
ELECTRONIC PUBLISHING, VOL. 3(2), 99–104 (MAY 1990)

A note on digitized angles
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SUMMARY
We study the configurations of pixels that occur when two digitized straight lines meet
each other. The exact number of different configurations is calculated when the lines have
rational slopes. This theory helps to explain the empirically observed phenomenon that the
two “halves” of an arrowhead don’t look the same.
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About ten years ago I was supervising the Ph.D. thesis of Chris Van Wyk[4], which
introduced theIDEAL language for describing pictures[5]. Two of his example illustra-
tions showed arrows constructed from straight lines something like this:

........................................................
.........................................................

.........................................................
.........................................................

.........................................................
.........................................................

.........................................................
.........................................................

.........................................................
..................................................................

..................
...............

When I looked at them, I was sure that there must be a bug either inIDEAL or in the
TROFFprocessor that typeset theIDEAL output, because the long shafts of the arrows did
not properly bisect the angle made by the two short lines of the arrowheads. The shafts
seemed to be drawn one pixel too high or too low. Chris spent many hours together with
Brian Kernighan trying to find out what was wrong, but no errors could be pinned down.
Eventually his thesis was printed on a high-resolution phototypesetter, and the problem
became much less noticeable than it had been on the laser-printed proofs. There still
was a glitch, but I decided not to hold up Chris’s graduation for the sake of a misplaced
pixel.

I remembered this incident at the end of 1983, when I was getting ready to write a
new version of theMETAFONT system for digital art[3]. I didn’t want my system to
have such a flaw. But to my surprise, I learned that the problem is actually unavoidable
in raster output: It is almost impossible to bisect a digitized angle exactly, except in very
special circumstances. The two “halves” of the angle will necessarily appear somewhat
different from each other, unless the resolution is quite high. Therefore Van Wyk (and
Kernighan) were vindicated. Similar problems are bound to occur in MacDraw and in
any other drawing package.

For example, one of the things I noticed was the following curious fact. Consider the
45� angle that is made when a straight line segment of slope 2 comes up to a point
(x0, y0) and then goes down along another line of slope�3:
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(x0 + 2t , y0 � t) (x0 + u, y0 � 3u)

If we digitize this angular path, the result will take one of five different shapes, depending
on the value of the intersection point (x0, y0), whose coordinates are not necessarily
integers. The possibilities are

P0 : P1 : P2 : P3 : P4 :

If this 45� angle provides the left half of an arrowhead, the right half of the arrowhead
will be a 45� angle made by a line of slope�3 meeting a line of slope�1=2,
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(x1, y1)

(x1 + 2u, y1 � u)

(x1 + t , y1 � 3t)

For this angle there are, similarly, five possibilities after digitization, namely

Q0 : Q1 : Q2 : Q3 : Q4 :

To complete the arrowhead, we should match the left anglePi with an appropriateQj .
But none of theQ’s has the same shape as any of theP’s. And this is the point:
Human eyes tend to judge the magnitude of an angle by its appearance at the tip. By
this criterion, some of these angles appear to be quite a bit larger than others (except at
high resolutions). Hence it is not surprising that a correctly drawn angle of typeP would
appear to be unequal to a correctly drawn angle of typeQ, even though both angles
would really be 45� when drawn with infinite resolution. (The patterns of white pixels,
not black pixels, are the source of the inconsistency.) Here, for example, are four quite
properly digitized arrows with shafts of increasing thickness:
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We might also want to know the probability that the digitized shape will be of a
particular typePk , when the corner point (x0, y0) is chosen at random in the plane. Is
one of the patterns more likely to occur than the others? The answer is no, when we use
the most natural method of digitization; eachPk will be obtained with probability 1/5.
Similarly, each of the five shapesQk turns out to be equally likely, as (x1, y1) varies.

The main purpose of this note is to prove that the facts just stated are special cases of
a general phenomenon:
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Theorem. When a line of slope a=b meets a line of slope c=d at a point (x0, y0), the
number of different digital shapes it can produce as(x0, y0) varies isjad�bcj. Moreover,
each of these shapes is equally likely to occur, if(x0, y0) is chosen uniformly in the plane.

We assume thata=b andc=d are rational numbers in lowest terms. Two digitized shapes
are considered to be equal if they are identical after translation; rotation and reflection
are not allowed.

Before we can prove the theorem, we need to define exactly what it means to digitize
a curve. For this, we follow the general idea explained, for example, in Reference[3]
(Chapter 24). We consider the plane to be tiled with pixels, which are the unit squares
whose corners have integer coordinates. Our goal is to modify a given curve so that it
travels entirely on the boundaries between pixels. If the curve is given in parametric
form by the functionz(t) =

�
x(t), y(t)

�
as t varies, its digitization is essentially defined

by the formula

roundz(t) =
�
roundx(t), roundy(t)

�

as t varies, where round(�) is the integer nearest�.
We need to be careful, of course, when rounding values that are halfway between

integers, because round(�) is undefined in such cases. Let us assume for convenience
that the pathz(t) does not go through any pixel centers; i.e., thatz(t) is never equal to
(m + 1

2, n + 1
2) for integerm and n. (Exact hits on pixel centers occur with probability

zero, so they can be ignored in the theorem we wish to prove. An infinitesimal shift of
the path can be used to avoid pixel centers in general, therefore avoiding the ambiguities
pointed out in Bresenham’s interesting discussion[1]; but we need not deal with such
complications.) Under this assumption, whenever we havex(t) = m+1

2 so that ‘roundx(t)’
is ambiguous, the value of roundy(t) = n will be unambiguous, and we can include the
entire line segment from (m, n) to (m + 1,n) in the digitized path. Similarly, whent
reaches a value such that roundx(t) = m but roundy(t) = n or n + 1, we include the
entire segment from (m, n) to (m, n + 1). This convention defines the desired digitized
path, roundz(t).

When the pathz(t) returns to its starting point or begins and ends at infinity, without
intersecting itself, it defines a region in the plane. The corresponding digitized path,
round z(t), also defines a region; and this digitized region turns out to have a simple
characterization, when we apply standard mathematical conventions about “winding
numbers”:The pixel with corners at(m, n), (m + 1, n), (m, n+ 1), (m + 1, n + 1) belongs
to the digitized region defined byroundz(t) if and only if its center point(m + 1

2, n + 1
2)

belongs to the undigitized region defined by z(t). (This beautiful property of digital curves
is fairly easy to verify in simple cases, but a rigorous proof is difficult because it relies
ultimately on things like the Jordan Curve Theorem. The necessary details appear in an
appendix to John Hobby’s thesis[2], Theorem A.4.1.)

Now we are ready to begin proving the desired result. The region defined by an angle
at (x0, y0) with lines of slopesa=b andc=d can be characterized by the inequalities

a(x � x0)� b(y � y0) � 0 ; c(x � x0)� d(y � y0) � 0 :
�
We may need to reverse the signs, depending on which of the four regions defined by

two lines through (x0, y0) are assumed to be defined by the given angular path; this can
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be done by changing (a, b) to (�a, �b) and/or (c, d) to (�c, �d).
�

This region contains
the pixel with lower left corner (m, n) if and only if

a(m + 1
2 � x0)� b(n + 1

2 � y0) � 0 ; c(m + 1
2 � x0)� d(n + 1

2 � y0) � 0 :

We can simplify the notation by combining several constants, letting� = a(x0 �
1
2) �

b(y0 �
1
2) and� = c(x0 �

1
2)� d(y0 �

1
2):

am� bn � � ; cm� dn � � :

Let R(�,�) be the digitized region consisting of all integer pairs (m, n) satisfying this
condition; these are the pixels in the digitized angle corresponding to (x0, y0).

As noted above, it is safe to assume that the pixel centers do not exactly touch the
lines forming the angle; thus we are free to stipulate thatam� bn=/� and cm� dn=/�
for all pairs of integers (m, n). However, if equality does occur, we might as well define
the digitized regionR(�,�) by the general inequalitiesam� bn � � andcm� dn � �,
as stated, instead of treating this circumstance as a special case. Notice thatR(�,�) is
equal toR(d�e); therefore we can assume that� and � are integers, in the following
discussion.

Another corner point (x0

0, y0

0) will lead to parameters (�0,�0) defining another region
R(�0,�0) in the same way. The two regionsR(�,�) andR(�0,�0) have the same shape if
and only if one is a translation of the other; i.e.,R(�,�) � R(�0,�0) if and only if there
exist integers (k, l ) such that

(m, n) 2 R(�,�) () (m� k, n � l ) 2 R(�0,�0) :

Our main goal is to prove that the number of distinct region shapes, according to this
notion of equivalence, is exactlyjad� bcj.

Lemma. Let �, �, �0, �0 be integers. Then R(�,�) � R(�0,�0) with respect to slopes
a=b and c=d if and only if���0 = ka� lb and���0 = kc� ld for some integers(k, l).

Proof. Assume thatR(�,�) � R(�0,�0) with respect toa=b and c=d, and let (k, l ) be
the corresponding translation amounts. Thus we have�

am� bn � �

cm� dn � �

�
()

�
a(m� k)� b(n � l ) � �0

c(m� k)� d(n � l ) � �0

�

for all integer pairs (m, n). Let �00 = �0 + ka� lb and�00 = �0 + kc� ld , so that�
am� bn � �

cm� dn � �

�
()

�
am� bn � �00

cm� dn � �00

�

for all integers (m, n). This implies that� = �00 and� = �00. For if, say, we had� < �00,
we could find integersm and n such thatam� bn = � and cm� dn � �, becausea
and b are relatively prime; this would satisfy the inequalities on the left but not on the
right. (More precisely, we could use Euclid’s algorithm to find integersa0 and b0 such
that aa0 � bb0 = 1. Then the values (m, n) = (�a0 + bx, �b0 + ax) would satisfy the left
inequalities but not the right, for infinitely many integersx, becausead� bc=/ 0.)

Thus R(�,�) � R(�0,�0) implies that� � �0 = ka� lb and� � �0 = kc� ld . The
converse is trivial.
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Let k and l be integers such that� = ka � lb. The lemma tells us thatR(�,�) �
R(0,� � kc + ld ); hence every digitized regionR(�,�) has the same shape as some
digitized regionR(�0,�0) in which �0 = 0.

It remains to count the inequivalent regionsR(0,�) when� is an integer. According
to the lemma we haveR(0,�) � R(0,�0) if and only if there exist integers (k, l ) with
0 = ka� lb and� � �0 = kc� ld . But ka = lb if and only if k = bx and l = ax for some
integer x; hence the condition reduces to� � �0 = bxc� axd = x(bc� ad). In other
words,R(0,�) � R(0,�0) if and only if � � �0 is a multiple ofad� bc. The number of
inequivalent regions is thereforejad� bcj, as claimed.

To complete the proof of the theorem, we must also verify that each of the equivalence
classes is equally likely to be the class of the digitized angular region, when the
intersection point (x0, y0) is chosen at random in the plane. The notational change
from (x0, y0) to (�,�) maps equal areas into equal areas; so we want to prove that the
equivalence class ofR(�,�) is uniformly distributed among thejad� bcj possibilities,
when the real numbers (�,�) are chosen at random. Choosing real numbers (�,�) at
random leads to uniformly distributed pairs of integers (d�e, d�e). And if d�e has any
fixed value andd�e runs through all integers, the equivalence class ofR(�,�) runs
cyclically through alljad� bcj possibilities.

Q.E.D.

A close inspection of this proof shows that we can give explicit formulas for the sets
of intersection points (x0, y0) that produce equivalent shapes. LetD = jad� bcj and let
Rj denote the shape corresponding to regionR(0, j ) in the proof, where 0� j < D . Then
the digitized angle will have shapeRj if and only if (x0, y0) lies in the parallelogram
whose corners are

�
1
2 � bj=D , 1

2 � aj=D
�

plus�
(b� d)=D , (a � c)=D

�
, (�d=D , � c=D) , (b=D , a=D) , (0, 0) ,

or in a parallelogram obtained by shifting this one by an integer amount (m, n).
In the special casea=b = 2=1 andc=d = �3=1, the shapesRj are what we calledPj

above; in the special casea=b = 3=(�1) and c=d = �1=2, the Rj are what we
called Qj . The shapes that appear in the digitized angles depend on the values of
(x0 mod 1,y0 mod 1) in the unit square, according to the following diagrams:
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Notice that the parallelograms “wrap around” modulo 1, each taking up an area of 1/5.
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When the slope of either line forming an angle is irrational, the number of possible
shapes is infinite (indeed, uncountable). But we can still study such digitizations by
investigating the shape only in the immediate neighborhood of the intersection point;
after all, those pixels are the most critical for human perception. For example, exercises
24.7–9 ofTheMETAFONT book [3] discuss the proper way to adjust the vertices of an
equilateral triangle so that it will digitize well.

The moral of this story, assuming that stories ought to have a moral, is probably this:
If you want to bisect an angle in such a way that both halves of the bisected angle
are visually equivalent, then the line of bisection should be such that reflections about
this line always map pixels into pixels. Thus, the bisecting line should be horizontal
or vertical or at a 45� diagonal, and it should pass through pixel corners and/or pixel
centers. Furthermore, your line-rendering algorithm should produce symmetrical results
about the line of reflection (see Reference[1]).

This subject is clearly ripe for a good deal of further investigation.
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