
ELECTRONIC PUBLISHING, VOL. 3(2), 93–98 (MAY 1990)

On improving SGML

MICHAEL J. KAELBLING

Siemens AG, ZFE IS EA 11
Corporate Applied Computer Sciences
Otto-Hahn-Ring 6
8000 Munich 83, FRG

SUMMARY
Several improvements are suggested to the syntax of SGML, the recent international standard
for the description of electronic document types. These improvements ease processing by
existing tools, remove ambiguity cleanly, and increase human usability. They also indicate
some guidelines that should be followed in the design and specification of computer-
software standards. By following accepted computer-science conventions for the description
of languages the design of a standard may be improved, and the subsequent implementation
task simplified.

KEY WORDS Ambiguity LALR(1) Grammars Language Definitions Parsing SGML Standards

INTRODUCTION

The Standard Generalized Markup Language (SGML) is an international standard for
the description of document types. Since its adoption in 1986 by the International
Organization for Standardization (ISO) as ISO 8879[1], SGML has become the fastest-
selling standard in ISO history[2]. It is used by industry in production systems[3, 4], and
it is used by academic and industrial research efforts as a basis for developing systems
[5, 6]. SGML is a valid subject for analysis by computer scientists because: it is intended
for computer-based processing, it is used in industry and academia, and it is increasingly
popular. Furthermore, observations made on improving the SGML standard can serve as
useful guides to the creation of other standards.

In this paper, changes will be suggested for improving the technical quality of SGML’s
specification. As the grammar describing SGML has over 200 productions and many
pages of explanation, elaboration and clarification, it is inappropriate to present a detailed
description here. Therefore the interested reader is referred to the standard itself for a de-
tailed description of SGML. The complete description, however, is not necessary for an
understanding of the points to be made—instead, we will use simplified descriptions and
excerpts from the standard. It will be shown that some of the standard’s features make the
document types it describes difficult to process with existing tools, or unnecessarily re-
strictive of a user’s options; improvements will be suggested to overcome these problems.
We will discuss how the SGML specification may be changed to allow for processing
by existing tools, for clean removal of ambiguity, and for increased human usability.

IMPROVING THE SYNTAX OF THE STANDARD

Since SGML is a language intended for computer-based systems, it is reasonable (in

0894–3982/90/02093–06$5.00 Received 16 March 1988
c
1990 by John Wiley & Sons, Ltd. Revised 18 May 1990

© 1998 by University of Nottingham.

94 MICHAEL J. KAELBLING

the absence of convincing argument to the contrary) that it should follow established
conventions within the realm of computer science. By following accepted methods
of notation and structural configuration, languages can be processed by existing tools
following well-understood theories and techniques, thus offering considerable savings
to development efforts. These savings are realized by automatically performing tedious,
error-prone calculations correctly and by checking and clarifying the formal descriptions
of the languages.

Parsing, the process of recognizing languages, is a major concern of computer science,
and has been the subject of considerable study[7]. There are several common techniques
of parsing, each with known properties and limitations. Some of these techniques are
so well established that programs exist that can automatically generate parsers for
conforming language descriptions. The use of these parser generators, or compiler-
compilers, goes a long way to ensuring the rapid production of reliable, efficient parsers.
Furthermore, the theoretical underpinnings of parsing serve to identify ambiguity that
must be removed from a language description.

It is not within the purview of this paper to painstakingly examine and report on
the entire SGML specification, but a discussion of several major points should give the
reader a feeling for the whole. Therefore, some observations will be made on easing the
processing of the grammar by existing tools, and a brief discussion will follow on how
to further improve a part of the specification syntax dealing with SGML attributes.

Use an established model and process with existing tools

Although the standard specifies a grammar that is not LALR(1),1 we believe it is both
possible and advantageous to specify SGML with an LALR(1) grammar. In addition to
our own experience, the success of the Amsterdam SGML parser[8], which is based
on the less powerful LL(1) technique, indicates that an LALR(1) grammar for SGML
is possible. By specifying SGML as an LALR(1) grammar, developers would reap the
time-saving, reliability and design benefits associated with the use of existing tools for
the processing of such grammars. We will now discuss how the SGML syntax can be
changed to allow for processing by existing tools.

The processing of a string begins with lexical analysis. The current convention is to
enable the lexical analyzer (scanner) to return tokens without concern for left- or right-
context. SGML has characteristics that make this direct2, approach difficult. For example,
SGML has overlapping token classes: ‘1130’ can be either a ‘number’, or a ‘number-
token’, or a ‘name-token’, depending on the context. Some scanner generators (like Lex
[9]) can, with added effort, produce indirect lexical analyzers; others (like GLA[10])
cannot. Processing of strings continues with syntactic analysis. There are several general-
purpose tools that generate syntactic analyzers (parsers). Yacc[11], perhaps the most
commonly available generator, and others, like Xerox’s PGS[12], generate LALR(1)
analyzers.

1 LALR(1) is the name of a parsing technique that uses a single look-ahead to guide a left-to-right parse of
a string. This technique is a compromise between the power of full LR(1) parsing, and the desire to limit the
size of a parser.
2 Using the terminology of[7], a direct lexical analyzer is told where to look for the next token; anindirect
lexical analyzer must also be told what type of token to look for next.

ON IMPROVING SGML 95

SGML, as currently specified and amended[13], cannot be parsed by LALR(1)
techniques. SGML is specified in a type of extended Backus–Naur form that can readily
be converted to standard Backus–Naur form (BNF)[14]. After a mechanistic conversion
to BNF, we attempted to use Yacc to generate an LALR(1) analyzer for SGML, and
were warned of hundreds of conflicts.3

We took the grammar as specified, and rewrote it as an LALR(1) grammar by defining
non-overlapping token classes and simplifying the production rules. Our version has 19
shift/reduce conflicts (for which the Yacc default of shifting is the correct choice) and
zero reduce/reduce conflicts. This rewrite allowed Yacc to produce a parser for SGML
specifications.

name group =grpo, ts�, name,(ts�, connector, ts�, name)�, ts�, grpc

Figure 1. A sample SGML rule containing separators

The main problem with the ISO standard’s specification of the grammar is the role and
placement of separators. The separators, which the standard says are to be ignored, are
written into the very productions that are to ignore them.Figure 1is a sample SGML rule
containing separators. Thets’s are the separators; the commas indicate concatenation, and
the asterisks indicate zero-or-more instances. The presence of separators in the rule causes
a problem for single-look-ahead parsers. Consider the following string (the separators are
explicitly indicated): ‘grpo name1 ts | ts name2 ts grpc’. When the parser considers
‘name2’ it does not know if it should continue accepting names. It asks for a look-ahead,
but unfortunately this look-ahead does not resolve the dilemma. Thets-token the parser
gets as its single look-ahead could either precede a connector and another name, or it
could precede thegrpc. A parser would require a second look-ahead (or possibly more)
to correctly continue.

name group =grpo, ts�, name, ts�, (connector, ts�, name, ts�)�, grpc
— or —

name group =grpo, name,(connector, name)�, grpc

Figure 2. Improved versions of the rule inFigure 1.

Two ways to avoid this difficulty are shown inFigure 2. The rule at the top of the figure
has been written in a way that leaves the language unchanged, but allows for LALR(1)
parsing. The rule at the bottom of the figure will also accept the same language, if the
lexical analyzer is allowed to expand thets separators and skip over the whitespace.
This latter approach has the advantage of reducing the size of the parser that accepts the
language, and increasing its speed.

3 A conflict occurs when the analyzer generator must arbitrarily decide what action to take in an ambiguous
situation. A shift/reduce conflict occurs when a choice must be made between continuing with a production rule,
or accepting a different rule. A reduce/reduce conflict occurs when a choice must be made between several
equally acceptable rules. We were warned of over 500 shift/reduce conflicts, and over 600 reduce/reduce
conflicts for a grammar with 555 rules.

96 MICHAEL J. KAELBLING

Remove ambiguity cleanly

In addition to being difficult to process, the grammar of the SGML specification is
ambiguous.Figure 3 is a simplified model of the ambiguous, SGML syntax for an
attribute list. The simplifications serve to highlight the problem of ambiguity, and in no
way contribute to it. A brief examination of this syntax will make the problem apparent:
in a list of names, the attribute names cannot be syntactically distinguished from the
attribute values. In this section we will see how simple modifications to SGML can
cleanly remove ambiguity and increase human usability.

rule 1a <attr list> ::= <attr list> <attr spec>

rule 1b | empty
rule 2a <attr spec> ::= <name> = <name list>

rule 2b | <name>

rule 3a <name list> ::= <name list> <name>

rule 3b | <name>

Figure 3. A simplified BNF version of the SGML standard’s grammar for attribute lists

The SGML standard attempts to offer relief from this dilemma by requiring thatrule
2b can only be used when the name is one of an enumerated type. A further prohibition
insures that the name is valid for only one of the attributes for a given tag, i.e., no two
enumerated types have the same items. For example, if ‘memo’ is a tag with an attribute
‘status’ that can be either ‘draft’ or ‘ final’, then a second enumerated-type attribute,
say ‘notice’, cannot use either of those words. One could not say that ‘notice’ can
be either ‘first’, ‘ second’, or ‘final’ since ‘final’ is reserved for ‘status’; one
would have to substitute a word like ‘last’. Such a restriction on vocabulary conflicts
with human usability since it is possible that unusual or unnatural words will have to be
substituted for familiar words.

Furthermore, the steps taken by SGML to avoid ambiguity are not sufficient. Assume
that the ‘memo’ tag has a third attribute, ‘keywords’, of type ‘list-of-names’ (which is
not an enumerated type). Now, consider the string ‘<memo keywords = ISO first

draft>’. Is ‘first’ a keyword, or is it implying ‘notice = first’? Is ‘draft’
a keyword, or is it implying ‘status = draft’? Ambiguities of this type are not
addressed by the standard. One solution would be to forbid the use of reserved words in
the ‘keywords’ list, but such a solution is awkward and, again, counter to the goal of
human usability. SGML allows the use of attribute value literals to disambiguate such
strings, but the standard does not indicate what action to take should an author with
imperfect knowledge of all attributes and reserved words neglect to disambiguate such
strings. Furthermore, it is undesirable to burden an author with a task that is otherwise
easily accommodated.

A solution to the ambiguity problem is proposed here to demonstrate how simple
modifications in the syntactic and semantic specification of SGML can greatly enhance
automatic processing and human usability. First, allowrule 2b only when it is
unambiguous which attribute takes that value. This would allow for the reuse of natural
words. Second, respecify the syntax for attribute lists along the lines of the grammar rule
shown in Figure 4. The slight change at the end ofrule 1a0 makes a huge difference

ON IMPROVING SGML 97

in removing ambiguity from the language for attributes, and it allows lists to contain
whatever words one chooses. For example, the string ‘<memo keywords = ISO first;

draft; >’ is easily parsed.

rule 1a0 <attr list> ::= <attr list> <attr spec> ;

Figure 4. An improved grammar rule for attribute lists

CONCLUDING REMARKS

The specification of a standard should reflect the state of the art. To this end, the grammar
specifying SGML should be rewritten to allow for automatic processing by common tools
and techniques. Processing by existing and generic tools will lead to correct and efficient
implementations produced with a minimum of effort. Had automatic tools been used
to process the initial specification of SGML, unnecessary ambiguities would have been
more readily discovered.

To avoid the problems of unreachable productions, undefined productions, and
ambiguity, the next edition of the SGML standard should be verified by applying known
tests and techniques. Such testing is not burdensome given the availability of tools
that perform these functions. This advice applies as well to all standards intended for
computer-based processing.

ACKNOWLEDGEMENTS

This work was supported, in part, by the Applied Information Technology Research
Center, and by an equipment grant from Xerox Corporation to the Chameleon research
group at The Ohio State University. Thanks go also to Frank Glandorf and to R. Hayter
for careful readings of a preliminary version of this paper.

A special acknowledgement goes to A. E. K. Sobel, Ph.D.

REFERENCES

1. Information Processing—Text and Office Systems—Standard Generalized Markup
Language (SGML), ISO 8879-1986 (E), 1st edn., International Organization for
Standardization, October 1986.

2. J. M. Smith, ‘SGML Update III’,SGML Users’ Group Bulletin, 2 (1) 48–49 (1987), National
Computer Centre, Oxford Road, Manchester M1 7ED, United Kingdom.

3. Standard for Electronic Manuscript Preparation and Markup, Association of American
Publishers, Washington, DC, 1986.

4. Special Issue devoted to the Association of American Publishers’ Electronic Manuscript
Standard,Electronic Publishing Business, 4 (8), 1–32 (1986).

5. D. D. Chamberlin, H. F. Hasselmeier and D. P. Paris, ‘Defining Document Styles for
WYSIWYG Processing’, Proceedings of International Conference on Electronic Publishing
(EP88) Nice 1988 ed. J. C. van Vliet, pp. 121–137.

6. S. A. Mamrak, M. J. Kaelbling, C. K. Nicholas and M. Share, ‘A Software Architecture for
Supporting the Exchange of Electronic Manuscripts’,Communications of the ACM, 30 (6),
408–414 (1987).

98 MICHAEL J. KAELBLING

7. A. V. Aho and J. D. Ullman,The Theory of Parsing, Translation, and Compiling, Prentice-Hall,
Inc., 1972.

8. J. Warmer and S. vanEgmond, ‘The Implementation of the Amsterdam SGML Parser’,
Electronic Publishing—Origination, Dissemination and Design, 2 (2), 65–90 (1989).

9. M. E. Lesk and E. Schmidt, ‘Lex: A Lexical Analyzer Generator’, Technical Report CSTR#39,
Bell Laboratories, October 1975.

10. V. P. Heuring, ‘Compiler Construction: The Automatic Generation of Fast Lexical Analyzers’,
Technical Report SEG-85-1, University of Colorado, 1985.

11. S. C. Johnson, ‘Yacc: Yet Another Compiler Compiler’, Technical Report CSTR#32, Bell
Laboratories, 1975.

12. XDE User Guide, Appendix D: Parser Generator System, Xerox Corporation, 1986.
13. Information Processing—Text and Office Systems—SGML Amendment 1 (Final Text with Ballot

Comments Resolved), ISO 8879-1986 (E) Amendment 1, International Organization for
Standardization.

14. P. Naur (ed.), ‘Report on the algorithmic language ALGOL 60’,Communications of the ACM,
3 (5), 299–314 (1960).

	SUMMARY
	INTRODUCTION
	IMPROVING THE SYNTAX OF THE STANDARD
	Use an established model and process with existing tools
	Remove ambiguity cleanly

	CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

