
ELECTRONIC PUBLISHING, VOL. 4(1), 43–60 (MARCH 1991)

Numbering document components1

MICHAEL A. HARRISON AND ETHAN V. MUNSON

Computer Science Division
University of California at Berkeley
Berkeley, CA 94720, USA

SUMMARY
Numbering document components such as sections, subsections, figures and equations gives
each component a unique identifier and helps the user locate the component when it is cross-
referenced. This paper discusses ways in which such numbering can be described and proposes
a simple paradigm for declarative specification of how components should be numbered. The
class of algorithms for incremental update of component numbers is studied and the “best”
such algorithm is developed in detail.

KEY WORDS Structured documents Component numbering Incremental update Interactive systems
Last/previous algorithm Declarative specification

1 INTRODUCTION

It is common, particularly in technical documents, to assign ordinal numbers to certain
document components, such as sections, figures, and equations. The purpose of numbering
is to facilitate cross-referencing of distant components and to help the user locate distant
components in a long document.

Numbering serves these purposes in two ways. First, it gives each component a unique
identifier within its type, so that Figure 2 is the only figure given the number 2. Unlike
such alternative identifiers as section titles and figure captions, numbers are short, can
be generated automatically, and are certain to be distinct. Also, there is an inexhaustible
supply of them. However, numbers have none of the mnemonic qualities of these textual
alternatives. Secondly, a component number gives the reader a strong hint about the
component’s location in the document. Figure 2 is guaranteed to appear after Figure 1 and
before Figure 3. Page numbers might specify the location more precisely, but they may
not specify a unique component (since a page may contain multiple figures or equations).
Moreover, in certain computerized document systems, the text is assumed to be an infinite
scroll, i.e. there are no page numbers. Thus, while component numbering is neither the
best unique identifier nor the best locator, it is probably the best tool for achieving both.

Support for automated component numbering has traditionally been one of the fea-
tures that distinguish “document-processing” systems from “word-processing” systems.
Document-processing systems free the user from the tedious task of updating component
numbers and cross-references by hand. However, for those document-processing systems

1 Sponsored by the Defense Advanced Research Projects Agency (DARPA), monitored by Space and Naval
Warfare Systems Command under Contract N00039-88-C-0292.

0894–3982/91/010043–18$9.00 Received 20 August 1990
c
1991 by John Wiley & Sons, Ltd. Revised 15 November 1990

© 1998 by University of Nottingham.

44 MICHAEL A. HARRISON AND ETHAN V. MUNSON

that support interactive editing, the maintenance and incremental update of component
numbers and their related cross-references is a difficult problem.

This paper discusses two related topics. The first is a paradigm for specifying how
document component numbers should be computed. This paradigm improves on existing
approaches by being fully (rather than partially) declarative. Next, possible algorithms for
the incremental update of component numbers in an interactive structured document editor
are explored with an emphasis on one particular algorithm, the last/previous algorithm.
This algorithm keeps component numbers up to date at all times, is reasonably efficient,
and requires very little overhead for editing operations on unnumbered components.

A number of different problems related to numbering occur in dealing with the physical
structure of a document, as opposed to its logical structure. For example, footnote numbers
may begin anew on each page. This paper concentrates on the problems of numbering
components with respect to the document’s logical structure.

The nextsectionof this paper discusses conventions for component numbering and
provides some background on the domain of structured documents.Section 3discusses
previous work on component numbering.Sections 4and 5 present our declarative
specification paradigm and the incremental update algorithms, respectively. The final
sectionpresents our conclusions.

2 BACKGROUND

We have been led to investigate the problem of numbering document components by our
work on the design of Ensemble, an interactive editing system for structured multimedia
documents. The needs of Ensemble underlie our interest in novel specification methods
and fast incremental formatting algorithms. Our work on numbering is motivated by a set
of assumptions about

� the ways that document components are numbered,

� the nature of structured documents,

� and the design principles required by interactive editing systems.

This section provides some background on these three topics.

2.1 Numbering conventions

Numbering conventions for documents vary considerably between certain classes of
documents. These conventions are not rigidly adhered to, but there is enough consistency
to allow some general assertions.

In discussing these conventions it is useful to make a distinction between two classes of
document components.Structuralcomponents, such as chapters, sections, subsections, etc.,
are used by an author to give his work a hierarchical structure.Non-structuralcomponents,
such as figures, footnotes, tables, and equations, are simply distinguished elements of the
document and may be placed at almost any depth in the work’s structural hierarchy. The dis-
tinction may seemfairly arbitrary,but thestrictly hierarchical relationship between thestruc-
tural components makes it easier to specify and implement automatic numbering for them.

Literary works often have some structural components in the form of parts, chapters,
and sections. While such works may have illustrations or maps, these are seldom numbered
and rarely cross-referenced in the text. Cross-references are particularly rare because they

NUMBERING DOCUMENT COMPONENTS 45

violate the convention that the reader should not be reminded that he is merely reading
a book, rather than directly observing events. Literary works typically number parts and
chapters independently. Part II of a novel may contain Chapters 9 through 15 because the
first eight chapters were found in Part I. However, sections within the chapters usually
start their numbering anew with each new chapter. In such documents, numbering simply
serves to help the reader understand the flow of the document.

Technical documents and some scholarly works make much greater use of component
numbering. In general, their structural components are numbered strictly hierarchically.
That is, each type of component is numberedwith respect toits enclosing structure. For
example, subsection numbers start over from one with each new section. Non-structural
components are generally numbered with respect to a structural component of medium
size. In a journal article, they are numbered with respect to the entire article. In a book,
their numbers are likely to start over with each new chapter. In a multi-volume technical
manual, the numbers may be based on an even smaller unit, like a subsection.

Scholarly works in the humanities and social sciences tend to fall in between these
two extremes. They usually number structural components in the manner of literary works
but include a substantial number of non-structural components, especially footnotes or
endnotes, which are typically numbered with respect to a chapter.

In all these cases, document components are numbered in ascending order as they
are encountered in a linear pass through the document. It is the conventions about when
component numbering should start (i.e. be reset to one) that make these cases differ. From
these observations, we make the following assumptions:

� No matter what kind of document is being produced, the key problem for a document-
processing system is identifying when the numbers for a particular component type
should start over.

� Component numbers always start over at the beginning of an enclosing structural
component.

� The structural components of a document are always arranged in a strict hierarchy
(i.e. a chapter is never divided between two parts of a book).

� Thus, the specification of document component numbering reduces to the problem
of specifying a particular subtree of the document’s structural hierarchy.

2.2 Structured documents2

All document-processing systems are based, implicitly or explicitly, on adocument model.
Perhaps the simplest document model is that of a linear sequence of printable symbols
interspersed with control symbols indicating changes of formatter state (e.g. position on the
page or character font). This model forms the basis of most direct-manipulation systems
(e.g. MacWrite[2] and the Interleaf publishing software[3]) and of some batch-oriented
document-processing systems (e.g.troff [4] and Plain TEX [5]). The user of such a system
becomes both author and typographer, a position which can be both empowering and
burdensome.

Structured document systems are based on a higher-level document model which
emphasizes structure, rather than appearance. The canonical example of a structured
document is a book composed of a sequence of chapters, which are themselves composed
2 This discussion of structured documents is based on the complete presentation in Reference[1].

46 MICHAEL A. HARRISON AND ETHAN V. MUNSON

of sections, which are, in turn, composed of subsections. The hierarchical organization of
this example is typical of many kinds of documents. As a result, structured documents
are usually conceived of as trees. Structured document systems typically support a variety
of document types, each having different legal arrangements of components. Common
document types are book, article, letter, and memo.

The author provides the structured document system with the text of the document
and specifies how the text is broken into components. The appearance of the document
is determined by a separate choice ofstyle or presentation. In most cases, this style
was designed by astyle designer, who fills the traditional role of typographer. Thus, by
separating the specification of content from the specification of appearance and by providing
predefined styles, structured document systems relieve their users of the typographer’s
duties. In addition, they encourage the reuse of documents and their components because
little effort is required to make changes of style.

In practice, there are two kinds of structured document systems, batch and interactive.
The most widely used batch systems are Scribe[6] and LaTEX [7]. While they present
the user with a tree-structured document model, the underlying implementation does not
actually build a tree, because their single-pass formatting implementation does not require
it. Also, the separation of structure and presentation is not reflected in the way styles
are defined. For example, LaTEX style files define not only the appearance of a class of
documents, but also the legal configurations of the members of the class.

In contrast, the implementations of interactive structured document systems, like the
ped tnt [1] and Grif [8], closely reflect the structured document model. In both theped tnt
and Grif, the system’s central data structure is ak-ary tree, thedocument tree. These systems
must explicitly maintain the document tree in order to support the structure-oriented editing
operations that are naturally required in an interactive structured document system. In both
systems, document types are defined using a grammar-based specification language. Grif
calls this specification astructural schemaand uses a separatepresentation schemato
specify the appearance of the document.

2.3 Design principles for interactive editors

One of the most common editing operations in an interactive document editor is text entry.
If entered by a fast typist, new characters may arrive at rates as fast as 10 per second[9].
Users of an editor will quickly become dissatisfied if on-screen feedback for this text
entry does not keep up with their typing. These same users may be much more tolerant of
brief delays when performing less frequent operations that appear complex. Clearly, the
implementors of interactive document editors should focus their optimization efforts on
those operations that are performed frequently and appear simple to the user.

However, the designer of an interactive document editor is faced with a more difficult
decision when choosing algorithms. The standard wisdom is to choose algorithms and data
structures that minimize the maximum complexity of the editor’s operations. For example,
it is generally considered best to choose a data structure for which all operations run in
log time, even though it means sacrificing constant time complexity on some individual
operations.

We believe that this wisdom does not hold for interactive editors. It is important
that most operations (e.g. insertion of unnumbered document components) resulting from
normal text entry run in constant time, even if it increases the complexity of less frequent

NUMBERING DOCUMENT COMPONENTS 47

operations. If this is not the case, the designer runs the risk of creating a system that is only
useful for “toy” documents.

3 PREVIOUS WORK

3.1 Numbering mechanisms

Component numbering actually involves two separate tasks, component number generation
and cross-reference resolution. It nicely illustrates some of the differences between batch
and interactive systems because batch systems can easily generate component numbers but
have trouble with cross-reference resolution, while the situation is reversed for interactive
systems.

The original batch-oriented formatting systems[4,5] did not support numbering
directly. However, they did provide registers which could be used for various purposes,
including component number generation. The user allocates a register foreach component
type being numbered and then directly manages updates to the value stored there. Thus,
as the formatter scans the document, each register holds the current number for its
corresponding component type. This approach to number generation is used by all batch
formatters, though the details are usually hidden from the user.

Cross-reference resolution is made difficult by the possible presence offorward
references, which are cross-references to components appearing later in the document.
Resolutionof forward references requires two passes over the document source. In addition,
the second pass must be a full formatting pass because the width of the cross-reference
characters cannot be determined until after resolution. There are two basic approaches to
cross-reference resolution for batch formatters.

Aho and Sethi[10] show how a simple preprocessor, using the UNIX utilitiesgrep ,
awk, andsed , can be used to resolve cross-references. Using this approach, document
formatting requires three passes over the source, but formatting is only done on the last
step.

In thesecond approach, introducedby Scribe and also used by LaTEX, the batch formatter
is run twice so that it acts as its own preprocessor[11]. On the first run, the formatter saves
cross-reference information in an auxiliary file. The second run of the formatter reads the
auxiliary file and uses the information there to resolve the cross-references. While only
two passes are made over the document, they are both relatively expensive passes.

The register approach to number generation is not adequate for interactive WYSIWYG
systems. In such systems, the user may move to random locations in the document and
will expect any component numbers found at those locations to be up to date. If the system
is to respond quickly to the user’s movement commands it must be able to “jump” to the
new location without having to inspect all of the intervening material in order to update its
numbering registers.

One solution, used in the Quill system[12,13], is to extend the register approach. Quill
provides its style designers with two classes of registers,local andglobal. Global registers
have a single value for the entire document. Local registers have a single value at each
point in the document, but that value only applies to a region of the document. In Quill,
the value of a local register at a particular point in the document is determined by finding
the last element preceding it which set the value of the register. To avoid the cost of a full
tree traversal to update operation on the local register, Quill maintains ashare list(sic)

48 MICHAEL A. HARRISON AND ETHAN V. MUNSON

for each local register, which records those components reading and writing that register.
Furthermore, to avoid a degradation in response time, local registers are updated using
spare cycles between user interactions.

Component numbering is one of the key uses for local registers in Quill. For example,
in a document with numbered figures, the style definition can allocate a local register to
hold the figure numbers. Each figure can update the value of the local register using the
Lwrite operation. Thus, each figure sets the value of the figure number register for the
region between itself and the next figure.

A different solution, examined in this paper, is to abandon the register approach in
favor of number slots in the components themselves. These number slots store the ordinal
rank of the component in the document. The use of number slots largely eliminates the
cross-referencing problem because, as long as the slots are kept up to date, a cross-reference
need only point to the component it references. Unfortunately, keeping the number slots up
to date is not so straightforward. Whenever a numbered component is inserted or deleted,
the number slots of all subsequent components must be made up to date. Without some
secondary data structures, this could require a full pass over the document. In addition,
whenever multiple components are inserted or deleted by a single editor operation they
must be scanned for the presence of numbered components.

A third approach, taken in Grif[14], computes component numbers dynamically as
they are displayed. This approach avoids computing component numbers that are not
displayed, but requires recomputation of component numbers and cross-references to them
each time they are redisplayed. In a Grif document containing 200 numbered equations,
inserting a new equation at the beginning of the document results in a delay of about five
seconds on a SparcStation 1+.

3.2 Specification

As mentioned above, the early batch formatters provided registers which could be used for
component number generation. Direct allocation and update of such registers was used to
support hierarchical section numbering in the-memacros fortroff [15].

The general trend in structured document systems has been to use a more declarative
specification method, but one still based on the register model. Scribe introduced a system
of counters whose definition was essentially declarative[16]. This approach was brought
to interactive systems by Grif.

Grif documents are described by two schema types, structure and presentation. The
structure schema defines the logical structure of the document, which can be thought of as
a tree. The presentation schema defines how each of the document components defined in
the structure schema is displayed on the page or screen. To support component numbering,
Grif’s presentation schema language, P, provides special registers calledcounters, which
only support a restricted class of updates[17].

An abridged sample of a presentation schema showing the definition and use of a
counter for chapters can be seen inFigure 1. This example defines a counter called
Chapter_Count . The formatted version of the counter is produced by the definition of
theChapter_Number box. This box of formatted text is placed at the beginning of the
chapter by theCreate command and cross-references to it are generated using theCopy
command.

The primary type of counter specification, shown inFigure 1, is based on a component’s

NUMBERING DOCUMENT COMPONENTS 49

COUNTERS
Chapter_Count : RANK OF Chapter;

BOXES
Chapter_Number :

Content : (VALUE (Chapter_Count, UpperRoman));
RULES

Chapter :
Create (Chapter_Number);

Ref_Chapter :
Copy (Chapter_Number);

Figure 1. Example showing the use of a counter in Grif’s presentation schemas.

rank, which is the ordinal rank of a component relative to its siblings in the document
tree. This approach works well for the hierarchical numbering of structural components,
like chapters, because they are guaranteed to be siblings. However, it does not work
for non-structural components which either appear at varying depths in the tree or are
numbered with respect to an ancestor which is not their parent. Grif handles these cases
with a specification that looks like a return to the register model:

CountEquation: Set 0 on Article
Add 1 on Numbered_equation;

A counter can only be set by one type of component, can only be added to by one other
type of component, and its initial and added values must be positive integer constants. So,
the arbitrary updates that are possible with registers introff or TEX are not possible in Grif.
It is possible to have apparently distinct component types share a counter. This is done
by defining an “alias” component of which the component types sharing the counter are
instances.

Grif’s counters are separate entities from the document components they count. The
connection between the counter and the counted component is established by how the
document designer uses the counter to construct the document’s presentation. This lack of
connection results in complex semantics for theCopy command.

The Copy rule can be used for an element which is defined as a reference in the
structure schema. In this case, the rule specifies, between parentheses, the name of the
box (declared in the sectionBOXES) which should be produced when this reference
appears in the structure of a document. The box produced by the rule is a copy (with
identical contents, but possibly different presentation) of the box which is part of the
element designated by the reference and has the type specified by the parameter of
the rule. Instead of a box name, a type name can be used. When this form of the rule
is used, the contents of the element of this type which is enclosed in the referenced
element are copied.[17, Section 3.2.26]

4 DECLARATIVE SPECIFICATION

Having examined this earlier work, we have designed a completely declarative method
for the specification of component numbering. It improves on the approach of Grif by
generalizing the notion of rank and by binding the component number to the definition of
the component. Our approach is based on the following assumptions:

50 MICHAEL A. HARRISON AND ETHAN V. MUNSON

1. The document is represented as a tree.

2. The order of the document’s components is equivalent to their positions in a preorder
traversal of the (k-ary) tree[18, p. 54].

3. All components of a particular type are numbered with respect to a particular
ancestor, specified by its type.

These assumptions point the way to a generalization of the notion of rank, as introduced
by Grif. Since the order of components can be found by a pre-order traversal of the document
tree, the definition of rank can be extended from that of “rank among siblings” to that of
“pre-order rank within a subtree”. The subtree within which to perform the traversal is
specified by naming the type of its root. An application of this approach to the equation
numbering example we examined for Grif (using modified Grif syntax) is shown in
Figure 2. This example says that eachEquation is numbered “with respect to” (wrt) its
Chapter ancestor. The formatted version is created by accessing theNumber attribute
of theEquation .

This new specification method has several favorable qualities. It makes no commitment,
implicit or explicit, about the way component numbers are computed. It unifies in one
construct both the “rank among siblings” and “set-add” paradigms used in Grif. Finally, the
new method makes the number an attribute of the component, rather than an independent
data structure.

This last quality deserves some expansion. Each node in a particular document’s tree
can be numbered many ways. A particular node is simultaneously thei th child of its parent,
the j th grandchild of its grandparent, and thekth node of the same type in a pre-order
traversal of the document tree, to name a few of the possibilities. Each of these numbers is
inherent in the node’s location in the document tree and thus is part of thelogical structure
of that particular document. The proposedNumber attribute simply chooses which of
these values should be used to generate component labels and cross-references. This choice
is apresentationdecision.

A separate presentation decision involves what value is actually displayed and what
form it takes. The form that the component number takes on the screen or page (e.g. arabic
or roman numerals, letters, or other symbols) is typically determined by the style designer
but may be overridden by the author. The author may also require that the system add a
constant to the stored number in order to make his document fit into a larger work of which
he is only producing a portion.

BOXES
Equation_Number :

Content : (VALUE (Number(Equation), UpperRoman));
RULES

Equation :
Number: wrt Chapter;
Create(Equation_Number);

Ref_Equation :
Copy (Equation_Number);

Figure 2. Example showing the specification of equation numbers using the pre-order rank approach.

NUMBERING DOCUMENT COMPONENTS 51

4.1 Recursively specified structure

It is possible to create document specifications whose structural components are defined
recursively. An example would be the definition of sections shown inFigure 3where each
section is composed of a heading, an optional list of paragraphs, and an optional list of
sections. For the sake of conciseness, we use the adjectiverecursivefor such recursively
specified document components. Note that arecursive sectiondoes not contain a list of
copies of itself, just other sections with arbitrary content.

Section = BEGIN
Section_heading = TEXT;
? Section_Preamble = LIST OF (Paragraph);
? Section_sequence = LIST OF (Section);
END;

Figure 3. Sample definition of recursive sections.

While most existing document processing systems allow the definition of recursive
components, style designers seldom use them for numbered components. This is because it
is difficult to describe the numbering of recursive components using the register model. For
instance, if recursive sections are used, there must be a register for each level of recursion.
Since the number of levels of recursion cannot be known beforehand, the registers must
be allocated on demand. In practice, existing systems simply provide a fixed number of
sectioning levels, each with a pre-allocated numbering register.

As presented so far, our specification method is not adequate when documents can
have recursive structure. Consider an article with recursive sections. As one descends the
document tree from the root toward some leaf, one encounters a sequence of sections.
The first section encountered corresponds to the traditional notion of section, the second
to a subsection, and so on. So, specifying a subtree within which to number a particular
component type requires being able to count sections on the downward path from the root
to the component. Suppose that equations in this style of article are numbered with respect
to subsections. Our construct for doing this is

Equation:
Number: wrt second Section;

wheresecond is a predefined keyword specifying the second node of type “Section”
encountered in traveling downward on the path from the root to the Equation node.

This approach is quite sufficient for recursive sections but does not handle all structures
which could be defined recursively. Recursive figures are an example of such a structure.
A specification for such a structure appears inFigure 4. Typically, a figure is numbered
with respect to its enclosing section or chapter. However, subfigures are usually numbered
with respect to their enclosing figure. As an example, Figure 10 (tenth figure in its chapter)
might contain two separate charts, which might be lettered (a) and (b) (corresponding to
numbers 1 and 2). Accommodating both ways of numbering figures requires the use of
some sort of conditional expression in the numbering specification. Such a scheme could
be described using parser generation tools, such as attribute grammars, but support for
such mechanisms has yet to provided by any existing document-processing system.

52 MICHAEL A. HARRISON AND ETHAN V. MUNSON

Figure = BEGIN
Figure_content = CASE OF

Frame = GRAPHIC_OBJECT;
Sub_figures = LIST OF (Figure);
END;

Figure_caption = Contents;
END;

Figure 4. Structural specification for recursive figures.

5 INCREMENTAL UPDATE ALGORITHMS

For interactivestructured document editors using a slot-based mechanism, the most difficult
aspect of component numbering is the maintenance of correct values in the number slots
of the components. Nearly every insertion or deletion operation involving numbered
components must update some component numbers. This section describes the task more
formally and presents a series of algorithms for the incremental update of these numbers.
All of the algorithms assume that component numbering is specified using the method
described in the previous section.

In order to make our presentation more concrete, we will discuss the incremental update
problem in terms of a running example: a book containing equations which are numbered
with respect to their enclosing chapter. A specification corresponding to this numbering
scheme appeared inFigure 2. The use of this example allows the update problem and the
algorithms to be presented in terms of “equations” and “chapters”, rather than “numbered
components” and “components of the type they are numbered within.”

5.1 The problem

In a structured document editor, all modifications of the document can be considered to
be built from three primitive operationsset-attribute, insert-subtree, anddelete-subtree.
As described here, these operations immediately update any invalid component numbers.
This is a necessary feature if the system is to ensure that all component numbers and
cross-references that are on screen are correct. The decision to keep component numbers
and cross-references up to date at all times is a design choice. In contrast, Quill only
requires that on-screen numbers and cross-references will eventually be up to date[13].

Set-attribute(N, A, v) assigns the valuev to attributeA of nodeN. Except when used to
change the value of a node’s equation number slot, theset-attributeoperation has no effect
on equation numbers.

The insert-subtree(S, N, i) operation inserts the subtreeSas thei th child of the nodeN.
In some editor implementations, theN andi parameters may not be necessary because the
editor supports a notion ofcurrent insertion point. The insertion operation involves four
steps:

1. AttachSto the document tree as thei th child of N.

2. Determine whetherS contains any equations. If not, the insertion operation is
complete. Otherwise, continue.

3. FindEpre.number, the number of the equation precedingS in a pre-order traversal of
the chapter subtree.

NUMBERING DOCUMENT COMPONENTS 53

4. Assign new values to the number slots of the equations inS and all equations
following S in the chapter subtree, beginning with the valueEpre.number+ 1.

Thedelete-subtree(S) operation removesSfrom the document tree. Like insertion, deletion
involves four steps:

1. Determine whetherScontains any equations. If not, skip to step 4.

2. Find Eold.number, the number of the first equation inS. Alternatively, find
Epre.number, which is always one less thanEold.number.

3. Assign new values to the number slots of the equations followingS in the chapter
subtree, beginning with the valueEold.number.

4. RemoveSfrom the document tree.

These two operations have several common subtasks. They both must determine whether
S contains any equations, find a starting equation number, and update all equations after
the point of change in the document. Because theirunderlying subtasks are so similar, they
generally have similar complexity.

5.2 The algorithms

Given our specification method based on pre-order rank, the naive approach to the problem
is to traverse the tree to locate the relevant equations. Using this approach, theinsert-subtree
operation would:

� AttachSto the document tree as thei th child of N.

� TraverseS until an equation is found. If no equation is found inS, insertion is
complete. Otherwise, call this equationEnew and continue.

� Traverse the chapter subtree backwards fromS to find the immediately preceding
equation,Epre, and its number,Epre.number. If there are no preceding equations,
considerEpre.numberto be zero.

� SetEnew.numberequal toEpre.number+ 1. Traverse the chapter subtree forward (in
pre-order) fromEnew, setting the numbers of all subsequent equations.

The naivedelete-subtreeoperation is:

� TraverseS until an equation is found. If no equation is found inS, deletion is
complete. Otherwise, call this equationEold and continue.

� Traverse the chapter subtree forward (in pre-order) fromS, updating the numbers of
all subsequent equations, starting with the valueEold.number.

Both operations can, in the worst case, require a complete traversal of the chapter
subtree. If equations appear at random locations in the subtree, the final step of the
algorithm will require traversing, on average, half of the chapter subtree. In addition, both
operations must completely traverseS to ascertain thatScontains no equations. A subtree
traversal requires crossing each edge in the subtree twice. Since the number of edges in a
tree isn� 1, wheren is the number of nodes in the subtree, we consider this to be an O(n)
algorithm.

The naive algorithm does not require any additional storage. Every other algorithm
described here attempts to improve on the naive approach by trading space for time.

54 MICHAEL A. HARRISON AND ETHAN V. MUNSON

5.2.1 The traditional approach

In this algorithm, the additional space is required by a new data structure, a single binary
search tree containing all nodes in the chapter subtree. The nodes are ordered in this search
tree according to their position in a pre-order traversal of the chapter subtree. In addition,
eachnode has a slot holding a count of the number of equations below it in the search tree
and the equations themselves are chained together in a “thread”, the head of which is also
stored in the chapter node. This new data structure allows the computation ofEpre.number
by ascending the search tree fromS to the root and summing the equation counts of the
left siblings (if any) ofSand its ancestors. If the search tree is balanced, this is an O(logn)
operation.

The insert-subtreeoperation first attachesS to the document tree.S must have an
attached search tree and equation thread, even ifS is not a full chapter. OnceS is attached
to the document tree, it is straightforward to locate its predecessor,Npred. If S is a singleton
tree, thenS’s search tree can be inserted directly into the search tree for the chapter.
Otherwise, a more complicated sequence of operations is required. The search tree is split
around the new predecessor ofS, leaving a left subtreeL, the predecessorNpred, and a right
subtreeR. The search tree is rebuilt by two successive joins, as in

join(join(L, NpredS), D, R)

whereD is a dummy node that is immediately deleted.
Thedelete-subtreeoperation is similar. IfS is a singleton tree, normal deletion is used.

Otherwise, the chapter’s search tree is split at the predecessor ofSand at the successor of
S. Again using a dummy node, the resulting left and right subtrees are re-joined and the
dummy node is deleted. The middle subtree, which contains the nodes ofS, is attached to
S in caseS is later re-inserted, as is the middle portion of the equation thread.

All search tree operations must be enhanced to update the equation count slots
and to correctly split and merge the equation thread. In addition, when either of these
operations actually inserts or deletes equations, those equations following the point of
insertion or deletion must have their number slots updated. If the search tree operations are
implemented using self-adjusting binary search trees[19], the search tree manipulations
of both operations will run in log time (amortized). The cost of updating the equation
numbers will be linear in the number of equations in the chapter, because the presence of
the equation thread obviates the need to perform a tree traversal. We consider this algorithm
to have O(logn + k) running time whenScontainsk equations.

The problem with this approach is thatall insertions and deletions become log time
operations. This conflicts with the design principles we endorsed inSection 2.3.

5.2.2 Our approach

We set out to construct an incremental update algorithm which would provide constant
time operations on equation-less subtrees and sublinear operations on subtrees containing
equations. Every algorithm we considered makes use of the idea of anequation thread. An
equation thread is a list containing every equation in the chapter subtree. Each equation’s
position in the list corresponds to its position in a traversal of the chapter subtree and,
therefore, to its equation number. When a subtree is inserted (deleted), a list of the equations
in the subtree is inserted into (cut out of) the chapter’s equation thread. The numbers of

NUMBERING DOCUMENT COMPONENTS 55

any equations following the point of the editing operation are updated by stepping through
the elements of the thread. Use of an equation thread reduces the time required for this
final step of the insertion and deletion operations from O(n) to O(k), wherek is the number
of equations in the chapter subtree. Thus, the algorithms differ only in the running time for
determining whetherScontains any equations, the running time to find the number ofEpre,
and the amount of additional storage required.

Before settling on the algorithm described in detail below, we examined and rejected
five algorithms:

Equation Thread Only. This algorithm simply added an equation thread to the chapter
subtree. Subtrees being inserted are assumed to have an equation thread (possibly
empty) attached. Using this algorithm, the central operation is the comparison of the
positionofSto that of the equations in the chapter’s equation thread. This comparison
operation is used to determine the position at whichS’s equation thread should be
inserted into or deleted from the main thread. The complexity of a single comparison
has an upper bound of (2h + b) whereh is the height of the chapter subtree and
b is its branching factor. This comparison is necessary when determining whether
S contains equations (when deletingS) and when finding the previous equation’s
number. The number of comparisons performed can be minimized by representing
the equation thread as a balanced binary search tree, rather than as a list. However,
since all subtrees being deleted must be checked for the presence of equations, this
algorithm does not allow deletion of equation-less subtrees in constant time.

Equation Count 1. This algorithm adds a slot to every node which records the number of
equations at or below that node. A subtree contains equations whenever the equation
count at its root is non-zero, which can be tested in constant time. The previous
equation number is computed by summing the equation counts of the left siblings
of the ancestors ofS (inclusive ofS). Thus, this algorithm performs both operations
in constant time with equation-less subtrees and in O(k + bh) time whenScontains
equations.

Equation Count 2. The equation count slot could be used only to determine whetherS
contains equations. This approach achieves constant running time for equation-less
subtrees while the running time becomes O(k + (log k) � (2h + b)) when S does
contain equations. In the special case of section numbering, where thek numbered
components are siblings, the running time is O((logk) � k).

Cumulative Equation Count. Alternatively, eachnode can hold a slot which records the
number of equations at or below its left siblings. The number of equations at or
below the node can be computed by subtracting the node’s value from that of its
right sibling.3 This cumulative equation count slot makes it possible to compute the
previous equation number by inspecting only the ancestors ofS. Unfortunately, the
slots of the right siblings of those same ancestors must be kept up to date. As a result,
this algorithm does not improve on its predecessor.

3 Nodes which have no right sibling must subtract their slot value from the number of equations at or below their
parent. For nodes along the right edge of the tree, this recursive process is halted when reaching the chapter
node, which records the total number of equations it holds.

56 MICHAEL A. HARRISON AND ETHAN V. MUNSON

Lazy Cumulative Equation Count. The update of the cumulative equation count slots
can be done “lazily” ifeach internalnode also stores a pointer to itsrightmost-up-
to-date-child. While this allows the algorithm to avoid pointless update operations,
it adds complexity by requiring comparisons of the position ofeach ancestor ofSto
the pointer stored in its parent. Since this approach merely exchanges two tasks of
equivalent complexity and requires more storage, it was rejected.

The best incremental update algorithm is the last/previous algorithm. It requires two
additional slots per tree node which, together, permit fast computation of equation numbers.
For a particular nodeN, they are

� N.leq (last equation) points to the last equation in the subtree rooted atN. If N is
an equation itself, thenN.leq = N. If the subtree rooted atN has no equations, then
N.leq = nil.

� N.peq(previous equation) is a pointer to theleq slot of the closest (i.e. rightmost)
left sibling ofN which has a non-nilleqslot. If there is no such “previous equation”,
thenN.peq = nil.

There are two operations which affect equation numbers,insert-subtreeand delete-
subtree. An inserted or deleted subtree contains zero or more equations and is assumed to
have correct values for theleqandpeqslots of its nodes.4 Subtrees being inserted must also
have an attached equation thread which contains all equations in the subtree in traversal
order. The deletion operation will create such a thread. We consider a single equation,E,
to be a special case of a subtree, withE.leq = E, E.peq = nil, and with an attached list
containing only itself.

The insert-subtree(S, N, i) operation inserts the subtreeSas thei th child of the nodeN.
The insertion operation involves two phases. The first phase attachesS to the document
tree and determines the value ofS.peq, as follows:

1. AttachSto the document tree as thei th child of N.

2. LetL left-sibling(S).

� If L = nil , then setS.peq nil.

� If L.leq 6= nil, setS.peq address-of(L.leq).

� Otherwise, setS.peq L.peq.

If S does not contain any equations, the insertion operation is complete. However, when
S does contain equations, they must be numbered correctly, which requires findingEpre,
the equation immediately beforeS in a traversal of the chapter subtree. Also, it may be
necessary to update theleqslots of the ancestors ofSand thepeqof the right siblings of the
ancestors ofS. In this case, the insertion operation involves the following additional steps:

1. Scan the right-siblings ofS, setting theirpeqslots to point toS.leq. Stop when there
are no more right-siblings or after setting thepeqfield of a sibling with a non-nil leq
slot.

2. LetC SandP N. C will always be a child ofP. Let Epre = nil.
4 In the case of an inserted subtree, the correct value of thepeqslot is alwaysnil.

NUMBERING DOCUMENT COMPONENTS 57

3. LetCouldBeLast true. CouldBeLastwill be set tofalsewhen it has been proven
thatSdoes not contain the last equation in the chapter.

4. WhileCouldBeLast = trueandC is not the chapter node:

(a) If Epre = nil, then letEpre be the equation pointed to byC.peq. If C.peq = nil,
thenEpre nil.

(b) If P.leq = nil, thenP had no equation descendants prior to the insertion ofS.
SetP.leq S.leqand update thepeqslots of the right-siblings ofP.

(c) Otherwise, ifP.leqpoints toEpre thenSnow contains the last equation in the
subtree rooted atP. SetP.leq S.leq.

(d) Otherwise, there are equations followingS in the subtree rooted atP. Set
CouldBeLast false.

(e) LetC P andP parent(P).

5. Get the list of equations attached to the chapter node. Insert the list of equations
attached toS immediately afterEpre. Renumber all equations that followEpre in the
list, starting with the valueEpre + 1. If Epre = nil, insert the new equations at the front
of the list and start numbering with an initial value of 1.

The delete-subtree(S) operation removesS from the document tree and is almost
precisely the reverse of the insertion operation. The major difference is that ifSdoes not
contain any equations, no updating work is necessary. IfS does contain equations, the
deletion operation must:

� Update thepeqslots of the right siblings ofS.
� Update theleq slots of any ancestors ofS whose last equation wasS.leq. If an

ancestor’s subtree will no longer contain any equations after the deletion ofS, the
right siblings of the ancestor must have theirpeq slots updated. In the process of
updating the ancestors ofS, the algorithm will locateEpre, the immediately preceding
equation.
� Get the list of equations attached to the chapter node. Remove the sublist containing

the equations betweenEpre (exclusive) andS.leq(inclusive) and attach this sublist to
S. It is the list of all equations at or belowS.
� Update the number slots of any equations which followedS.leqin the equation list

attached to the chapter node.

The worst case running time of both operations is O(k + bh), whereb is the branching
factor of the chapter subtree,h is the height of the subtree (which is the upper bound
on the depth ofS), andk is the total number of equations in the subtree.5 The k term is
derived from the need to update all subsequent equations. Thebh term results primarily
from updating thepeq slots of the right siblings ofS and its ancestors. The actual cost
of this task is limited as much as possible by using double indirection for thepeqslots.
Because thepeq slot is actually a pointer to some other node’sleq slot, changes to the
leq slot automatically update allpeqslots that point to it. It is also important to note that
in the special case where thek numbered components are children of a single node, both
operations run in O(k) time.
5 We assume that, given a tree node, it is a constant time operation to find its right sibling. We also assume

that immediately after inserting or deletingS, it is a constant time operation to access its left sibling. These
assumptions are sufficiently weak to allow the use of singly linked lists as the representation for children of a
node in the document tree.

58 MICHAEL A. HARRISON AND ETHAN V. MUNSON

5.3 Discussion

Each of the algorithms described inSection 5.2has been implemented to test its correctness.
However, we have not attempted to analyze the performance of all of the algorithms in
detail.

Every algorithm we considered represented a clear improvement over the naive
approach based on tree traversal. Of these algorithms the two best are the “last/previous”
algorithm and the second “equation count” algorithm (which uses the equation count only
to determine if a subtree contains equations). The order statistics for the worst-case running
times of these algorithms are O(k + bh) and O(k + (log k) � (2h + b)), respectively.

Comparison of the performance of these algorithms is not easy because, even ignoring
degenerate cases like trees of heightn � 1, there are no guarantees about the nature
of structured document trees. The relationship between branching factor, height, and the
number of equations in a chapter subtree cannot be determineda priori. Experience with
structured documents suggests that height grows logarithmically with overall subtree size
and that branching factor can be fairly large but is bounded. In addition, it is very rare to
see component numbers with even three decimal digits, so there seems to be a practical
upper limit to this parameter of running time.

In an attempt to compare the algorithms more quantitatively, we measured the values
of k, b, andh for several technical documents, including this one. Then, for each of these
examples, we computed upper bounds on the number of medium level operations (e.g.
assignment to a slot or getting the next item in a list) required to insert a subtree containing
numbered components. For these documents, the last/previous algorithm requires from
14% to 55% fewer operations than the equation count algorithm. For a hypothetical
“large” document with 2000 figures, a branching factor of 50, and a height of 21, the
last/previous algorithm requires 59% fewer operations. Further experimentation with
hypothetical documents indicated that the equation count algorithm is faster only whenk
is small (k<3). The last/previous algorithm is always better for the special case of section
numbering, running at least twice as fast as the equation count algorithm.

Other arguments in favor of the last/previous algorithm are:

� It appears to minimize redundant operations since the update of theleqandpeqslots
is halted at the earliest possible moment and the use of double pointers in thepeq
slots eliminates the need to update them in many cases.

� It does not require the implementation of balanced binary trees, which are needed in
the equation count method.

� When multiple types of numbered components are present in the inserted or deleted
subtree, update of their numbers can be performed in the same pass up the tree. In
contrast, the equation count algorithm must updateeach type of component number
independently.

Extending each of these algorithms to the case where multiple typesof component
numbers must be updated is straightforward. In general,each numbered component type
must have its own thread and set of slots.6 The algorithms must be modified to take into
account the presence of component types that are numbered within different subtree types.

6 The only exception is the “traditional” algorithm. It does require a separate thread and equation count slot for
each numbered component type. However, multiple numbered component types that are numbered within the
same type of subtree can share that subtree’s search tree.

NUMBERING DOCUMENT COMPONENTS 59

6 CONCLUSIONS

We have presented a simple method for declaratively specifying how the components of a
traditional linear document are numbered. The specification method appears to be sufficient
for all traditional numbering schemes.

One class of document that the method does not support is the class of non-linear
documents, of which hypertext is the obvious example. The problem with hypertext
documents is that they do not conform to a tree structure. This makes the notion of pre-
order rank, on which the new numbering method is based, invalid for hypertext. However,
ordinal numbering in any form does not make sense for hypertext, since there is no natural
unique ordering for a hypertext document. A hypertext document does need some system
of unique identifiers so that textual cross-references (as opposed to hypertext links) can be
stated in a sensible manner. These identifiers could well be numbers, but there is no general
method for assigning such numbers on the basis of the hypertext document’s structure.
However, any subportion of the hypertext document which is linear could make use of our
numbering mechanisms.

We have also presented a number of algorithmsfor the incremental update of component
numbers, focusing primarily on the last/previous algorithm. This algorithm improves
considerably on the performance of the naive alternative while maintaining constant time
insertion and deletion of non-numbered components.

We plan to use both the specification method and last/previous algorithm in Ensemble,
an interactive editing system for structured multi-media documents, including programs,
currently being designed here at Berkeley[20]. An interactive system like Ensemble
requires the use of efficient incremental algorithms like the one described in Section 5.
Also, Ensemble will use the model of separate specifications for document structure and
presentation previously seen in Grif. The numbering specification presented in this paper
will be part of the presentation language of Ensemble.

ACKNOWLEDGEMENTS

We would like to thank Raimund Seidel and John Hauser for useful discussions on
incremental update algorithms. We would also like to thank the paper’s anonymous
referees, who made many helpful suggestions.

REFERENCES

1. Richard Furuta, Vincent Quint, and JacquesAndr´e, ‘Interactively editing structured documents’,
Electronic Publishing—Origination, Dissemination and Design, 1(1), 20–44, (April 1988).

2. Apple Computers, Inc., Cupertino, California,MacWrite Manual, 1984.
3. Interleaf, Inc., Cambridge, Massachusetts,Interleaf Publishing Systems Reference Manual,

Release 2.0, Vol. 1: Editing and Vol. 2: Management, June 1985.
4. Joseph F. Ossanna, ‘Nroff/troff user’s manual’, Computer Science Technical Report No. 54,

AT&T Bell Laboratories, Murray Hill, New Jersey, (October1976). Also available in UNIX
User’s Manual.

5. Donald E. Knuth,The TEX Book, Addison-Wesley Publishing Company, Reading, Massachusetts,
1984. Reprinted as Vol. A ofComputers & Typesetting, 1986.

6. Brian K. Reid,Scribe: A document specification language and its compiler, PhD thesis,
Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, October
1980. Available as technical report CMU-CS-81-100.

60 MICHAEL A. HARRISON AND ETHAN V. MUNSON

7. Leslie Lamport,LATEX: A Document Preparation System. User’s Guide and Reference Manual,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

8. Vincent Quint and Ir`ene Vatton, ‘Grif: An interactive system for structured document manip-
ulation’, in Text processing and document manipulation, ed., J. C. van Vliet, pp. 200–213.
Cambridge University Press, (April 1986).

9. Kenneth P. Brooks, ‘A two-view document editor with user-definable document structure’,
Technical Report 33, Digital Systems Research Center, Palo Alto, California, (November 1988).

10. Alfred V. Aho and Ravi Sethi, ‘Maintaining cross references in manuscripts’,Software—Practice
& Experience, 18(7), 1001–1012, (July 1988).

11. Bruce Leverett, ‘One-pass text formatting’, Technical report, Scribe Systems, Inc., Pittsburgh,
PA, (1988).

12. Donald D. Chamberlin, ‘An Adaptation of Dataflow Methods for WYSIWYG Document
Processing’, inProceedings of the ACM Conference on Document Processing Systems, pp.
101–110, Santa Fe, New Mexico, (April 1988).

13. Donald D. Chamberlin, Helmut F. Hasselmeier, and Dieter P. Paris, ‘Defining document styles
for WYSIWYG processing’, inProc. of EP88—Internal Conference on Electronic Publishing,
Document Manipulation, and Typography, Nice, France, (April 1988). Also available as
Technical Report RJ 5812 (58542), IBM Almaden Research Center, San Jose, California, Aug.
1987.

14. Vincent Quint, June 1990. Personal communication.
15. Eric P. Allman,-ME Reference Manual, Electronic Research Laboratory, University of Califor-

nia, Berkeley, California. Available in bsd UNIX User’s Manual.
16. Brian K. Reid, Michael I. Shamos, and Janet H. Walker,SCRIBE Database Administrator’s

Guide, Unilogic, Ltd., Pittsburgh, PA, first edition, July1981. Preliminary Draft, Order No.
AA-L507A-TK.

17. Vincent Quint,Les langages de Grif, December 1988. Distributed with the program. Partial
translation by E. Munson.

18. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.

19. Robert Endre Tarjan,Data Structures and Network Algorithms, volume 44 ofCBMS-NSF
Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1983.

20. Wayne Christopher, ‘The architecture of Ensemble’. Ensemble Working Paper 89-8, November
1989.

	SUMMARY
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Numbering conventions
	2.2 Structured documents
	2.3 Design principles for interactive editors

	PREVIOUS WORK
	3.1 Numbering mechanisms
	3.2 Specification

	4 DECLARATIVE SPECIFICATION
	4.1 Recursively specified structure

	5 INCREMENTAL UPDATE ALGORITHMS
	5.1 The problem
	5.2 The algorithms
	5.2.1 The traditional approach
	5.2.2 Our approach

	5.3 Discussion

	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

