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SUMMARY
We describe a hypertext ‘meta-structure’—one that provides an organization for the archi-
tecture of hypertext models and systems. The meta-structure was initially developed to help
us understand the architecture of a specific hypertext model (the Trellis hypertext model).
However, its organization seems generally applicable to a wide range of other models and
systems as well. As such, the meta-structure is a good candidate for a high-level hypertext
reference model, and so we refer to it as theTrellis hypertext reference model, or the r-model. The
r-model represents a hypertext at five levels of abstraction—two abstract levels, two concrete
levels, and one visible level. In this paper, we present the r-model, use it to classify four
different hypertext (and hypertext-like) systems, and then discuss its relationship to various
hypertext-defined concepts.
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1 INTRODUCTION

As a side-product of our work developing the Trellis model of hypertext[2] ,we have
defined a ‘meta-model’ that provides an organization for the architecture of hypertext
models and other highly interactive man/machine systems. It is the purpose of this paper to
describe the meta-model within the context of Trellis and further to show how it classifies
other hypertext models and systems. As such, the meta-model may serve as an appropriate
framework for the development of a general hypertext reference model. As a reflection
of this application, we refer to the ‘meta-model’ throughout this discussion as theTrellis
hypertext reference model, abbreviated asr-model, A specific system or abstraction of
hypertext itself will be called ahypertext model, or more simply amodel, throughout the
paper.
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The Trellis hypertext reference model is based around a collection of representations
of the hypertext at different levels of abstraction. Abstractions range from the hypertext
as a collection of abstractly defined independent components through more concrete
representations in which the characteristics of the hypertext’s physical display have been
established, to the view of the hypertext that is projected on a physical display device for
the benefit of the person reading the hypertext. The representations at a particular level
of abstraction depend upon representations at a greater level of abstraction, and these
dependencies are shown within the r-model.

A description of the r-model follows in the nextsection. Section 3shows application
of the r-model in categorizing the characteristics of a variety of hypertext systems. Next,
Section 4compares selected components of the r-model with components of some of the
other models of hypertext, and discusses how the characteristics of those other existing
hypertext systems and models fit into (or are omitted from) the r-model. Finally, we believe
that the r-model can be used as a guide for developing new hypertext architectures in
addition to a means for describing existing ones. Our experience suggests that architectures
that closely mirror the r-model have some potentially desirable characteristics, such as the
ability to easily extend the architecture to handle multiple interacting readers and writers.
In Section 5, we conclude the paper by discussing some of the general characteristics and
implications of the r-model.

2 THE R-MODEL

The r-model, abstractly diagrammed inFigure 1, is separated into five distinct levels.
Within each level is found one or more representations of part or all of the hypertext.
Speaking quite broadly, the levels may be grouped into three overall categories: abstract,
concrete, and visible.6 The abstract component and abstract hypertext levels define an
abstract representation of the pieces of thehypertext and of the hypertext itself. These
abstractions are transformed into more concrete representations of the hypertext in the
concrete context and concrete hypertext levels, representing first the presentation of the
hypertext’s content and structure, and then the mapping of that information into displayed
units. The resulting concrete windows are then viewed,each producing oneor more
displays on one or more physical devices. In summary, the representations in the abstract
component level are at the greatest level of abstraction and those in the visible hypertext
level are at the lowest level.

Each representation is shown in the figure as a box. A representation is itself an abstract
concept—a consistent presentation of the hypertext elements of interest. Representations
in the r-model may depend on the representations at a greater level of abstraction. Such
a dependency is shown in the figure as an arc between the representations. Because a
representation’s dependencies are on those representations at a greater level of abstraction,
and not on those at the same or lower levels of abstraction, the abstract and concrete levels
in the diagram are further subdivided. It is worth emphasizing that a representation may not
actually correspond to a separately identifiable ‘physical’ representation of the hypertext;

6 The choice of these levels of representation parallels and expands Shaw’s model of printed documents[3]
which identifies abstract, concrete, and viewing mappings for the document.
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for example, the representation may be expressed as a mapping between elements of more
abstract representations.

We will now focus in turn on each of the levels of the r-model. In the following
sections, we will describe the level and its representations, and discuss the dependencies
on representations at higher levels.

2.1 Abstract layers

An abstract hypertext description specifies the logical structure and form of a hypertext
and its components, but does not describe the particulars of how that hypertext is to be
presented to its readers.

2.1.1 Abstract component level

The organization of the three highest levels reflects a separation of the hypertext into
structure, content, andcontext. The structure represents the elements of the hypertext and
their relationships. The specific content of the hypertext as presented to the system’s user
reflects the context within the structure in which the content appears—in other words, the
display of the content is modified to reflect its context.

The representations within the abstract component level present the components that
will be associated with one another to form the hypertext. Within the context of this
level, the representations are independent of each other—such associations will be made at
lower levels of abstraction. Our abstract view of a hypertext separates out the hypertext’s
structure from the elements that many users perceive as composing the hypertext. In other
words, the structure (often a directed graph) is separated from the collection of contents
that are to be displayed to the reader and the collection of ‘buttons’ that will be selected
by the reader when moving from location to location in the hypertext. Additionally, it
may be the case that the view of the hypertext presented to the reader combines together
independent content elements into an integrated whole. The presence (or absence) of such
composition is also represented abstractly at this level. We will now considereach of the
representations in turn.

The most common, and arguably the most natural, representation for thestructure
of a hypertext is some form of directed graph, or network, either explicitly or implicitly
represented.7 In our Trellis model work, we use a Petri net for structure, which provides
concurrent automaton semantics within a network representation. However, other graph-
based structures are appropriate as well—for example, other automata such as deterministic
finite automata and counter automata, or data structures such as trees, lattices, or semantic
nets. The structure of the hypertext need not be limited to networks, though. Indeed, it
may be desirable to use representations that are not ostensibly graph-based in form—
constraint-based descriptions, for instance. Note that even in graph-based representations,
there is no requirement that the elements of a structure be fully connected. The necessary

7 A graph, however, is not the only possibility for a structural description. Graphs are necessarily finite; by using
something like mathematical formulae, an infinite number of nodes and links can be expressed in a hypertext
structure. SeeSection 3.4for an example.
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characteristics of a structural representation are that it provides the ‘placeholders’ that will
be associated with the hypertext’s content elements, and that it describes any relationships
that exist among these placeholders.

Abstract content. The abstract content is arbitrary in form. It may, for example,
include textual, graphical, animated, or perhaps even audio and video material. The content
may be specified directly or may be the result of a computation. While it does not contain
links, it may incorporate markers that define a collection of potential locations for the
mappings of links and their presentations that occur in lower levels of the r-model. The
content may be described in a form that is independent of the eventual characteristics of its
display, or indeed it may be described in a form that is highly dependent on the eventual
display. Because of the flexibility of the mapping from content to structure in the next
level, however, a display-independent representation seems most appropriate.

Abstract buttons. The structure representation identifies the relationships among
content elements but does not indicate how those relationships will be shown for selection
by the hypertext’s reader. The abstract buttons are representations of the ways in which
the relationship can be displayed. Abstract buttons may themselves have content and an
associated type. The content is provided to specifywhatwill be shown when the button
is displayed. The type is needed to specifyhow the button will be displayed and other
characteristics of its behavior on display and selection. As with the content of the abstract
content, the content of the abstract button is variable in form—in implementation it actually
may be computed or it may be statically defined.

Abstract containers. The final component in this level, the abstract containers, differs
from the others in that it is an abstraction of how the pieces of thehypertext will be
combined when shown to the reader (howit will be aggregated and combined for display),
and not ofwhat is in the hypertext. Alternately, abstract containers can be thought of as
extra-structural relations among elements in a document, that is, a type of ‘link’ that is not
part of the browsable structure. For example, if several content elements are displayable,
one possible presentation would be to show each element separately while another would
be to combine the separate elements into a composite, which would be presented to the
reader as a unit. In the first case, one could say that a separate container had been associated
with each separate content element, while in the second case, one container would hold all
content elements. This form of aggregation can be applied not only to content elements,
but also to buttons and structure in general, as the next section explains.

2.1.2 Abstract hypertext level

The elements of the abstract component level are not connected together, as will be
necessary to form a hypertext. This association is performed in the abstract hypertext level.
The abstract hypertext level does not, however, describehow these associations will be
presented within the display of the hypertext. This is left to the concrete context level.

Content–structure associations. The content–structure associations map together el-
ements of the structure and elements of the abstract content. In a graph-based structure,
one natural association is to map the content elements to the nodes of the graph. No
restriction is expressed in the r-model on the kinds of mappings that are permissible—for
example it may be useful to map a single content element to multiple locations in the
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structure, or conversely to map multiple content elements to a single location. In our own
work, we have found the ability to map a single content element to multiple locations
to be particularly useful. We have also found it useful to completely substitute a new
collection of abstract contents and of content–structure associations while retaining the
same structure—for example for related hypertext versions, where one may perhaps be a
translation of the other.

Button–structure associations. The button–structure associations map the structure’s
relationship and abstract buttons. A natural association in a graph-based structure is to map
the abstract buttons to arcs in the graph. In our Trellis hypertext model, based on Petri nets,
the mapping is between the class of node called a transition and the abstract buttons (i.e.,
there is no mapping of arcs in this particular graph structure). Again we emphasize that
there are no limitations expressed on the form of the mapping, although we have found a
one-to-one mapping to be the most useful.

Container–structure associations. Finally, the container–structure associations de-
scribe the association of the structure, or of portions of the structure, to one or more
abstract containers. One use of this association is to permit grouping of elements of the
structure, which might in turn be displayed to the reader in a single physical window.
Different kinds of composite displays would be represented as associations with different
types of abstract containers. In general, the container–structure associations allow the par-
titioning of the subsequent display of the hypertext into one or more possibly overlapping
pieces.

2.2 Concrete layers

Assume that a hypertext is presented to its reader or readers in one or more windows on
one or more physical display devices.8 A concrete hypertext description specifies what the
contents of each of these windows will look like but does not tie down how the windows
are to be arranged on the display. For example, one particular window may be shown on
several separate displays. Furthermore, the characteristics of the displays may be different;
in this case the subsequent viewing description will also indicate how the different visible
effects specified by the concrete description are to be rendered on the displays.

2.2.1 Concrete context level

The previously described levels have defined an abstract hypertext in which the content
and the buttons have been associated with the structure. However, the abstract hypertext
description does not indicate how links are to be presented in the display of the content.
Such considerations of the mapping from the hypertext’s abstract representation to its
physical representation are addressed in the concrete context level.

The concrete content presents a physically oriented description of the hypertext. This
mapping must address the following points:

� How is the abstract content to be formatted to fit within the display region?

8 Here a window contains a concrete view of the hypertext (or portion of the hypertext) to be presented to the
reader.
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� How are the buttons to be displayed? Will the display of the button modify the
display of the content or will the buttons and content be displayed independently?
For example, in our initial Trellis prototype (�Trellis), we have provided externally
represented buttons. In our subsequent prototype (�Trellis), we have also developed
means for specifying that the button is to be represented as a highlighted string
within textual context[4]. Note that button displays are not necessarily static; in
some cases the display of the button depends on computed material (which itself
may depend on the structural relationships in the hypertext). The button represents
the source of a link in the hypertext.9

� Is the target of a link associated with a content element as a whole, or is it associated
with a particular location within that content? Does the display of the target affect
the display of the content?

The mappings on this level do not rely directly on the structure (abstract component level)
because the structural relationships have been ‘encoded’ into the representations of the
abstract hypertext level.

2.2.2 Concrete hypertext level

The concrete context level has defined a set of concrete content elements in which a
concrete representation of the content has been merged with concrete representations of
the buttons. The concrete hypertext level maps those concrete representations into a set of
windows for display. The mapping, which produces theconcrete windowsrepresentation,
also requires that link-based interrelationships among the windows be determined. For
example, the process of following a link can result in several different display mappings:
the display of the target of the link could replace the display of the source, could be shown
in addition to the source, or could modify the display of the source, with both being shown
in the same window.

When the concrete windows representation has been formed, the presentation of the
hypertext has been determined but the details of how and where the windows are to be
displayed has not. For example, multiple windows may be shown to a single reader on a
display or a particular window may be shown to several readers simultaneously on separate
displays. Indeed, a particular reader may have several physical displays at his disposal, and
different displays may have equivalent but different means for achieving particular visual
effects. Such considerations are addressed in the next level.

2.3 Visible layers

The details of the mapping from the concrete hypertext to the consumable presentation of
a hypertext for readers are specified here.10 However, user interface details, such as the
positioning and sizing of windows, are orthogonal to the r-model, as discussed later in this
paper.

9 See also the comparison with anchors that follows inSection 4.1.2.
10 Although we use words like ‘visible’ we do not intend to imply that the r-model applies only to text, graphics,

or other visual media. Presentation of other forms of media, such as audible, physical, etc., and management
of forms of computation not visible to the reader, would follow along the same lines.
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2.3.1 Visible hypertext level

An assumption in the r-model is that the underlying hypertext is to be permitted to be used
in a distributed environment. The visible hypertext level reflects this assumption. Each
visible HT segment11 may be associated with a separate user and/or display (or other
physical device). Each segment presents one or more of the active concrete windows to its
viewer. The model does not prevent the display of a particular concrete window in more
than one segment. Whether (and how) the effects of user interactions to one display may
affect what is shown on other user displays is a property of the hypertext model, and not
of the r-model.

3 EXAMPLE SYSTEMS AND CLASSIFICATIONS

In this section, we will use the r-model to classify the characteristics of a number of
hypertext systems. We will begin by examining the similarities and differences between
the Trellis Hypertext model and the r-model. We will next examine two popular PC-
based hypertext implementations. The first, Hyperties for the IBM-PC, is a simple but
comprehensive system that lends itself to a fairly direct classification. The second,
HyperCard for the Apple Macintosh, is a more complex system with strong characteristics
of a procedurally based visual program creation environment. We believe that examination
of HyperCard and comparison of its model with the r-model will help to better demonstrate
our motivations in designing the r-model. Finally, we examine the r-model classification of
some image browsers (e.g., fractal browsers). Although these systems may not appear at
first glance to be hypertextual systems, we believe that they share features in common with
systems that are commonly believed to be hypertextual. Consequently examination of their
r-model classification provides both a basis on which an extended notion of ‘hypertext’
can be defined, but also provides a framework on which implementation of such extended
hypertexts can be designed.

3.1 Trellis

Since the original characteristics of the r-model were developed by considering the
similarities and differences between our Trellis hypertext model[2,5] and other hypertext
models, it is instructive to first consider the r-model categorization of the Trellis model
(summarized inFigure 2). The Trellis model is based on the formalism provided by a timed
Petri net. The prototype hypertext browsing and authoring system�Trellis is based on the
model.

An important characteristic of the Trellis model and also of the�Trellis prototype is that
the relationships among objects closely parallels those in the abstract levels of the r-model.
As a result, hypertextual content elements are defined separately from the hypertext’s
structure. The same content element can appear in different locations within the hypertext.
Issues involving the appearance of these different elements are addressed by the Trellis
model’s logical to physical projection,Pd, which is categorized in the r-model’s concrete
levels. An additional consequence of the strong separation of content and structure is that

11 Here, ‘HT’ is an abbreviation for ‘hypertext.’
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level function

abstract componentsStructure: Described by a timed Petri net,N , and an initial
markingM0.

Contents: Not limited by the model. Can also include other
hypertexts. Described as a set,C.

Buttons: Not limited by the model. Described as a set,B.

Containers: Can contain (encapsulate) one or more sets of
contents and one or more collections of buttons. Described as
a set,W

abstract hypertext The functions on this level are described by the logical projec-
tionPl.
Content–Structure: Content element associated with each
place in the Petri net (mappingCl in the Trellis model). (Note
that a given content element can be associated with many or no
places.)

Button–Structure: Button or buttons associated with each
transition in Petri net. However,each transition can have at most
one button associated with it. In prototype implementation, the
mapping is one-to-one (mappingBl).

Container–Structure: Maps an abstract container to each
place in the Petri net (mappingWl).

concrete context Represented directly in Trellis prototypes. Specified as a portion
of thePd projection in the Trellis model. In�Trellis, buttons
and content are displayed independently.

concrete hypertext Specified as a portion of thePd projection in the Trellis model.

visible hypertext Implemented as multiple clients in Trellis prototypes. A client
corresponds to a visible hypertext segment. Each concrete
window is mapped to zero or more visible hypertext segments.
Each visible hypertext segment displays zero or more concrete
windows. Zero or more clients may be mapped to a particular
hardware device. Each client may control zero or more devices
(generally one).

The definitions of the Trellis model components are taken from Reference[2].

Figure 2. R-model classification ofTrellis

different collections of content elements can share the same hypertext structural definitions
(e.g., different ‘versions’ of a hypertext presented perhaps in different languages).

Figure 3,shows a snapshot of the�Trellis prototype in action.�Trellis’s implementation
is based upon a client-server model. The server implements the ‘Trellis engine’—i.e., the
semantics of the Trellis model as based on the timed Petri net specification. The clients
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Figure 3.�Trellis display on two separate screens
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implement interfaces to humans and to external computer programs. Exactly one server
must be running, but any number of clients (zero or more) may be active.

The snapshot inFigure 3shows three clients distributed across two different displays.
The topmost display contains a Petri net editor on the right and a text browser display on
the left. The Petri net editor client is permitted both to display and also edit the structure
of the hypertext. The text browser client can only display the hypertext. The lower display
shows images displayed on a color screen by a graphics display client.

Each client runs in its own environment and makes its own determination of what
portion of the hypertext’s active content elements it will display and how it will represent
any links associated with the elements. For example, the clients in the upper display are
running under the SunTools window system and the client in the lower display is running
under X windows, release X11R3. The text browser client in the upper display is showing
all nodes with textual content plus placeholders for nodes with graphical content and is
showing links in a button panel to the left of the textual display. The graphical display
client in the lower display is showing only those nodes with graphical content and is not
showing any buttons.

Note that separate clients may be instances of the same class—for example if two text
browser clients were running and displaying their output on the upper display, two copies
of the text display would be visible. This also permits replication of a particular display
onto separate (distributed) workstations. Note also that the clients’ ability to selectively
choose the types of content elements to display provides an easy way to represent and
manage multimedia presentations requiring independent output devices.

The Trellis hypertext model and also the r-model classifications tend to favor thinking
of the hypertext’s architecture as described by a collection of abstract data types. This
leads to an implementation that makes the distributed client-server applications easy to
provide. The Trellis model follows the r-model distinctions fairly closely, as shown in
Figure 2. However, Trellis’s physical display projection (Pd), which describes how the
abstract objects of the hypertext are to be formatted and combined to produce a concrete
representation, is further refined into two levels in the r-model.

3.2 Hyperties

In this section, we will consider the classification of a relatively simple, but comprehensive
hypertext system, Hyperties[6], which runs on the IBM-PC. The discussion of Hyperties
is based on version 2.35.12 The appearance and characteristics of the to-be-released version
3.0 differ. The r-model classification of Hyperties is summarized inFigure 4. A hypertext
in Hyperties is said to be adatabaseof articles. Only one article is visible to the reader at
a time.

Figure 5shows a screen displaying an article from a Hyperties database.13 The half-
toned words and phrases represent buttons. Article-specific buttons are shown above the
line in the displayed screen. Selecting a button will bring up a short summary of contents
of the target article, shown just under the line in the figure, and will display a button that if

12 A description of the internal data format used by this version of Hyperties can be found in Reference[7].
13 This screen is taken from a Hyperties database titled ‘Wines of France,’ written by Elizabeth Buie and Ed

Hassell.
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layer function

abstract componentsStructure: Described by a directed graph.

Contents: Two kinds of content elements: textual and graph-
ical. Elements are uniquely named (i.e., in implementation by
their DOS file name). Textual elements, called articles, are in
turn subdivided into article title, article body, and summary.

Buttons: Two categories: article-specific (associated with a
specific article) and system-supplied (always present when
relevant).
Containers: Three types of separate sub-containers. The sub-
containers represent respectively holders for textual content,
graphical background, and system-supplied buttons. The tex-
tual content sub-container is further subdivided into fields that
eventually will hold the article’s title, and content body. The
system-supplied button sub-container holds both the text of
those buttons and also the summary of the target of a link.

abstract hypertext Content–Structure: Structure is encoded in the represen-
tation of content elements, and is not represented separately.
Hence, the content element is associated with a single node in
the structure.
Button–Structure: Button associated with edge in graph.
Link structure is encoded in the representation of the source
content element as a reference to the target’s unique identifier.

Container–Structure: A container is associated with each
node in the graph.

concrete context Textual content is formatted by applying directives written in
a specialized formatting language. Buttons are represented as
highlighted strings; specification of these strings is part of the
markup defining the formatted content. The target of the link is
the node as a whole; there is no mechanism to specify that the
target is located at a particular point in the node’s content.

concrete hypertext A single concrete window is defined. The system-defined sub-
container contains buttons and fields that are always present, if
appropriate in context, and is always displayed. Either textual
material or graphical material may be omitted, but at least one
must be present. If both are present, the text is displayed on top
of the graphics.

visible hypertext There is only a single visible HT segment, which displays the
single defined concrete window.

Figure 4. R-model classification ofHyperties
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CHAMPAGNE                                                           PAGE 1 OF 2

     True champagnes always come from the Champagne region of France;
similar wines made elsewhere are merely sparkling wines.  Most
Champagnes are white, light, and dry, and they can accompany almost
any food.  Champagne is the perfect party beverage.  Unlike other
wines, Champagne is ready to drink when it is shipped and does not
continue to age well.

After the first fermentation, the wine is aged in barrels
for the winter. In the spring, the wines are blended, and a
"dosage" is added, consisting of a small amount of sugar
dissolved in old wine.  The wines are then bottled, the
bottles stacked on their sides in chalk cellars to ferment
again during the second winter.  They are left to age for
a minimum of one to three years.

______________________________________________________________________
SPARKLING WINES - Wines containing a natural effervescence as a
product of a second fermentation.

SEE ARTICLE: "SPARKLING WINES"
         NEXT PAGE   RETURN TO "BORDEAUX"                     EXTRA

Figure 5. A sample Hyperties display

Figure 6. A Hyperties display using a graphical background

selected will replace the current display with that of the target display. This button is the
default that will be selected in the absence of further positioning commands, and so it is
shown in reverse video here.

In addition to textual content, a displayed screen may also contain graphical content.
If both textual content and graphical content are specified, the graphical pattern serves as
background for the textual material. This can serve the purpose of providing some sort
of appropriate background for textual material. Additionally, as in the case illustrated in
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Figure 6,14 text from the textual content can be arranged so that it overlays the graphical
information in a meaningful way. As example, the room numbers in this figure are selectable
and lead to articles describing the rooms’ occupants.

Although the generally available version of Hyperties is based on the IBM-PC, separate
research versions are also being developed based on Sun workstations[8]. Some of the
research versions have incorporated multiple windows, but for the most part, the multiple
windows are independent of one another—i.e., browsing in one window does not affect
the state of any other. Lifshitz[9] has described a series of experiments using a multiple-
window version of Hyperties in which the display resulting from following a link can be
shown in a different window from the source. Invocation of a window’s display therefore
can be related to actions taken in a different window, but once invoked, actions taken in a
window are independent of the actions taken in the others, with the proviso that the result
of one window’s action may obscure the display in another window.

From the perspective of the r-model, the effect of the multiple-window displays as used
in these research prototypes is reflected in the concrete hypertext level and in the visible
layer. Such replicated displays would be modeled by also replicating the concrete windows
and mapping them to separate visible HT segments.

3.3 HyperCard

The r-model classification of HyperCard[10,11], which is provided for the Apple
Macintosh, is summarized inFigure 7. The discussion in this paper is based on Version 1.2
of HyperCard. Two sample Hypercard screens are shown inFigure 8. These screens were
created by Judi Moline[12,13], and are from an inventory of Arab coins dated about 690
A.D. The figure shows two sides of the same coin.

Figure 8illustrates a number of the characteristics of HyperCard. These screens share
a common background, containing, for example, the button labeled ‘TOC’ in the lower
left-hand corner of the displays. The material specific to the surface of the coin being
described is contained on a ‘card’ that is specific to the coin and side of the coin being
presented. For example, the buttons above the ‘TOC,’ the drawing of the coin, etc., are
located on the specific card.

A HyperCard-based hypertext is formed from a collection ofcards organized into
stacks. One card is being displayed and is called the ‘current card.’ HyperCard defines a
number of objects: buttons, fields, cards, backgrounds, and stacks, to be precise. A ‘script’
(in essence an executable procedure) may be associated with each object. Selecting, for
example, a button on a card causes a message to be generated which is passed along a path
until a script is found that defines a handler for that kind of message. A static path starts
with the script at the button or field, then inspects the script at the card, at the background,
at the stack, and at a distinguished stack called the home stack. If no handler is found,
HyperCard itself handles the message.

A HyperCard script also can send a message to a card in a different stack or can cause
the focus to transfer to another card, either in the same or in a different stack (cards can
be addressed uniquely). This defines the dynamic path, which may cause the execution of
handlers not found in the static path.

14 The screen inFigure 6is taken from a database presenting the University of Maryland’s Computer Science
Department. The database was written by Yoram Kochavy and Jasmin Naraine and subsequentlyupdated by
Chris Williamson.
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layer function

abstract componentsContents: pictures, buttons and fields. Pictures are bitmaps,
buttons will become selectable and can contain either bitmaps
or text, and fields will contain editable text.
Buttons: The HyperCard button incorporates parts of both
of the r-model abstractions of button and of content since it
represents both a mechanism for effecting traversal along the
structure but also information that is presented to the hypertext’s
reader (e.g., a selectable region of text within a paragraph is
actually represented as a HyperCard button).

Containers: There is a single type of abstract container that
represents the display of acardand the display of abackground.
The card and background can be thought of as sub-containers
within the container. (The r-model container is not the same as
the HyperCard container.)

Structure: Two structures are associated with HyperCard.
An implicit structure, which we will call the link structure, rep-
resents link interrelationshipsamong elements of the hypertext,
which is the result of carrying out the computations associated
with those elements. An explicit structure, HyperCard’s static
and dynamic paths, represents how those interrelationships are
to be effected. See the discussion for details.

abstract hypertext Content–Structure: The content is formed by placing con-
tent elements onto cards and onto the background. The link
structure is implied by the association of card and background
and by the specifications associated with those elements and
by those along the static and dynamic paths.

Button–Structure: R-model buttons are associated with the
HyperCard implicit link structure by a dynamic mapping.

Container–Structure: A container is associated with a card
and a background.

concrete context Fields in the display are positioned and sized by the author.
Content within the fields is then formatted, clipped, or placed
within a scrolling area as necessary to fit the available space.

concrete hypertext A single concrete window is defined. If both a card and a
background are present, the card’s material is displayed on top
of the background’s material.

visible hypertext There is only a single visible HT segment, which displays the
single defined concrete window.

Figure 7. R-model classification ofHyperCard
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Figure 8. Sample HyperCard screens
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From the point of view of hypertext, the target of a link is a particular card and the
source is associated with a button (or field) on the current card. The determination of what
card is to be the target (i.e., the means by which link traversal is effected) is as the result
of executing the code found along the path.

HyperCard’s strongly object-based model incorporates some elements that are not
too commonly found in other hypertext systems. For example, the identification of card,
background, and stack as objects in the HyperCard model and the association of executable
specifications that can alter the display’s state with cards, backgrounds, and stacks, along
with the path mechanisms, means that thecontainersplay a much more central role in what
is presented to the HyperCard reader than in the other systems being discussed. In other
words, the actions associated with containers can affect the link structures perceived by the
reader, and hence the container relationships must be identified in the abstract component
layer’s structure.

3.4 Fractal browsers

As a final example, we present the r-model classification of a common, but perhaps
surprising,hypertextual form (summarized inFigure 9). Image browsers for the Mandelbrot
set, Julia sets, and other fractals have become popular in recent years. These tools present

layer function

abstract componentsStructure: Real Cartesian plane; infinite number of nodes
(and so an infinite number of links); very large arity at each
node
Contents: Bitmap computed from mathematical formula

Buttons: Infinite set of buttons
Containers: Single container

abstract hypertext Content–Structure: Subplanes and resolvable(x; y) points
determine parameters for image computation from formula

Button–Structure: one button for the current subplane
(zoom), and two buttons for each resolvable(x; y) point (center
andnew)
Container–Structure: entire structure mapped to the single
container

concrete context zoommapped to right mouse button, anywhere in frame;center
mapped to center mouse button, on the pixel for each (x,y)
point; newmapped to left mouse button, on the pixel for each
(x,y) point

concrete hypertext one window created to clip and frame a current subplane from
the whole; buttons have no concrete representation other than
the image pixels

visible hypertext single instance of window, mapped to one workstation only

Figure 9. R-model classification of the fractal browserdoily
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a visual representation of some mathematical space, and allow a browser to outline with
the mouse a rectangular region for further explorations. Another image is then created
and presented for the indicated subspace. This form of browser is not limited to fractal
equations, but also occurs in the context of traditional charts, Cartesian coordinate plots,
and other data representations. For example, consider the public domain software tool
calledxgraph. Figure 10shows a screen fromxgraphin which a data set has been plotted,
and a subrange outlined and enlarged for further examination. In this tool, both the source
and the target of the ‘enlarge’ link are visible at one time.

Though not normally thought of as hypertext, the direct-manipulation aspects of image
browsers like this can be understood in hypertextual terms through the r-model. The abstract
structure in this case is a mathematical formula rather than any form of directed graph.
For discussion, let us consider this formula to be a fractal defined on the real Cartesian
plane[14], consisting of the set of(x; y) pairs iteratively defined by these equations:

x0 = y0 = 0

xi+1 = yi � sign(xi)
p
j13xi� 1400j

yi+1 = 5� xi

Figure 10. Screen from the xgraph formula browser
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Figure 11. Screen from the doily fractal browser

Each content node in the browsable structure for this fractal is then an image computed
from the equations using a particular set of bounding parameters for the field of view. A
link is, in essence, any rectangular subregion within an image, and the target of a link
is the new image computed from the fractal equation with the parameters for the link’s
defining rectangle. The fractal is defined on the real plane, which is dense, so there are
an uncountably infinite number of nodes implicitly defined in this hypertext.15 Each node
has a very large, but nonetheless finite, number of links leading out of it (defined by the
number of distinct rectangles within the image display window).

Figure 11,shows a browser we have implemented for this fractal, which we refer to as
doily. In this screen, the image has been computed and accumulated with the initial point
(0; 0) in the center of the image, and a field of view limited to�10 in each direction. The
second screen shown inFigure 12shows another image produced from the same fractal,
but with the center shifted to about(5; 3) and the image magnified by a factor of 4 (that is,
the field of view cut to around�2:5 units in either direction from the new center). Indoily,
this transition from the first image to the second occurs in response to clicking the middle
mouse button on the point that is to be the new center, and then clicking the right mouse
button twice to double the magnification twice. Thus, in r-model terms, every (x,y) point

15 A Mandelbrot browser would also have an uncountably infinite number of nodes, since its fractal equation is
defined on the complex plane. Equations defined on discrete spaces, like an integer Cartesian plane, would, in
comparison, have give rise to acountablyinfinite number of nodes in their r-model structure.
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Figure 12. Center shift and magnification with doily buttons

resolvable on the screen is a button (two in this case), and the entire frame is a button as
well.

The context level is fairly simple in a fractal browser, since few buttons, if any, are
explicitly represented. Indoily, no explicit representation is made of any buttons other
than the pixels themselves in the fractal image. In other browsers, perhaps a ‘return’ button
might be needed to ‘unzoom’ back to a parent image. Such buttons can be mapped at the
context level to a predefined menu area on the edge of the display frame.

The visible levels are also simple. A fractal browser may maintain one window and
replace each image with the target of a selected link, as indoily. A browser may, alternately,
create a new window foreach target selected, maintaining the parent image concurrently,
as inxgraph. In this second case, the ‘return’ button would be instead a ‘done’ button,
since the entire traversal tree is explicitly maintained on the screen.

4 ISSUES IN APPLICATION OF THE R-MODEL

We now turn our attention to three specific aspects of the r-model, which we shall consider
in detail. InSection 4.1, we discuss some important components of hypertext systems and
how they fit into the r-model. InSection 4.2, we turn our attention to central issues in
implementation of a hypertext system that are orthogonal to, that is, are not described by,
the r-model. Finally, inSection 4.3, we discuss the intersection of our r-model with existing
standards, both defined and de facto.
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4.1 Aspects addressed by the r-model

A number of concepts, structures, and components have been identified for hypertexts.1612

Here, we present some of these hypertext elements and describe their categorization within
our reference model.

4.1.1 Hypertext model structures

Many hypertext models concentrate on the benefits of some specific structure for linking
information elements. As stated earlier, the abstract structure of a hypertext has its form
neither prescribed nor proscribed within the r-model. Document structure may be graph-
based, describing only object interrelationships, as is commonly used. It may additionally
have automaton semantics, like the Petri net in Trellis[2], or the hypertext abstract machine
(HAM) [16]. It may be intended to provided an inferential foundation, like a semantic net.
It may be some generalization of a directed graph, like a hypergraph[17]. We have even
seen previously how a mathematical formula can define the links in a hypertext.

The specific structure used in a model or system need not be homogeneous in form;
heterogeneous structures may be appropriate for some applications. Structure need not
be static in form but may be dynamic. Indeed, it need not be explicitly computed or
represented. What is required, however, of an abstract structure is that it be possible to
intuit where content can be included in a hypertext, as well as to determine the relationships
among content elements.

4.1.2 Anchors

Anchor is the commonly used term for the terminal points of a link. It additionally
conveys the sense that such a terminal point identifies an ‘interior’ portion of a content
element—a word or phrase, a feature in a diagram, or an individual sound in an audible
passage. In its general form, anchors may be associated with both the source and the
target of a one-directional link in a hypertext. They present the relationship between the
identified portion of the source and the identified portion of the target, a relationship more
semantically ‘fine-grained’ than that expressed by pairing the entire content elements. In
other implementations, anchors are only associated with source, with the target being the
node as a whole.

In some system and data models, anchors have been identified as distinct components
of a hypertext; see, for example, the Dexter reference model[18]. In our Trellis imple-
mentations, anchors may or may not be associated with the source—when no anchor is
associated with a link source then the link is represented by a (graphical) button in a
separately displayed palette.

Exactly what an anchor is, whether it is a distinct object or not, what operations can be
performed on it—these are decisions made in constructing specific data models, that is, in
the abstract structure of the r-model. As mentioned above, the r-model does not specify any
particular approach. Thedisplayof anchors, however, within source and target contents is
covered by the r-model in the mapping that defines the concrete content (specifically, in
the concrete context level). Any mapping that implements the functionality of this level
will specify both the form of the display and also anchor positions within whatever is

16 See Leggett’s glossary[15], for example, for definitions of related terminology.
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the appropriate content representation for source elements. Issues involving positioning
of the target content’s display when a link is followed are addressed in the definition of
the concrete windows (specifically, the concrete hypertext level). This aspect is treated by
the r-model as a viewport problem: how should a potentially large text block be clipped
for viewing? If a target anchor is present, say near the end of the target element, then the
concrete window for it would be positioned as a viewport on the end of the element’s
representation.

4.1.3 Different flavors of links

A hypertext implementation may contain several different kinds of links,each with a
different implemented action on selection. The distinction between the different types of
link is reflected in the r-model by a difference between the types of their corresponding
abstract buttons.

The display of the source or target of a link may be static or may be computed. Such
displays are described within the mapping that produces the concrete content representation.

In some circumstances selection of a link may cause an apparent change to the displayed
content, for example, insertion of the target’s content in place directly into the source.
When the content actually changes in form, this is a matter of interest in the concrete
content. However, when the content is actually unchanged in form, as is the case when the
target material is inserted, this can be described through the display mapping that produces
the concrete windows representation.

4.1.4 Dynamic content

Abstract content may be statically defined or it may be dynamically changing. Obviously,
hypertext systems should be able to deal with either. One of the important properties of
the r-model is a separation of hypertext content from structure. Mappings at the concrete
and visible levels are responsible for creating the look of intertwined information, and if
these mappings are managed in ways that donotappear to fix anchors deeply into content,
for example, then dynamic content can be managed with the same system architecture as
handles static content.

Dynamic contents can be classified by the point during execution at which displayable
information becomes available for display, and by the manner in which reader interaction
is allowed. For example, in the�Trellis system three forms of dynamic content have been
accounted for:

� Computed content: Execution of an algorithm to produce some text, or a picture. This
product of computation is then displayed as static content. Examples of computed
contents are running a formatter on a text block before displaying it, or executing an
operating system command like Unix’sls to get a listing of files in a directory. In
this form, information is not displayed until the algorithm has finished execution.

� Interactive content: Execution of an algorithm that requires user input to complete
execution. During browsing, the content computation begins when a node is visited,
and it ends when the node is left. Information is available for display constantly
during execution. Examples include text editors and spreadsheet calculators.
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� Filtered computation: This form of dynamic content involves continuous execution
of an algorithm, presumably to process some data stream. Even when the node for
the content is not under visitation, the algorithm computing the content is executing.
When the node is visited, an appropriate ‘snapshot’ is generated of the current
accumulated state of the computation. An example of this form ofdynamic content
is filtering a satellite transmission for messages of several types; when the node is
visited, a bar chart is drawn showing how many instances of each type have been
found. Another example is a multilinegraph drawn to reflect the past, say, 15 minutes
of system performance metrics being captured by an operating system.

It may at first appear that the popularly argued cards vs. scrolling issue is also one of
dynamic content, but in the r-model it is not. In neither case is content actually changing,
but instead only the view on that content. Thus the matter becomes one that is handled by
the mapping at the concrete hypertext level. This distinction is discussed in more detail in
Section 4.2.2.

4.2 Aspects orthogonal to the r-model

The r-model is centered around organizing, categorizing, and relating the components and
functions of hypertext models. Consequently, there are implementation elements, as well
as elements of some hypertext models, that are not treated as architecture issues, but as
issues specific to particular data and system models. As such, they are not explicitly dealt
with in the r-model. Several such issues are discussed in the following sections.

4.2.1 Hypertext browsing semantics

We have previously defined a hypertext system’sbrowsing semantics[2] ,as the dynamic
properties of a reader’s experience when browsing a document; in other words, as the
manner in which the information within the hypertext is to be visited and presented. In
most cases, browsing semantics are specified by the code that implements the hypertext
system. However, it is also possible to develop a hypertext model with variable browsing
semantics; for example our Trellis hypertext model permits specification of the hypertext’s
browsing semantics[19].17 Although specifiable browsing semantics are in some hypertext
models, they are not in all, and so we have decided not to include them directly in the
r-model.

Similarly, we have not included the hypertext’s dynamic behavior in the r-model. By
dynamic behavior, we mean those cases in which a hypertext system traverses the structure
without intervention from the reader[20]. Dynamic behavior is distinct from dynamic
content, however. As noted above, dynamic contentis described within the model.

4.2.2 Characteristics of the content

Some hypertext systems may favor an organization in which the content is partitioned
into small, single-thought units while others favor organizations in which the content is

17 The behaviors associated with different link types are reflected by their browsing semantics. Consequently,
variable browsing semantics are the implementation mechanism for user-defined link types, as well as other
browsing behaviors.
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treated as larger, somewhat self-contained documents, each with more than one thought or
point. Frequently the former organization is termedcard-based, while the latter is termed
scroll-based, in reference to the solutioncommonly used to present larger units in windows.
Such considerations are outside of the scope of the r-model. This issue is related to the data
to be used, and so precipitates decisions in designing the data model (i.e., abstract structure
and abstract content) for specific systems. In r-model terms, a scrolling environment is
viewed as a dynamic mapping at the concrete hypertext level (concrete windows), such that
viewports onto the concrete contents are altered in response to reader actions. Card-based
systems would correspondingly require far less manipulation of the viewports.

4.2.3 Physical-level descriptions and interchange descriptions

If the structure of the implemented hypertext system closely parallels that of the r-model,
it will certainly be necessary to define a storage format for those representations that are
specified directly as well as a description of the mappings that produce the others. However,
the specific design of such storage formats is outside of the scope of the r-model, as is
the equally important design of formats designed to permit interchange between hypertext
systems and installations.

4.2.4 User interfaces

Certainly to the reader of a hypertext, the most visible component of the system is its user
interface. However, the user interface is also an element of the system not discussed in the
r-model. We note that it is possible to associate many different styles of user interface with
the same underlying hypertext model.

4.3 Intersection with existing standards

There are two points of intersection between the r-model and existing standards. The first,
in the abstract component level, are the abstractions used to define the abstract content. An
appropriate standard to consider for text, for example, would be SGML[21]. Similar utility
could be made of standards to define graphical material as well as other content objects.
It may be necessary, however, to augment these standard representations with additional
information describing the potential interactions defined by the concrete–structure and
button–structure associations, and as reflected in the concrete content.

The other point of intersection with proposed standards is in the visible hypertext
level. Each visible HT segment and user display may be based around a protocol such as
that of the X-windows system[22]. Other de facto interface standards such as SunTools,
OpenLook, Viewpoint, Motif, and NextStep are also applicable at this point.

5 DISCUSSION AND CONCLUSIONS

There are many other hypertext systems that have not been discussed in detail in this
paper. We now briefly return to specific implementations in order to mention a few
interesting and important features and describe how the r-model deals with them. All
the systems discussed inSection 3have been card-based, but this is not to imply that
scrolling systems are inherently different or inappropriate for organization via the r-model.
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(One well-known scrolling system is Intermedia[23,24].) As mentioned inSection 4.2
on orthogonal considerations, scrolling would be handled with viewport mapping. The
remaining structure of these systems follows the r-model in much the same way as the
other (card-based) systems we discussed.

Some systems predefine a rich set of link types, that is, specific and differing behaviors
and presentations when links are followed. For example, Guide[25,26,27]defines a small
set of types: replacement, note, and glossary buttons. Intermedia as well provides several
different classifications, which Meyrowitz has generalized into generic behaviors called
navigational links, warm links, and hot links[28,24]. Other systems, such as Trellis and
HyperCard, contain a set of base link types and provide compositional facilities permitting
authors to implement new link types from the base types. We discussed the r-model
characterization of link types inSection 4.1.

A recent topic of discussion, termedactive anchors[24], refers to how link terminals
are specified and represented when content is especially dynamic, as in audio passages,
video, or animation. Kacmar[29] has designed and implemented a system that uses an
object-oriented network of actors exchanging messages. It incorporates active anchors
through the actor mechanism. Another form of dynamic behavior appears in systems
like Zellweger’s scripted documents[30,31,32], that are intended to be used in creating
structured presentations. Dynamic traversal of the resulting structures is an important part
of achieving the purposes of these systems. The HyTime and SMDL standardization efforts
[33,34,35]are also cast in a highly temporal environment and contain explicit mechanisms
for describing duration and synchronization of events. In r-model terms, time is handled
partially as structure and partially as (dynamic) content. Trellis mirrors the r-model in
this respect, and separates the definition of dynamic displays (content) from automatic
traversals of the links structure (timer-based events).

Several other research efforts have been aimed at producing an abstract model of
hypertext and hypertext systems. Two that have been developed recently are the Dexter
model [18] and one proposed by Lange[36]. Both of these models are more operational in
nature than the r-model described here. These other abstractions are more directly useful
as high-level specifications for system implementations, while the r-model is intended to
be taxonomic in nature. As such, the r-model does not contain operational concepts, or
specific data or presentation models. Rather than being an abstract engine or machine, the
r-model has a functional organization showing relations among elements in the various
entity levels.

In conclusion, we have described a meta-model of hypertext,which we call the r-model,
that provides a high-level organization to the portions of a hypertext model or system.
In this paper, we have focused on using the r-model to describe existing systems. We
have seen that the detailed architecture of a system design may correspond closely to
the divisions established in the r-model, as in the Trellis systems. However, it is equally
possible that a system’s design may merge distinct concepts in the r-model, such as in
Hyperties and HyperCard.

Since the functionality identified by the r-model is inherent in hypertext applications,
the r-model also can serve as a high-level design guide for implementors of systems. In
our own work in developing the Trellis hypertext model and prototype implementations,
we have tended to reflect the divisions of the r-model strongly in our hypertext model and
also to carry these divisions on into our implementation. In essence, our implementation
is based on a collection of abstract data types, where the data types correspond to the
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representations in the r-model. A natural consequence of this retention of separation has
been that it is easy to extend the environment in which the implementation resides—for
example to consider designs that permit multiple readers to be active in the hypertext at
the same time that a writer is modifying it. Moreover the retention of separation between
structure, content, and context permits flexible reuse of the hypertext’s structure and of the
content of the hypertext.
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