ELECTRONIC PUBLISHING, VOL. 3(3), 141-154 (AUGUST 1990)

Database support for very large hypertexts

B. N. ROSSITER AND T. J. SILLITOE M. A. HEATHER

Computing Laboratory Sutherland Building

University of Newcastle upon Tyne Newcastle Polytechnic

Newcastle NE1 7RU, UK Newcastle upon Tyne NE1 8ST, UK
SUMMARY

Current hypertext systems have been widely and effectively used on relatively small data
volumes. The potential of database technology is explored for aiding the implementation
of hypertext systems holding very large amounts of complex data. Databases meet many
requirements of the hypermedium: persistent data management, large volumes, data
modelling, multi-level architecture with abstractions and views, metadata integrated with
operational data, short-term transaction processing and high-level end-user languages for
searching and updating data. To illustrate the potential for the use of databases, a system
implementing the storage, retrieval and recall of trails through hypertext comprising textual
complex objects is described. Weaknesses in current database systems for handling the
complex modelling required are discussed.

KEY WORDS Databases Hypertext Paths Trail management Composite objects

INTRODUCTION

The hypermedium is an information space representing a high-level abstraction of data.
It represents an idealized view of the information needs of an area of particular human
interest or activity. Information usually amounts to connections between different items
to be found in human experience. These may be physical things or they may be ideas.

The significant feature of the hypermedium is the nature of this connection between
data. It consists of an ordering but an ordering that is not unique. Many possible orderings
may exist. While the computer is an obvious tool for handling and organizing large
guantities of data in the hypermedium, straightforward procedural methods cannot cope
with the complexity of the organization. The experience of early workers in databases is
being repeated in the hypermedium by those engaged in developing hypertext. To progress
beyond small simple systems requires the writing of what amounts to a customized
database system. However, in adopting a customized solution, there is an immediate
loss of generality and of functionality and a deterioration in quality. The hyperbases so
developed may only be usable in their home environment whereas a generalized data-
base implementation would provide the basis for the use of the same information for
many other purposdd]. There is the matching and retrieval capabilities of information
retrieval systems, the document segmentation and word indexing of free text products, the
display of markup languages, the layouts and layers to be found in the Office Document
Architecture, the use of metadata for data exchange, and the application of a body of
rules as in the field of Al and expert systems.

It therefore seems better to make use of the experience of the database community in
building large hyperbases but it cannot be pretended that the benefits of one technology

0894-3982/90/030141-14$07.00 Received 18 July 1990
(©1990 by John Wiley & Sons, Ltd. Revised 26 October 1990

© 1998 by University of Nottingham.

142 B. N. ROSSITER, T. J. SILLITOE AND M. A. HEATHER

to the other are all in one direction. As will be seen later, database technology in its
present form has some deficiencies in modelling complex objects and events, the solution
of which will be given greater impetus by involvement in new challenging areas. The
authors therefore see the relationship between database and hypertext technologies as
symbiotic rather than parasitical. The hope is that database technology is both extending
the hypermedium and being extended by it.

For reasons of continuity from the old, a fundamental unit of data in the new hyper-
medium is a document. Present hypertext provides mainly for small, simply structured
documents and, in the way that it concentrates on factors at the human—machine interface,
it gives good insight into the capabilities needed for a full hypermedium system. Three
main types of link are recognized in hypertext systems:

1. explicit inter-document links representing citations,

2. lexical links in which the meaning of words is resolved,

3. conceptual links in which implicit semantic connections are made between one
document and another.

The work described later is mostly concerned with symbolic links between one
document and another. Lexical links pose greater difficulties in implementation because
of frequent ambiguity in finding the definition of a word amongst its many usages in a
text. Implicit links have proved to be difficult for the machine to locate automatically
but can be entered manually by the user in most hypertext systems and in small-scale
applications can provide very rich structures. It is unlikely that such richness can be
achieved in large hyperbases where automated authoring is likely to prevail.

In traditional document systems, there is often a very arbitrary division in information
[2] because of the rigidity enforced by predefined document sizes. In hypertext systems,
this is overcome to some extent through various composition techniques for representing
isPartOf relationships. Through such aggregation, logical documents can be defined which
are a synthesis of what may be many diverse physical documents. The view of the authors
is that these ideas need developing further to represent a document as a complex data
object holding information in the form of structured data. The representation of document
structures in database models is investigated more fully later.

LIMITATIONS OF CURRENT HYPERTEXT SYSTEMS

Present hypertext systems concentrate on the human—computer interface and rely on semi-
automated or manual techniques to represent links between one document and another.
This is satisfactory for small, simple document structures but otherwise there are a number
of problems:

e The use of symbolic addressing is not fully exploited to cope with pre-existing forms
of citation and for automated authoring of large quantities of text.

— There is no independent level of control that can test or validate the data and
that can track the navigation through documents: the design and construction
of maintainable links is a major problem. There is a lack of the concept of
referential integrity.

e Methods of management of persistent data are relatively primitive.
— It is not easy for a hyperbase to be used concurrently by a number of different

DATABASE SUPPORT FOR VERY LARGE HYPERTEXTS 143

readers or for multiple authorship. Progress in this area is currently being
achieved by very active research in the area of Computer Supported Cooperative
Work (CSCW).

— Access methods, in general, are designed for handling small amounts of
persistent data.

e Searching facilities are specialized.

— There is an emphasis on browsing through nodes via links rather than on con-
tent addressing where the facilities are often quite limited. However, there are
exceptions. Hypertieg] is an early example of a system paying much attention
to string searching within a fine data structure. Other workers have used relational
database systems to augment searching facilities as mentioned later.

— Indexing is based on surrogates such as tables of contents rather than the full
contents of a node.

e There is no consensus on the nature of the formal data model which is necessary
to provide an integrated framework for data structuring and manipulation. Recent
work employing set theory4,5], Petri netg6] and Z[7] shows the urgency with
which this area is now being tackled. It is important for large complex applications
that current hypertext practice involving the use of directed graph (general network)
structures, inheritance hierarchies and object-oriented scripts be underpinned by a
greater body of theory. A formal storage model using network structures has been
developed8] but this omits many of the activities.

e Node data is WYSIWYG. There is limited opportunity for mapping and indirection
between user views and storage structures. There tends to be one fixed view—that
of the author—uwith little scope for the preferences of individual readers.

e Hypertext systems are generally self-contained and cannot be easily integrated with
other programs and data. It is difficult for another application to use the hyperbase.

These problems are emphasized with large data volumes, multiple authorship, complex
inter-node and intra-node relationships, need for multiple views of same hypermedium,
and a desire to integrate the hyperbase with other types of application within the
organization.

POTENTIAL OF DATABASE TECHNOLOGY

Database technology has significance as it can assist in many of these problem areas:
high-level end-user languages such as SQL can be embedded in standard programming
languages to integrate database facilities with other functional aspects; management of
large volumes of persistent data, including such aspects as security, integrity, concurrency
and optimization of access, is a central tenet of the technology; multi-level architectures
with mappings from logical to physical levels provide different views of the same
stored data; content-addressing can be integrated with navigation to give facilities as
sophisticated as those found in information retrieval systems.

The use of data models requires more detailed discussion. Database technology depends
on the development of an appropriate data model for structuring and manipulating the
data. It could be argued that the use of any model is reductionist, resulting in a loss of
information. However, a data model does provide a rigorous framework within which an
application can be developed. It therefore seems necessary, to exploit the full power of

144 B. N. ROSSITER, T. J. SILLITOE AND M. A. HEATHER

hypertext, to have some machine model expressing semantic detail of the documents held
with a full abstract specification of the data-types involved and a multi-level architecture
similar to that of a DBMS. A clear problem is the kind of model that is most suitable for
representing the architecture of documents and multimedia data and for providing usable
query languages. As will be seen later, current DBMS models are inadequate in some
respects.

The manner in which cross-references are realized and checked is crucial for a con-
sistent hyperbase. Database systems employing symbolic keys for identification of objects
have an inherent advantage over less conceptual approaches in handling text whose
content is continuously changing. In first generation hypertext systems with physical
node addressing, cross-references must in advance be fully identified as in a network
database. In a value-oriented database approach to hypertext, links are made dynamically
at run-time using symbolic key matching techniques. Both means provide for display
and navigation through documents. The physically oriented approach uses less resources
but the early binding of identifier to data is more of a static method which allows less
flexibility if, for example, data is being loaded in an uncertain order or key values are
being changed or deleted.

The greater flexibility obtained through the dynamic power of lazy evaluation using
database technology is not the only advantage in this area. Constraints like referential
integrity can be placed automatically on new data entered into the system and on updates
to existing records. Potential cross-references in symbolic form are checked against
the current database and must succeed for the new or changed record to be accepted
without reservation. At the programmer’s discretion, errors resulting from dangling cross-
references can result either in the new data being rejected or accepted with reservation.
Such reservations include a warning message, flagging of the citing field or a setting of
the citing field to null.

The various levels of verification of links makes the construction of large hyperbases a
very much easier and rigorous process through a multi-stage commit process. During the
addition of user data, dangling cross-references, perhaps reflecting the order in which data
is added, are flagged in the first pass and only after a second pass to re-check citations
is the possibility of rejection considered. In any event, cross-references which cannot
be resolved will remain flagged as such so that the system is always consistent with
respect to which references are navigable. Finally the concept of referential transparency
should be raised. In a database environment, the entire management of the links will
be automatically handled by the system to relieve the user of all responsibility for
maintaining referential integrity.

RELATED WORK

To enable larger amounts of data to be handled, some hypertext systems have already
been augmented by a conventional relational database system as for example with the
commercial system OW[9]. Another attraction of relational systems has been to enhance
the searching facilities as with the work by Gallagle¢ral. [10] in storing HyperCard
objects in the database system ORACLE. At Texas Instruments, an experimental system,
PANORAMA, based on the object-oriented database, ZEITGEIST, has been built to
augment navigation facilities with searching functiofid]. These approaches have
promise but are restricted by poor complex object modelling with the relational approach

DATABASE SUPPORT FOR VERY LARGE HYPERTEXTS 145

and a complex user interface compared to those in contemporary hypertext systems for
PANORAMA.

Work by Raymond and Tompdl2] has indicated the need for an accurate
representation of the fine structure of documents to allow fragments of documents
to be referenced and treated as objects of data in their own right. Tompa’'s model
[4] satisfactorily treats some aspects of the hypermedia such as multiple readership
and symbolic labels through using a 6-tuple structure recording nodes, pages, readers,
mapping from nodes to pages, labels and hyperedges. However, there is a major problem
with the model for real textual data: all references are between nodes mapped statically
to a number of data pages with no scope for dynamic variation of unit size in the source
and target objects. The model thus fails to capture the inherent complex object structure
of multimedia data including the fragmentation features discussed by Tompa in his earlier
work.

AN EXAMPLE DOCUMENT ARCHITECTURE

In order to examine document architectures, the example of English legal statutes will
be used in this paper. In England, Parliament enacts statuteSigune® 1shows related
documents which have a bearing on the meaning of a particular section in an Act of
Parliament. A section represents the smallest self-contained free-standing unit of text
although subsections may be directly cited sometimes. A section is a mere point in the
textual hypermedium and can rarely be consulted alone or understood without reference
to other documents. For many purposes, sections are grouped together into parts or para-
graphs into schedules. As any of the information in Bigure 1may have a bearing on

a section in question, it can readily be seen that advanced hypertext features are needed
if all the relevant subject matter is to be available and easily reached in the electronic
medium. Our work can be contrasted with that of Yoder and Wetth8hwho have also
developed a hypertext system for the law. Their system is very flexible in the forms of
data accepted but lacks a formal data model for controlling structures and for providing

a general means of manipulating the data.

STATUTE |_Express
REPEALED Implied CASE TRAVAUX
|.REREALED B P
LAW PREPARATORIES
Wholly 1 Partially
'
Statutor PPtide
v Gloss et Internal
inter- - pemm---- - Structure
olative Textual
Zmend el CURRENT STATUTE Definitions
DEFINITIVE TEXT
. F—
Additions 3 Repeals _—
'
EEC
DIRECTIVES
Orders by

Statutory
Case Law Authorit

.
.
.
..

Interpretations T ~

1 Ci

H

. Annotations Statutes covering
Citations Appli- Express implied overlapping areas

cations parallel areas

Figure 1. A Section of statute set in the European legal hypermedium

146 B. N. ROSSITER, T. J. SILLITOE AND M. A. HEATHER

TRAILS AND PATHS

The existence of conceptual paths through textual documents was first recognized by
Bush in 1945[14]. Treu [15] considered the existence of trails through bibliographic
citations and thought they should be preserved for a searcher to retrace his steps at a
later date. At Newcastle, the need to provide a conceptual framework for the machine to
assist the human in his database searching and navigation was recognized [A6]987

with a prototype implementation of the recording of trails in database tables as persistent
data fully integrated with the hypertext data. The main objective of the trails was to
assist the human in communication with the machine by removing the need to memorize
backward and forward references, unsuccessful routes through the database, search terms
used and the search and navigation strategy. Also in 1987, Cdakfndentified one of

the major difficulties in current hypertext systems as the user becoming “lost in hyper-
space” as a result of losing his way along a trail as a result of the demands made during
navigation. Zellwegef18] has classified the various kinds of path and emphasized the
importance of implementing paths as first-class data. Although the implementation of the
paths as scripts is satisfactory for single-user systems, there are problems with sharing
of the path data in multi-user environments.

There is general agreement in the work quoted above that path information should
be first-class data, replayable with or without variation and an essential part of the user
interface. Before considering the required structures in more detail, we will first consider
database models for representing the internal structure of the statute.

DATABASE MODELS AND TEXTUAL STRUCTURES

The basic DBMS models such as the relational are not suitable for manipulation of the
fine structure of documents mainly due to the problems of normalization and aggregation
of textual data[1] which in general terms result from an inadequate representation of
complex object$19]. At least for representing ideas, it is necessary to move on from the
classical models to the semantic models because the required emphasis is on capability,
expressiveness and abstraction. A range of semantic models incorporating more features
and constraints than in the basic models has been proposed in an attempt to model more
closely the real world. These include the Entity-Relationship (E-R) Mf§land Taxis

[21], both of which have been employed in this work.

CLASS STRUCTURES

A Chen E-R model of English statutes and the corresponding diagram showing the class
structures have been presented elsewligfe Two types of hierarchy are embedded
within the class structure:

e An essential inheritance hierarchy to indicate the inheritance of properties (attributes)
automatically by lower level objects from higher ones through ‘isA’ relationships.

e An aggregation hierarchy to indicate potential groupings of data through ‘isPartOf’
relationships. This hierarchy provides the framework upon which textual units are
dynamically aggregated to satisfy varying user requirements.

The aggregation hierarchy has as its root a highly abstract aljelewhich has some
similarity to a node in hypertext terminology comprising a chunk of data for presentation

DATABASE SUPPORT FOR VERY LARGE HYPERTEXTS 147

to the user. There are thus clear similarities between the two approaches. However, there
are important differences:

e in hypertext systems, nodes are static structures at run-time whereas in our approach,
a node can be dynamically generated at any time from any of the underlying text
objects by aggregation. This dynamic composition is an important feature of the
Dexter mode[7] mentioned earlier.

e in hypertext systems, the internal structure of the nodes can be left undefined whereas
in database technology there is a clearly defined structure for each specific text object
at lower levels of the class hierarchy.

e the aggregation afiodein our approach is always made in the context of symbolic
identifiers (sed-igure 2 rather than record or card numbers.

define AnyDataClass Node with
ss#: {| ssminissmax | %}
section#: {| sectmin:sectmax | }
part#: {| partmin:partmax | }
subp#: {| subpmin:subpmax | }
para#: {| paramin:paramax | ¥
subschedule#: {| subsmin:subsmax | }
schedule#: {| schmin:schmax | }
footnote#: {| footmin:footmax | 1
year: {| yearmin:yearmax | ¥
chapter: {| chapmin:chapmax | }
unique
all.unit.id: (year, chapter, part#,
section#, ss#, schedule#, subschedule#,
para#, subp#, footnote#)

define AnyDataClass Text isA Node with
changeable
marginal.note.other: string
crossnotes: string
omissions: string
footnotes.old.stats: string
formatting.attributel: string
formatting.attribute2:; string ... etc
unique
text.id: (year, chapter,
section#, ss#, schedule#, para#, subp#)

define AnyDataClass XRef with
citing.text.id: set of Text
cited.text.id: set of Text
unique
ref.id: (citing.text.id, cited.text.id)

Figure 2. Taxis-like specification of symbolic key for statutes

148 B. N. ROSSITER, T. J. SILLITOE AND M. A. HEATHER

SYMBOLIC ADDRESSING FOR HYPERTEXT

For navigation in the hypermedium, it is important to be able to identify uniquely
individual units of text so that cross-references can be resolved. With the complex object
structure employed in this study, it has been found that the optimal solution is to employ
a generic symbolic kewll.unit.id for the abstractiomode as shown in Taxis-like form
in Figure 2[1]. The keyall.unit.id effectively defines a generic heading which contains
an integer value for each possible component of a textual identifier. The form of the key
is application-dependent: in our work, nine different components have been identified
such as section, subsection and footnote. For a given instance of a text, the values
of some components are inapplicable. Such components have a value of zero: all other
components have positive values, for exampéstion#would be assigned the value 6 in
the heading of the sixth section of an act. This provides a completely general mechanism
for addressing all objects in the inheritance hierarchy. The values for the attributedef
are constrained by the variables suchsaminand ssmaxwhich specify the minimum
and maximum values permitted for subsection numbers.

The clasdext is a specialization ofioderepresenting an abstraction of the main body
of text. As shown in the definition dixt.id, a subset of the components of the generic
key all.unit.id is required to address the main text. Specific features includddxin
but not in node are attributes representing various details of the internal structure of
an item of text. Cross-references are represented by the XRsbwith each citation
held inref.id comprising a pair of symbolic identifiers for the citing and cited text units,
respectively. The constraint is specified that the citing and cited objects must be members
of the settext: therefore, the identifiers of the text units must conform to the structure
of text.id and the text units must be instances of the class to enforce referential
integrity.

MODELS FOR EXPRESSING DYNAMIC ASPECTS OF
TRAIL MANAGEMENT

Figure 3shows a Data Flow Diagram (DFJ22] for the trail management which indi-
cates the control of events required in searching and navigating. The diagram shows an
overview of the processes involved and how they reference three types of information:
the hypermedium itself, the names of the trails made by each user heldtlinand

a complete history held ipathitem of each path comprising an initial content-based
search followed by a series of navigational commands. Whilst execution of a particular
process is not complicated, it is a matter of integrated management of the very large
number of processes that are possible and their complex interrelationships. Also shown
is a description of the main data flows on the input side to illustrate the nature of the
commands passed to the system for action.

Only the top-level of the DFD is shown. This could be decomposed further into lower-
level diagrams, each holding more detail of how each process operates. It is interesting
to note that such detailed diagrams have similarities to the Petri nets of Furuta and Stotts
[6]. Both approaches employ process models: DFD are business-oriented but Petri nets
have the better formal basis.

DATABASE SUPPORT FOR VERY LARGE HYPERTEXTS 149

Validate. m
Trail-Command Trail, vic Reconstruct. Path

Command Trails

Examine.
Request

Validate.
Search.

Perform.
Search.
Command

User

Hypermedium

Validate.
Navigation.
Command

Results Perform.
VNC

Navigation. Pathitem
Command
Navigation-Results

Request = [Trail-command | Search-command |
Navigation-command | System-command]

Trail-command = [trail.label str | first | last | fwd(n) |

bwd(n) | end]

Search-command = [find | and | or | not] attr str
Navigation-command = [[+|- 1 n| ref | {subobject-id H
System-command = SPIRES-command

Subobject-id = [subsectio n p | section q |

part r | subparagrap h s | paragraph t |
schedul e u | footnot e v | year w | chapter X]
n..x = integer-value

attr = text-attribute

str = string-value

Abbreviations:

VTC = Validated-Trail-Command

VSC = Validated-Search-Command
VNC = Validated-Navigation-Command
Convention: [..] selection; {.. } iteration; (..) optional

Figure 3. DFD for trail management in navigation of hypertext

MODELS FOR EXPRESSING STATIC ASPECTS OF
TRAIL MANAGEMENT

As companion to the DFD oFigure 3 there is an E-R diagram iRigure 4to show

the relationships between the entities holding the trail informagiath and pathitem

and other entities relevant to trail management. Each user can hold many paths each
of which holds many path items. For branching trdil8], it is necessary to introduce

the involuted relationshigites to indicate that a single path item can branch to many
other path items during navigation through the user backtracking. For linear trails, the
relationshipcites is not required.

The entity-typeCurrent.Record.Positiomas been introduced to explicitly indicate the
current selected object. Many users can be active at a given time but it is an assumption
at present that each user holds a single current record position at any given time. The
entity-type hypermediumis in a 1:N relationship withpathitem indicating that each
hypermedium object can appear many times as a path item but that each path item refers
to only one hypermedium object. The importance of the relationghip.found.infor
integrity of the trail is described later.

150 B. N. ROSSITER, T. J. SILLITOE AND M. A. HEATHER

IMPLEMENTATION OF TRAIL MANAGEMENT SYSTEM

The system was implemented on the non-standard SPIRES DBMS run on an Amdahl
5860 of the NUMAC service. The textbase STATLT holding the statutes for England
has been developed and refined in a series of projects since 1980 and at the start of the
project described here already provided a very detailed definition of the data structure
[1], full text-searching facilities, symbolic addressing in the manneFigfire 2and a
multivalued attributemarg-note-xrefin each text unit to record cross-references made to
other parts of the teq3].

The current work is concerned with the implementation of the dynamic aspects shown
in Figure 3and the static aspects Bfgure 4 The additional tables created to record the
status of navigation will first be described.

1
User

1 Current.
1 Record.
Position
has. 1
N

N
saved.
Path as

1

1
item. 1 Hyper-

found. medium
N 1 in
N
Path-
item N

Figure 4. E-R diagram for static aspects of trail management

TABLES TO RECORD THE NAVIGATIONAL STATUS

The entity-typegath and pathitemshown inFigure 4hold all information on the trails
made by users through the textbase. The attributes describing this information are shown
below (key attributes in bold):

e pathiser.id, trail.num, trail.label)
e pathitem(ser.id, trail.num, command.num, command, citing.text.id, cited.text.id,
current.unit, link.status, relevance)

Each trail is labelled with a stringail.label for identification by the user. Ipathitem
cited.text.id holds the symbolic key of the current record after the command held in
commandhas been both executed and successful. Success or failure is indicated by the
value for the logical attributéink.status The current unit size, indicating the extent to
which the complex object structure has been aggregated to provide results to the user,

DATABASE SUPPORT FOR VERY LARGE HYPERTEXTS 151

is indicated by the value foeurrent.unit The attributerelevancecan be used to record
the desirability of taking a particular route.

The attributeciting.text.id represents the involuted relationskhijpes of Figure 4and
is used as a backward reference point to enable the user to perform backwards and
forwards tracking through the text. The attribute peiting.text.id and cited.text.idis
exactly equivalent taef.id defined earlier in the Taxis-like symbolic key definition of
Figure 2 The tables and their attributes are extensively used by the processes described
in the DFD ofFigure 3

DYNAMIC ASPECTS AND THE USER INTERFACE

The DFD ofFigure 3was converted to a structure chfg4] by transaction analysis. The
procesEExamine.Requestas considered to be the transaction centre as it triggers many
courses of actions in the system. The functions were implemented using the SPIRES
Protocols language.

Two types of command are recognized by the system. SPIRES system commands
are passed to the database kernel without modification. Other commands to validate
and execute either a search, navigation or trail request are parsed and then sent to the
appropriate process. It should be emphasized that the interpretation of users’ actions is
to some extent context-driven. Thus if the variablatusholds the value REPLAY, the
users’ actions will be interpreted as far as possible as involving the recall of a trail. If
the value is ACTIVE, the user is thought to be navigating and if INACTIVE (from the
navigation perspective) performing an initial search to locate a record on content prior
to navigation. However, if it is unambiguous that a user wishes to change his mode of
operation from, say, navigation to content search, his status will be changed transparently
from, in this case, REPLAY to INACTIVE. This flexibility is very important as it is only
by changing mode in the middle of a session that a user can vary an earlier trail to
explore the text in a new manner. The facilities available to the user under each status
value are as follows:

e INACTIVE: A search command creates an initial result stack of items. This is
followed by iterative searching with Boolean logic on the current stack. Navigation
can only sensibly proceed when the user has identified a single record as of initial
importance from content-searching. The ideal is probably an initial list of ranked
records as described by Croft and Tuf?s].

e ACTIVE: Navigation commands available are of three main types:

— entering a positive or negative number enables the user to browse backwards or
forwards through the text in logical sequence of the textual units. This command
is typically used for browsing in either direction through sections within a part
or paragraphs within a schedule at a constant textual unit size.

— entering the commandef directs the system to find the record referenced by
the current record. If several records are referenced from a single record, the
user will be given a choice as to which one is required. If the reference is to a
high-level unit such as part, objects will be aggregated to retrieve a complete
part for the user. This command can therefore dynamically change the current
textual unit size.

152 B. N. ROSSITER, T. J. SILLITOE AND M. A. HEATHER

— entering values for the identifiers of sub-objects of the symbolic key defined in
Figure 2finds the record with symbolic key with new values for the designated
sub-objects and current values for other components. The current textual unit
size is adjusted accordingly.

With all three forms of the navigation command, execution results in updating the table
pathitemdefined earlier and, if successful, making the object found the current item.

e REPLAY: for the replay of trails established earlier, the user first provides a string

trail string for identifying the required trail held in the tabpath If the trail exists,

the first action held for the path ipathitemwill be executed and the system status

will be changed to REPLAY. During the replay of a trail, a user can enter any of

the following:

— first finds the key of the record found at the beginning of the selected trail and
establishes it as the current record.

— last finds the key of the record found by the end of the selected trail and
establishes it as the current record.

— fwd[n] takes the navigation n steps forward from the current position.

— bwd[n] returns the navigation back n steps.

— end causes the status of the system to be changed from REPLAY to INACTIVE.

DISCUSSION

We have used current database techniques to satisfy our requirements. Of particular
interest is the availability of both powerful browsing and searching facilities, the recording
of all information concerning user trails as persistent data in fully-fledged database tables,
and the dynamic variation of text unit size to meet changing user demands.

However, our task was relatively hard in two areas:

1. the dynamic adjustment of unit size; and
2. the integration of dynamic and static models.

In our implementation, aggregation was achieved at run-time through masking out
components of the primary key and assembling, using the Protocols language, the series
of text objects meeting the criteria implied by the user’s current request. Reasonable
performance was achieved in this task but the aggregation is being achieved by external
operations on the objects rather than by the more conceptual approach of aggregation
abstraction: new object classes with aggregation methods are defined to represent the
various unit sizes.

Database technology does not provide a completely satisfactory solution to this
problem. The definition of abstract data types as in Pos{d®do represent the various
aggregation possibilities may give problems with closure: the return of a multivalued
set produces an unnormalized relation. Alternatively, an object-oriented database system
such as GemsSton@6] could have been employed. This would have modelled well the
inheritance abstractions but aggregation is achieved by external operations on objects as
in our current implementation.

The dynamic and static aspects have been implemented using different models which
are weakly integrated. This lack of integration is found in all conventional database
systems in current usR7]. It is an inherent feature of object-oriented databases that

DATABASE SUPPORT FOR VERY LARGE HYPERTEXTS 153

methods form part of the class definition. Some semantic database models such as Taxis
also provide this capability and their expressiveness has been examined f¢t]text
Although these integrated models are currently at the experimental stage for realistic
amounts of data, their usage in future large hyperbase systems seems very necessary.
The object-oriented model of hypertext developed using the Vienna Development Method
[28] shows the potential of the paradigm in this area.

In addition, there is also a number of areas where further work is required:

1. The interface provided to users. Layered object-oriented techniques employing
multi-windowing need to be front-ended onto the present system.

2. Investigation of the semantics of trail integrity. The integrity of trails depends
during their existence on no component object being deleted during maintenance of
the hypermedia database. There is therefore a need for restrictions on the actions
that are permitted on objects that participate in trails. Operations such as deletion
on any hypermediumobject participating in the relationshipem.found.inshould
perhaps be constrained. Further work is needed at the conceptual level in this area
to determine the exact nature of the constraints required.

CONCLUSIONS

Hypermedia systems are very complex: events have to be controlled over long periods,
as in the design, control, maintenance and integrity of linear and branching trails used
for navigation; text and graphical information comprises complex data objects with the
need for aggregation and inheritance abstractions; and interfaces must employ multi-
windowing techniques and be natural according to psychological models. A natural
extension of the present work on hypertext at Newcastle is to investigate the use of object-
oriented databases with their claimed suitability for large-scale complex applications. In
effect, what is required is to place under a contemporary hypertext interface, database
models which are very powerful, yet can provide a high level of abstraction to the end-
user. It is to be hoped that database technology can be developed quickly enough to meet
the imminent requirements for data management in very large hyperbases.

REFERENCES

1. B. N. Rossiter and M. A. Heather (1990), Strengths and Weaknesses of Database Models for
Textual DocumentsProceedings EP9Ced. R. Furuta, Cambridge, pp. 125-138.

2. M. A. Heather and B. N. Rossiter (1989), A Generalized Database Management Approach to
Textual Analysis, inProceedings. 2nd International Colloquium, Bible and Computer: Methods,
Tools, ResultsChampion-Slatkine, Paris-Geneva, pp. 519-535.

3. B. Shneiderman (1987), User Interface Design for the Hyperties Encycloped®apaeedings
of Hypertext'87 pp. 199—-204.

4. F.W. Tompa (1989), A Data Model for Flexible Hypertext Database Sys#@1id, Transactions
on Information Systemg(1) 85-106.

5. P. K. Garg (1988), Abstraction Mechanisms in Hyper@ACM 31 862—-870.

6. R. Furuta and P. D. Stotts (1989), Programmable Browsing Semantics in TreHypertext'89
ProceedingsSpecial Issue—SIGCHI Bulletin, pp. 27-42.

7. F. Halasz and M. Schwartz (1990), The Dexter Hypertext Reference Modétyaneedings
Hypertext Standard. Workshpedd. J. Moline, D. Benigni and J. Baronas, National Institute of
Standards and Technology, pp. 95-133.

154 B. N. ROSSITER, T. J. SILLITOE AND M. A. HEATHER

[0}

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

B. Campbell and J. M. Goodman (1988), HAM: A General Purpose Hypertext Abstract Machine
CACM 31 855-861.

. P. Cooke and I. Williams (1989), Design Issues in Large Hypertext Systems for Technical

Documentation, inHypertext, Theory into Practiceed. R. McAleese, Intellect, Oxford, pp.
93-104.

L. Gallagher, R. Furuta and P. D. Stotts (1988greasing the Power of Hypertext Search
with Relational QueriesComputer Science Technical Report Series CS-TR-2361, University of
Maryland (to appear itlypermedid

J. C. Chen, T. W. Ekberg and C. W. Thompson (1989), Querying an Object-oriented Hypermedia
System,Proceedings Hypertext,liYork.

D. R. Raymond and F. W. Tompa (1988), Hypertext and the Oxford English DicticDAGM

31(7) 871-879.

E. Yoder and T. C. Wettach (1989), Using Hypertext in a Law Firm, Hiypertext'89
ProceedingsSpecial Issue—SIGCHI Bulletin, pp. 159-167.

V. Bush (July 1945), As we may think, Atlantic Monthly 101-108. Reprinted 1988 in:
Computer-Supported Cooperative Work: A Book of Readiags,|. Greif, Morgan Kaufman,

pp. 17-34.

S. A. Treu, (1971), A Conceptual Framework for the Searcher-System Interfatr@enactive
Bibliographic Search: The User/Computer Interfaeel. D. E. Walker, AFIPS Press, Palo Alto,
pp. 53-66.

B. N. Rossiter (1987), Machine Awareness in Database Technology, Proceedings Symposium
VI, Meta-intelligence and the Cybernetics of Consciousneds|nternational Congress of
CyberneticsNamur, pp. 1-9.

J. Conklin (1987), Hypertext : An Introduction and SurvlSEE Computer 20(9) 17-41.

P. T. Zellweger (1989), Scripted Documents: A Hypermedia Path Mechanishypertext’89
ProceedingsSpecial Issue—SIGCHI Bulletin, pp. 1-14.

M. Stonebraker, J. Anton and E. Hanson (1987), Extending a Database System with Procedures,
ACM Transactions on Database Systerh&(3) 350-376.

P. P.=S. Chen (1976), The Entity-Relationship Model—towards a unified view of AlaM,
Transactions on Database Systeri§l) 9—-36.

J. Mylopoulos, P. A. Bernstein and H. K. T. Wong (1980), A Language Facility for Designing
Database-Intensive FacilitieACM Transactions on Database Systenk35—207.

T. De Marco (1978)Structured Analysis and System Specificatiourdon Press.

M. A. Heather and B. N. Rossiter (198Database techniques for text modelling: the document
architecture of British statutesUniversity of Newcastle upon Tyne, Computing Laboratory
Technical Report no. 227.

T. J. Sillitoe, B. N. Rossiter and M. A. Heather (1990), Trail Management in Hypertext, in:
British National Conference on Databases-8 Proceedimgs A. Brown, Pitman, pp. 224-242.

W. B. Croft and H. Turtle (1989), A Retrieval Model for Incorporating Hypertext Links, in:
Hypertext'89 Proceedings$pecial Issue - SIGCHI Bulletin 213-224.

R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams and M. Williams
(1989), The GemStone Data Management SystenDbject-Oriented Concepts, Databases &
Applications edd. W. Kim and F. H. Lochovsky, Addison-Wesley, pp. 283-308.

D. C. Tsichritzis and O. M. Nierstrasz (1988), Fitting Round Objects into Square Data bases,
ECOOP '88 Proceedings, ihecture Notes in Computer Scien&pringer-Verlag Vol. 322, pp.
283-299.

D. B. Lange (1990), A Formal Model of Hypertext, iroceedings Hypertext Standardization
Workshop edd. J. Moline, D. Benigni and J. Baronas, National Institute of Standards and
Technology, pp. 145-166.

	SUMMARY
	INTRODUCTION
	LIMITATIONS OF CURRENT HYPERTEXT SYSTEMS
	POTENTIAL OF DATABASE TECHNOLOGY
	RELATED WORK
	AN EXAMPLE DOCUMENT ARCHITECTURE
	TRAILS AND PATHS
	DATABASE MODELS AND TEXTUAL STRUCTURES
	CLASS STRUCTURES
	SYMBOLIC ADDRESING FOR HYPERTEXT
	MODELS FOR EXPRESSING DYNAMIC ASPECTS OF TRAIL MANAGEMENT
	MODELS FOR EXPRESSING STATIC ASPECTS OF TRAIL MANAGEMENT
	IMPLEMENTATION OF TRAIL MANAGEMENT SYSTEM
	TABLES TO RECORD THE NAVIGATIONAL STATUS
	DYNAMIC ASPECTS AND THE USER INTERFACE
	DISCUSSION
	CONCLUIONS
	REFERENCES

