complete pp sequence. If the pp sequence is empty, none of the three actions
are performed. However, the action before appendix is performed aways, because
appendix must occur.

This scheme is borrowed from parser-generators, notably LLgen. As described in
[11], such an interface is easy to use for the application programmer, because the
grammar including the C actions can be seen as a normal recursive C program. To the
knowledge of the authors, the Amsterdam SGML Parser is the first and only SGML
parser that follows this approach.

This interface gives more control and freedom to the application programmer than the
event-driven interface. Communication between elements is done through parameters,
instead of global variables. This goes for communication to lower as well as
communication to higher levels.

The example from the previous section, expressed in the Amsterdam SGML Parser C
interface format, is given in Figure 12. A more complete example is given in Appendix
A.

<l el emrent neno

{
char* sender;
char* receiver;
printf("Menorandum\n\n");
} - O (sender (&sender),
receiver,
{
printf("From %\n", sender);
}
body) >

<l el enent sender(char **person) O O (person(person)) >

PROCESSING SGML DOCUMENTS 13

<l el enment receiver

{
char* person;
i nt first = TRUE;
printf("To: ");
} O O (person(&person)
if(first){
first = FALSE;
} else {
printf("; *);
}
printf("%", person);
)+
{
printf("\n");
}
>

<l el enent person(char** person;)
{
char *forenane, *surnane;
} O O (forename(&f orenane),
sur name (&surnane))

{
*person = allocate(strlen(forename) + 3
+ strlen(surnane));
sprintf(person, "%, %", surname, forenane);
}
>

<lel enent forenane(char** name) O O (#PCDATA(nane))>
<l'el enent surname (char** nane) O O (#PCDATA(nane)) >

Figure 12. C Application code for Amsterdam SGML Par ser
2.3.3 Differences between event-driven and grammar-driven interfaces

This section shows some of the major differences between event- and grammar-driven
application interfaces. First, some individual differences will be highlighted, followed by
agenera conclusion.

e In the event-driven interface the application programmer gets control only at a
limited number of predefined places in the document. This makes it, for example,
cumbersome to reverse the order of two elements.

e In the event-driven interface the number and type of the parameters that can be
communicated by the application’s C processing functions are predefined. In PISA,
for example, the only parameter that can be passed to the parent level is a character
string. A problem arises if the functions in the application program need to
communicate information that does not fit within these predefined types.

14 JOSWARMER AND HANS VAN VLIET

Furthermore, communication to a lower level can only be made through global
variables. This is in contrast with the concept of structured programming. It is
clear that such will reduce the readability and increase the complexity of an
application.

e Processing of an element may depend on both local information and on information
from ancestors.

Whether a person should print itself, or should be saved, depends on its parent in
the document. In the event-driven interface this decision is made explicitly inside
the function that performs person processing. That is, person must know about its
environment.

Furthermore, the transposition of the forename and the surname islocal to person.
In PISA, this transposition is done within the surname processing function. Thus,
processing actions are located at illogical places because of scoping and parameter
restrictions.

In the grammar-driven interface, on the other hand, processing that depends on
knowledge local to person is done inside person, while processing that depends on
the parent is done by the parent. This conforms better to what the programmer has
in mind. It also conforms to the concept of object-oriented design, in which each
object (element) can process itself, independent of its environment.

e Suppose anew element, carbon, is added to the DTD, and this element uses person.

<lel ement CARBON - - (person)+ >

In the grammar-driven application interface, the processing of person need not be
changed. With the event-driven interface the processing function of person often
requires changes in this case. Because of this, an application that uses the
grammar-driven application is easier to maintain.

e Inthe grammar-driven interface changing the names of elements does not affect the
application code. If, in the example, the name of sender is changed into from and
the name of receiver into to, then with the event-driven interface code has to be
changed, while the grammar-driven interface remains the same.

e If the content model of an element, i.e. the right-hand side of an element
declaration, changes, it seems that the grammar-driven interface is more difficult to
maintain, because the code is integrated with the element declaration. However, the
application code of the event-driven interface also has to change, because it makes
assumptions about the structure of elements. If, in the example, sender and receiver
are transposed in the DTD, then the functions person_content and
recei ver _end haveto change. Infact, it isprobably more difficult to maintain the
event-driven application, because the dependent functions are more difficult to find
and there may be many such functions.

Most of the advantages of the grammar-driven interface are due to the fact that
information about the environment is implicitly communicated. Names of elements are
amost never needed inside applications, as is shown in the example. In the event-driven
applications, the environment must always be checked explicitly, which involves
checking for element names, checking for siblets, etc. Standard functions like par ent
or si bl et are not needed in the grammar-driven interface.

PROCESSING SGML DOCUMENTS 15

An advantage of the event-driven interface is that is is easier to create multiple
applications for one DTD. The DTD need not be changed or touched, only a new set of
functions must be defined. In the grammar-driven interface, a copy of the DTD must be
made and new actions must be put inside this DTD. So we get two copies of the DTD,
which potentially gives consistency problems. However, as shown in the appendix, a
careful programmer can overcome this problem. In general, this problem needs a better
solution, though. A feasible solution might make use of existing revision control systems
or it might use aweb-like [12] architecture.

3 IMPLEMENTING THE GRAMMAR-DRIVEN INTERFACE

The grammar-driven method is far from new, but to our knowledge it has not been
applied to SGML systems or other structured document processing systems yet. It usesa
technique well-known in compiler writing. Many widely used parser generators allow
for embedded actions inside the grammar rules. Thisis seen in, for example, Yacc[13]
and LLgen.

The Amsterdam SGML Parser, as described in [3], isan SGML parser generator. The
generator reads and analyses the document type definition and generates a so-called
document-par ser (see Figure 13).

In fact, the generator does not directly generate the document-parser. Instead, it
generates input for the existing parser generator LLgen. LLgen then produces the actual
document-parser. We have chosen this approach because it allows us to reuse an
existing parser generator, instead of writing one ourselves. We have extended this parser
generator so that it recognizes actions in C that are embedded within the SGML
document type definition.

document type
definition document
dtd-parser document
parser
DTD inLLgenform
correct and
complete
document
LLgen
C Compiler
document
parser

Figure 13. Sructure of the Amsterdam SGML Parser

16 JOSWARMER AND HANS VAN VLIET

An LLgen grammar may contain embedded actions in the C programming language.
For the C actions recognized within the SGML document type definition we have
adopted a scheme identical to that of LLgen. In this way the generator only has to
recognize the C actions within the document type definition. Subsequently the generator
is able to simply copy the actions from the SGML document type definition into the
generated LLgen code for the document parser. Now LLgen takes care of generating the
document-parser, including the C actions (Figureld). Because we use the same
scheme asin LLgen, implementation of this mechanism is easy.

document type definition
C application actions

i L

document
parser

l

document

dtd-parser

DTD inLLgenform

C application actions correct and
complete
document

external LLgen
C code = C Compiler L

application document application

output of
application
parser

Figure 14. Sructure of the Amsterdam SGML Parser, including C interface

In the scheme described above, there is a problem whenever a bug occurs. It is
difficult to find out whether the bug resides within the SGML parser or within the
application code. It is even possible that the application programmer interferes with the
SGML parser itself. Therefore we have implemented the scheme in two passes. The
generator generates an SGML document-parser. The document-parser parses and
validates the SGML document and stores the complete document in an easy to read
internal format. The generator also generates a second parser, which contains the code
from the application programmer. This second parser uses the internal format stored by
the document-parser asitsinput. Because the document is validated by the document-
parser, no parsing errors can occur. Each error in the second parser must be an

PROCESSING SGML DOCUMENTS 17

application error. In this way the SGML parser and the application code are strictly
separated.

Another problem that might occur if everything is done in one pass, is that the
document might prove incorrect at some point during parsing. The application has
dready performed some processing and it must make sure that the processing is
reversible. In this two-pass approach, the document is known to be correct when the
application starts processing, so this problem will not occur.

Another advantage of this approach is that the document parser has to parse the
SGML document only once. The stored internal format can be used by severa
applications.

The mechanism has been only partly implemented as yet. SGML AND-groups are
not handled. An AND group isa construct of which each element must occur, though the
order isnot fixed. If, for example, A is defined as:

<lelement A - - (b & c & d)>

then the following documents are valid:

<a>...<c>. .. </c><d>. .. </d>
<a>...<d>...</d><c>...</c>
<a><c>...</c>. .. <d>. .. </d>
<a><c>...</c><d>. .. </d>...
<a><d>...</d>...<c>...</c>
<a><d>...</d><c>...</c>. .. </ b>

We have never encountered a real need for AND groups, athough there is no
fundamental problem inimplementing this feature.

The SGML ANY construct is not supported either. An element may have a content
model ‘ANY"’:

<l el enent what ever - - ANY>

This means that each element defined in the DTD may occur. Because the elements are
not named explicitly, there is no way to specify the parameters within the ANY
construct. However, each ANY construct can be rewritten as an equivalent OR group of
al elementsin the DTD, which can be handled by the Amsterdam SGML Parser.

Inclusions are handled, but in the current implementation they cannot have
parameters. An inclusion is an element that may occur anywhere within some given
element. They can be called everywhere and thus it is impossible to specify the
parameters.

During application development, it became evident that a general-purpose library of
flexible string-handling and output functions would be very useful. Such a library has
been implemented, athough it still isrelatively small.

4 CONCLUSIONS

Because documents in SGML are described by context-free grammars, there is a strong
resemblance to programs. This analogy can be used to borrow well-defined techniques
from compiler technology and apply them to structured document processing.

LL(1) grammars have the conceptual and practical advantage that they alow one to

18 JOSWARMER AND HANS VAN VLIET

view the grammar as a program; this allows a more natural positioning of semantic
actions and a simple attribute mechanism ([11] page 29). The document type definition
grammar used in SGML is amost LL (1) and the application interface of the Amsterdam
SGML Parser has the same advantages.

Many application interfaces are being developed and it is not clear which approach is
the best to use. Many of the approaches seem to be tailored to solve one specific
problem. By proposing a new type of application interface we hope to stimulate the
discussion about SGML application development. We are convinced that, at least for
complex applications, the mechanism used by the Amsterdam SGML Parser has great
advantages over the other mechanisms described.

REFERENCES

1. D. W. Barron, ‘Why use SGML?, Electronic Publishing, Origination Dissemination and
Design (EPODD), 2 (1), 3—-24 (1989).
2. Martin Bryan, SGML: An Author’'s Guide to the Sandard Generalized Markup Language,
Addison-Wed ey, Wokingham, 1988.
3. J Warmer and S. van Egmond, ‘ The implementation of the Amsterdam SGML Parser’, Elec-
tronic Publishing, Origination Dissemination and Design (EPODD), 2 (2), 3-28 (1989).
4. C. Smith, ‘Formatting SGML documents: essence and solution’, SGML Users' Group Bulletin,
2 (1), 4-8(1987).
5. Le Van Huu and E. Terreni, ‘A language to describe formatting directives for SGML docu-
ments', LNCS-TeX for Scientific Documentation, 98-118 (1986).
6. J.P Gaspart, ‘Use of the SGML Parser at the office for official publications of the European
Communities (OPOCE)’, SGML Users' Group Bulletin, 2 (1), 29-36 (1987).
IBM, IBM SGML Translator DCF Edition, IBM Product Nr 5684-025, September 1988.
Sobemap, The Mark-1t Manual, version 2.0, Sobemap S.A., Brussels, June 1988.
L. van Dam and E. van Loenen, ‘A programmers interface for SGML applications (PISA)’,
CERN Internal Report (June 1989).
10. Lynne A. Price and Joe Schneider, ‘Evaluation of an SGML Application Generator’, Proceed-
ings of the ACM Conference on Document Processing Systems, 51-60 (1988).
11. C. J. H. Jacobs and D. Grune, ‘A programmer-friendly LL(1) Parser Generator’, Software —
Practice and Experience, 18 (1), 29-38 (1988).
12. Donad E. Knuth, ‘Literate programming’, The Computer Journal, 27 (2), 97-111 (1984).
13. S.C. Johnson, ‘Yacc: yet another compiler compiler’, Comp. Sci. Tech. Report No. 32, Bell
Laboratories (1975).
14. 1EEE, '|EEE Recommended Practice for Software Design Descriptions’, Std 1016 (1987).

© o N

APPENDIX: USAGE IN SOFTWARE SPECIFICATIONS

Consider an environment where software specifications are written in a strict format,
such as the one described in [14]. Using SGML, we may devise a DTD which defines
the structure of such software specifications. Through an appropriate backend, say one
using nroff, we may then produce formatted hard-copy versions of these software
specifications.

At the implementation stage, part of the software specification may be reused: routine
headers, pre- and postconditions, and the like, will recur aimost verbatim in the eventual
program text. If the implementation language is Modula-2, this information will recur
twice: once in some definition module, and once in the corresponding implementation
module. If the implementation language is C, something similar holds, with a somewhat
different syntax.

The syntax of nroff, Modula-2 and C is sufficiently different to make it impossible to

PROCESSING SGML DOCUMENTS 19

translate the SGML description into any of them using a 1-1 backend. The example
below shows how routines can be described within the |EEE specification framework.
Using the approach of embedded C actions discussed in this paper, the different output
formats can be generated quite easily. Besides nroff code for the textual specification, a
set of Modula-2 definition and implementation modules, or a set of C header (.h) and
source (.c) files, can be generated for each component in the specification.

This example is part of a DTD used in our software engineering course. In this
course, each group of students has to write a specification, following the |IEEE format. At
a subsequent stage, each group has to implement a specification written by some other
group. For the implementation language, they are free to choose either Modula-2 or C.
The tools provided alowed them to generate code skeletons in either language, from the
specification given.

In Figure 15 the DTD for a routine specification is given. Figure 16 contains the same
DTD, with embedded C actions.

<l doctype spec |
<! el ement spec - - (routine)* >

<lattlist routine nane CDATA #REQUI RED

type CDATA "" >
<l el enent routine - - (parant, pre, post, explain?) >
<lel enent pre - - CDATA >
<l el enent post - - CDATA >
<lelenent explain - - CDATA >
<lattlist param i nout (reference, val ue) val ue
nane CDATA #REQUI RED
type CDATA #REQUI RED>
<l'el ement param - - EMPTY >

1>
Figure 15. DTD for routine specifications

<l doctype spec

{

/*

* After the ‘doctype’ declaration one can put sone C code used
* for include, define and extern declarations

*/

#include "list.h"

extern char* att_val ue();

1
[

<l el enent spec - - (routine)* >

<lattlist routine nane CDATA #REQU RED
type CDATA "" >

20 JOS WARMER AND HANS VAN VLIET

<l el enent routine

{{
char* pr oc_nane;
char* return_type;
P_Li st par am var = list_create();
P_Li st paramtypes = list_create();
P_Li st param nanmes = |ist_create();
char* param nanme ;
char* paramtype ;
i nt vari abl e ;
char* pre;
char* post ;
char* expl ai n;
proc_nane = att_val ue("nane");
return_type = att_value("type");
}}
- - (param (&variable, ¶m nane, ¶mtype)
{{
if(variable){
list_add(paramyvar, 1);
} else {
list_add(paramvar, 0);
}
i st_add(paramtypes, paramtype);
| i st_add(param nanmes, param nane) ;
P
pre (&pre),
post (&post),
explain (&explain)?
)
{{
process_routine(proc_nanme, return_type, paramvar, paramtypes,
param names, pre, post, explain);
}}
>
<lelement pre (char** s;) - - CDATA(s) >
<l el enent post (char** s;) - - CDATA(s) >
<lelenent explain (char** s;) - - CDATA(s) >
<lattlist param inout (reference, value) val ue
name CDATA #REQUI RED
type CDATA #REQUI RED>

<!'el ement param

(
int* vari abl e ;
char** param nane ;
char** paramtype ;

PROCESSING SGML DOCUMENTS 21

{{
(*vari abl e) =1 strequal ("val ue", att_value("inout"));
(*param_nane) = att_val ue("nanme");
(*param type) = att_val ue("type");
1}
- - EMPTY >
1>

Figure 16. The same as Figure 15, but with embedded C-actions

Three external C functions process_r out i ne were written, which write the output in
one of the three different formats.

The example document in Figure 17 can thus be converted into the outputs shown in
Figures 18, 19, 20, 21 and 22.

<spec>
<routi ne nanme="CreateStack" type="StackType">
<pl’ e>
None.
</ pre>
<post >

An enpty stack is created and returned.
The returned stack exists.
</ post >
<expl ai n>
New nmenory mnust be allocated for a stack.
If no menory is available, the programis aborted.
</ expl ai n>
</routine>

<routi ne name="DestroyStack">
<param i nout ="ref erence" nanme="stack" type="StackType">
<pre>
Par amet er ' stack’ should be an existing stack.
</ pre>
<post >
The nenory used by 'stack’ is freed and ’stack’
does not exist anynore.
</ post >
<expl ai n>
Wat ch out when there is nore than one reference to the stack.
</ expl ai n>
</routine>
</ spec>

Figure 17. Example routinesin SGML

22 JOSWARMER AND HANS VAN VLIET

.nr LL 80m

.nr LT 80m

.LP

.sp 1

. nf

FUNCTI ON CreateStack() : StackType ;

Cfi

. nf

. br

.in +6

.ti -6

Pre :\ None.

.in -6

Cfi

. nf

. br

.in +6

.ti -6

Post : \ An enpty stack is created and returned.
The returned stack exists.

.in -6

Lfi

. nf

. br

.in +8

.ti -8

Expl anati on:\ New nmenory must be allocated for a stack.

If no nmenory is available, the programis aborted.
.in -8

i

.sp 1

. nf

PROCEDURE DestroyStack(VAR stack : StackType)

Cfi

. nf

. br

.in +6

.ti -6

Pre :\ Paramet er 'stack’ should be an existing stack.
.in -6

i

. nf

. br

.in +6

.ti -6

Post : \ The nmenmory used by 'stack’ is freed and ’stack’

does not exi st anynore.

PROCESSING SGML DOCUMENTS 23

.in -6

Cfi

. nf

. br

.in +8

.ti -8

Expl anati on: \ Wat ch out when there is nmore than one reference
to the stack.

.in -8

i

Figure 18. Nroff generated from SGML routines

DEFI NI TI ON MODULE st ack;
(*
* Modul a2 definition nodul e generated from specification

*)
(*

* procedure declarations

*)

PROCEDURE Creat eSt ack(): StackType;
(*
PRE:
None.
POST:
An enpty stack is created and returned.
The returned stack exists.
EXPLANATI ON:
New nenory nust be allocated for a stack.
If no nenory is available, the programis aborted.

*)

PROCEDURE Dest roySt ack(VAR stack : StackType);
(*
PRE:
Paramet er ' stack’ shoul d be an existing stack.
POST:
The nenory used by 'stack’ is freed and ’stack’
does not exist anynore.
EXPLANATI ON:
Watch out when there is nore than one reference to the stack.

*)

END st ack.
Figure 19. Modula2 definition module generated from SGML routines

24 JOSWARMER AND HANS VAN VLIET

| MPLEMENTATI ON MODULE st ack;
(*
* Modul a2 i nmpl enentati on nodul e generated from specification

*)
(*

* procedure decl arations

*)
PROCEDURE Creat eStack(): StackType;
(*
PRE:
None.
POST:

An enpty stack is created and returned.
The returned stack exists.
EXPLANATI ON:
New nenory nust be allocated for a stack.
If no nmenory is available, the programis aborted.

*)

BEG N
(* inplementation *)
END Cr eat eSt ack;

PROCEDURE Dest roySt ack(VAR stack : StackType);
(*
PRE:
Paramet er ' stack’ should be an existing stack.
POST:
The nenory used by "stack’ is freed and ’'stack’
does not exist anynore.
EXPLANATI ON:
Wat ch out when there is nore than one reference to the stack.

*)

BEG N
(* inplementation *)
END DestroySt ack;

END st ack.

Figure 20. Modula2 implementation module generated from SGML routines

PROCESSING SGML DOCUMENTS 25

/* MODULE stack */
/*
* C header file generated fromspecification
*/
#i fndef stack_.H /* avoid multiple inclusions */
#define stack_H

/*
* procedure declarations
*/
extern StackType CreateSt ack();
/*
PRE:
None.
POST:

An enpty stack is created and returned.
The returned stack exists.
EXPLANATI ON:
New nenory nust be allocated for a stack.
If no nenory is available, the programis aborted.
*/

extern void DestroyStack(/* StackType *stack */);
/*
PRE:
Paramet er ' stack’ shoul d be an existing stack.
POST:
The nmenmory used by 'stack’ is freed and ’stack’
does not exi st anynore.
EXPLANATI ON:
Wat ch out when there is nore than one reference to the stack.
*/

#endi f stack_H
Figure 21. C header file generated from SGML routines

26 JOS WARMER AND HANS VAN VLIET

/* MODULE stack */

/*
* Csource file generated fromspecification
*/
#i ncl ude "stack. h"
/*
* procedure declarations
*/
StackType CreateStack()
/*
PRE:
None.
POST:

An enpty stack is created and returned.
The returned stack exists.
EXPLANATI ON:
New nenory nust be allocated for a stack.
If no nenory is available, the programis aborted.
*/

{
}

voi d Dest r oy St ack(st ack)
St ackType *st ack;
/*
PRE:
Parameter 'stack’ should be an existing stack.
POST:
The nenory used by 'stack’ is freed and ’stack’
does not exist anynore.
EXPLANATI ON:
Wat ch out when there is nore than one reference to the stack.

/* inplementation */

*/

/* inplenentation */

Figure 22. C source file generated from SGML routines

	SUMMARY
	1 INTRODUCTION TO SGML
	2 PROCESSING SGML DOCUMENTS
	2.1 Mappings
	2.2 YAPL
	2.3 General
	2.3.1 Event-driven application interface
	2.3.2 Grammer-driven application interface
	2.3.3 Differences between event-driven and grammer-driven interfaces

	3 IMPLEMENTING THE GRAMMER-DRIVEN INTERFACE
	4 CONCLUSIONS
	REFERENCES
	APPENDIX : USAGE IN SOFTWARE SPECIFICATIONS

