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SUMMARY
The work presented here concerns a document processing model accounting for aspects of an
activity which is usually called formatting. The core of the model, an experimental formatting
language called FFL, is the central topic.

FFL is a purely functional language in the style of FP and the applicative part of APL.
Sequences, characters, and so-called boxes constitute the data types and among the build-in
primitives are functions for aligning/spacing, breaking etc. Emphasis is put on presenting the
language and exemplifying its use.

Also considered are issues in type checking of formatting function definitions and techniques
for doing incremental formatting with FFL formatting functions.

FFL is currently being implemented by the BENEDICK project group led by the author.

KEY WORDS Text formatting Document processing models Functional programming Special-purpose
languages

1 INTRODUCTION

An important stage in the development of a document preparation system is the design of a
document processing model including a precise definition of the notion(s) of document and
the kinds of processing considered. The creation of such a model may be a valuable mental
design tool because it helps in identifying important design issues and provides a way of
recording the design decisions made. If the model is sufficiently precise and sufficiently
abstract, i.e., close to the concepts of the application domain and free from unnecessary
implementation detail, it may in addition serve as the user’s model of the system.

A classical example illustrating these points is the work by Knuth and Plass[1,2] on the
boxes/glue model of document components and the model of paragraph breaking viewed as
an optimization problem. The following informal—and incomplete—description of their
models is intended for readers who are unfamiliar with the work:

White space, e.g. between words, is modeled by so-called glue glops, each
with a given normal length, a stretchability, and a shrinkability. In addition,
each glue glop has an actual length which may differ from the normal length
if the glop has been stretched or shrunk. Boxes are used to model rectangular,
indivisible pieces of type such as a character from some font, a logo, or a
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mathematical formula. A sequence of box and glue items may besetin a new
box of a given length by adjusting the length of the sequence so it precisely
fits the box. The length adjustment is achieved by stretching or shrinking the
individual glue glops proportionally to their stretchability/shrinkability.

In connection with the adjustment of glue, a notion ofwork1 may be
defined. Without going into details, the idea is: (1) the less flexible a glue
is, the more work is required to adjust it; and (2) the further a glue must be
stretched/shrunk, the more work it takes to do it.

Modeling a paragraph as a sequence of boxes and glue glops, paragraph
breaking can be viewed as a task of: (1) breaking the sequence into subse-
quences, and (2) settingeach of the subsequences in a box of the desired
line width. The details of where to break the sequence can then be specified
indirectly by requiring that the total amount of work involved in doing the
breaking must be minimal.

Usually, more control is wanted concerning where to end one line of a
paragraph and begin another. For this purpose, a third kind of items, called
penalty specifications, may be inserted in a sequence of boxes and glue glops.
One may think of a penalty specification as reinforcing or weakening the spot
where it occurs, thus affecting the amount of work necessary to divide the
sequence at that point.

Among other things, the papers cited demonstrate how a model can provide a good
basis for discussing questions about system functionality as seen from the user’s point of
view. That the model of paragraph breaking, moreover, is a valuable basis for understanding
the complicated algorithm implemented is beyond question. Thirdly, it is most likely that
the renowned algorithm would never have been developed, had it not been preceded by the
invention of the model.

The trade-offs between functionality and efficiency of implementations may also be
clarified by creating and analyzing document processing models. This is clearly illustrated
in Plass’s Ph.D. thesis[3] on optimal pagination techniques. In investigating abstract,
mathematical models of page breaking viewed as an optimization problem, it is here shown
how the choice of optimization measure seriously affects the computational complexity of
the possible implementations.

The works referred to above demonstrate the versatility of clearly defined models
for capturing fundamental design ideas and for documenting design decisions and their
implications—both with respect to functionality and implementability. However, experi-
ence, e.g. with the ISO/ODA model[4,5], has also shown that obtaining sufficient clarity
in document processing models is not always easy.

1.1 General modeling principles

One of the keys to the successful development of a model is the use of abstraction followed
by stepwise refinement. By abstracting from unnecessary implementation detail, e.g.
concerning the concrete representation of data types, one often gains clarity as in the case

1 Knuth and Plass call it badness instead of work.
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of the boxes/glue model. Here, the essential functional properties of a rather complicated
paragraph breaking algorithm are easily described by use of suitable metaphors and a
measure for modeling the quality of paragraph breaks (the notion of work mentioned
above).

By viewing the paragraph breaking algorithm and the choice of concrete data structures
as steps toward an implementation, an important separation of concerns is obtained. The
abstract model describeswhat to do whereas the algorithm and data structures describe
howto do it.

Restricting the attention to well-delimited subproblems of the systems design is another
useful approach which is well exemplified by the boxes/glue model. Making one huge,
monolithic model,accounting for all the functionality of a typesetting system like TEX,
might be worth while but there is no doubt that smaller models focusing on limited design
issues, such as the boxes/glue model, are far more comprehensible. (The boxes/glue model
is implemented as a part of TEX [6].)

For general references to the use of abstraction and stepwise refinement in the modeling
of software systems, see, for example, the work by Bjørner and Jones[7,8].

1.2 The problem domain

The work presented here concerns a document processing model accounting for aspects
of an activity in document production which is usually calledformatting. This and other
basic notions are briefly reviewed in the following.

The production of a document can be viewed as a three-step process: editing followed
by formatting and viewing as illustrated inFigure 1. The editing has the purpose of creating
a logical view of the document by recording its logical structure, i.e. the hierarchical
breakdown intological entitiessuch as chapters, sections, paragraphs, etc. with characters
at the lowest level.

The formatting comprisesrestructuringactivities such as the breaking of paragraphs
into lines andrenderingactivities such as selecting character fonts and ensuring proper
spacing and alignment. The resultingphysical viewof the document exhibits a structure
almost similar to the logical one. Somephysical entities, such as the ones named ‘word’
correspond to the logical entities with the same name, or fractions of these if they are
broken. There are, however, also physical entities like ‘line’ which do not correspond to
any logical entity. In addition to the structure, the physical view also includes the rendering
information necessary to determine the exact physical appearance of the document.

With this distinction between the logical and physical view, the task of creating the
logical structure and contents of a document can, to a largeextent,2 be separated from
the task of designing the document’s physical layout. Usually, the physical layout is then
described, in general, for a whole class of documents by specifying how the different types
of logical entities are to be formatted, i.e. how they are to be mapped to corresponding
physical entities. Such general descriptions are usually calleddocument stylesor generic
documents.
2 In a discussion with the author, David M. Levy has pointed out that physical characteristics, such as the column

width, may influence the writing style. In the context of narrow columns, shorter paragraphs may be desirable
in order to limit the physical extent of the paragraphs.
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Figure 1. Differentphases and document views in document production
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Note that the logical and physical structures outlined inFigure 1are just examples.
Different classes of documents usually require different structures and different kinds of
entities.

Based on the physical view, it is possible to derive other representations of the
document’s appearance such as a program in a page description language like PostScript[9],
or a set of raster graphics pictures: one for each page. This changing of representation,
which is called the viewing, allows the document to be printed on paper or displayed on a
screen.

In integrated editing/formatting/viewing systems based on the WYSIWYG principle
(What You See Is What You Get), the resulting document is presented on a screen just like
it would appear on paper and the presentation is revised simultaneously with the editing. In
such systems, the formatting and viewing must be very efficient in order to keep up with the
editing. One of the objectives of the work presented here is to develop a processing model
which allows integrated editing/formatting/viewing implementations with the necessary
efficiency.

1.3 Model overview

Focusing on formatting, the question of how to model the logical and physical document
views and the mapping from one to the other become the central topics. The approach taken
here involves the definition of aformatting languagewhich can be used by document style
designers for defining how different classes of documents with different logical structures
should be formatted.

One of the basic ideas of the approach is to model the logical view of a document by an
expressionin the formatting language. This is illustrated inFigure 2where logical entity
types, such as ‘word’, ‘paragraph’ etc., are viewed as function names. In the notation used,
angle brackets enclose sequences and juxtaposition denotes functionapplication.3 As an
example, the expression:

wordhT,h,e,s,ei

denotes the application of a function named ‘word’ to a sequence of 5 characters.
Given a set of function definitions, one for each kind of logical entity considered, the

formatting is then modeled by theevaluationof the expression. The result of the evaluation
should, therefore, be avalueof some type appropriate for modeling the physical view of
documents. It turns out that a notion of boxes, resembling the one introduced by Knuth
and Plass can be used for that purpose.

Notice, that the above modeling of the logical view of documents is more permissive
than necessary. Often it is possible and desirable to place restrictions on how the different
kinds of logical entities may be embedded withineach other. As discussed later, we (like
many others) impose such restrictions by writinggrammarsfor the different classes of
documents considered. The logical view of a document in a given class must then conform
with the grammar for that class.

Also notice that, with this basic model, the formatting of logical entities iscontext
independent: for example, the formatting of a paragraph is if the same no matter whether it

3 Parentheses may be inserted to resolve ambiguity or improve readability.
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Figure 2. General view of a formatting model

occurs in a chapter, or perhaps in an abstract or a quotation. To allow for different formatting,
different kinds of logical entities must be used, for example, paragraph-in-chapter and
paragraph-in-abstract.

As discussed in work by Johnson and Beach[10], there are disadvantages to this
requirement of context independence. Mainly, it does not support very well the introduction
of changes to a document or changes to the way it should be formatted. For instance,
wanting to move a paragraph, one may have to change it into a different kind of logical
entity. Wanting to introduce a context-dependent difference in the formatting of a certain
kind of entity, one must, in all contexts except one, change the entities of that kind into a
new kind.

It turns out, however, that the handling of most context dependencies can be totally
separated from the basic formatting. For example, one could envision a preformatting
activity, changing paragraph entities into paragraph-in-X entities depending on the context.
We will therefore in the following concentrate on the basic, context-independent formatting
but our approach to handling context dependencies is briefly touched upon at the end of
Section 5. Here it is outlined how the notion ofattributed grammarsmay be combined
with our basic formatting model in order to deal with context dependencies.

1.4 Contents overview

Following this introduction,some general design considerations regarding a new formatting
language called FFL are presented. After this follows a section introducing and discussing
a notion of boxes which constitutes the primary data type in the new language. Basic
functions over boxes are then introduced and it is considered how to compose these in
order to solve different formatting problems.
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The subsequent sections deal with issues in the development of a document formatting
system based on FFL. Among the problems considered is type checking of formatting
function definitions in FFL, and incrementaltechniques4 for implementing the language so
it becomes efficient enough to be used with integrated editing/formatting/viewing systems.

The elements of FFL presented here are not sufficient for handling a number of
interesting formatting problems, for instance the placement of floating figures and footnotes.
Moreover,astraightforward,naive implementation will not givean acceptableperformance.
A number of language extensions and implementation techniques are therefore being
considered by the BENEDICK project group; some of these are outlined in a section on
further work.

2 GENERAL DESIGN CONSIDERATIONS

There are many important issues to be dealt with in the design of a document formatting
language; in this section we will present some of the more general considerations which
underlie the Functional Formatting Language FFL.

Distinguishing the logical view of a document from the physical view has become
a well established principle which is supported in various degrees by a number of pure
document formatting systems as well as integrated editing/formatting/viewing systems.
See, for example, the collection of papers edited by Andr´e, Furuta and Quint[11]. For
a survey of document formatting systems, concepts and issues, see the work by Furuta,
Scofield and Shaw[12].

The use of such systems is often based onpredefineddocument styles. However,
especially in scientific and technical writing, it is the experience that in many cases the
predefined styles must be modified before the desired physical layout can be obtained.
The modifications typically involve redefinition of the way certain logical entities are
formatted, but may also require introduction of new types of logical entities which are to
be formatted in a specific way.

With current approaches, the frequent need for new or differently formatted entities
presents a serious problem. It is typical, that either there are too many limitations on
the kind of formatting which can be prescribed, or else the formatting prescriptions are
very difficult to write and comprehend. Referring to the previously defined subdivision
of the formatting activity into restructuring and rendering, it is typical that the formatting
languages used with integrated editing/formatting/viewing systems are almost exclusively
oriented towards rendering. On the other hand, the existing pure formatting systems are
typically based on rather powerful, but low level, procedural formatting languages only
suitable for specialist programmers.

Fundamental to the approach presented here is the hypothesis that a properly designed
document formatting language can be a very useful tool—also for semi-professional users
such as authors and secretaries who do not have document style design as a primary task.
When a formatting language for these users is being designed, it is important that the
language constructs are oriented towards the problem domain, i.e. document structure
and layout, and at the same time the language should be powerful enough to express

4 As with incremental compilers, it is not necessary to redo all the processing (formatting), after a change in the
input; often it is possible to reuse parts of the previously obtained results.
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both restructuring and rendering tasks. As a third requirement, it should be possible to
implement the language in an integrated editing/formatting/viewing system.

Considering the intended users, it is also worth noticing that, typically, they are not
computer professionals with a background in programming and debugging of run-time
errors. It is therefore rather important that the formatting language is designed soall
inconsistent uses are automatically detectable by a static analysis. In other words, having
used the language to define a document style for a class of documents, it should be possible
to type check the definition thoroughly enough to ensure that no run-time errors will occur
during the actual formatting of a specific document.

In general, computer language designs are also influenced by technical limitations
relating to efficiency of the implementations. This is also the case for formatting languages,
especially those intended for use with integrated editing/formatting/viewing systems. It is
the experience from existing systems that the expressive power of the formatting language
must be restricted in some way in order to ensure the necessary efficiency of the formatting
process. Presumably, there are many ways to impose such restrictions, e.g. by only
supporting very limited restructuring capabilities like in many existing editing/formatting
systems. With theincremental formatting techniqueconsidered in this work (Section 6),
the restrictions find expression in the requirement that the mapping from the logical to the
physical document view must always beinvertible.

As will appear from the following sections, the requirement of invertibility has
influenced the language design very much. In order to ensure invertibility, the language is
based on special-purpose primitives with restricted expressive power. As an implication
of this design decision, the language is not complete in the sense of being able to describe
all possible mappings from the logical to the physical document view. It is, however, our
belief that the language with suitable, special-purpose extensions will be sufficient for
handling most document formatting problems.

3 BOXES

A characteristic of our formatting model is its foundation on language theoretic notions
(seeFigure 2on page 8). The core of the model, a formatting language named FFL, must
be defined so its expressions can represent the logical view of documents and its values
are adequate for representing the physical view. Considering first the values, these should
be expressive enough that the precise placement of all characters in a document can be
described.

If this was the only requirement, values could be sets of coordinate/character pairs.
With 3-dimensional coordinates, one of the dimensions could be used for distinguishing
between pages. However, wanting to support typographical problem solving, such a model
based on absolute positions might not be the best choice.Relativeproperties, such as
alignment of document components and space between components are better suited for
this purpose because they focus on theintentionof the typographer, not the details of how
this intention is realized.

The same argument may be repeated when considering the modeling of space: a notion
of white space with fixed sizes is sufficient for describing the results, but it cannot be
used for describing intentions regarding relationships between the sizes of different spaces.
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Consider, for example, the justification of lines in a paragraph where it is the intention that
the size of the spaces on each line should be adjusted to make all lines have the same width.
Moreover, the spaces between words on the same line should have equal size, whereas the
spaces between sentences should be larger. Here it is not convenient to define the space
sizes explicitly since they depend on, for example, the sizes of the words and the desired
line width.

As described in the introduction, a notion of glue glops is used for modeling white
space in the boxes/glue model by Knuth and Plass. In fact, this notion of glue, with its
stretchability and shrinkability properties, allows for specification of the size relationships
discussed above; this isaccomplished by simply letting the glue between sentences be
wider and more stretchable than the glue between words.

The values used in FFL for representing the physical view of documents are called
FFL boxes or just boxes. In some aspects, they resemble Knuth’s box concept but there are
also significant differences, some of which will be discussed later. In our definition, a box
embeds a sequence of components which are either characters or other boxes. Moreover, a
box has a number of primary properties:

Direction An indication of the dimension in which the components should be aligned:
horizontal, vertical or depth; and orientation: positive or negative. The positive
orientation in each dimension is defined inFigure 3, which illustrates how boxes
representing pages could be aligned in thedepth dimension to forma box representing
the whole document. The upper, leftmost, foremost corner of a box or character is
called itsorigin whereas the diametrically opposite corner is called itsextreme.

Gluing A description of spaces used when composing the box components in the given
direction. Three kinds of spacing may be described: one to be used before the first
box component, another to be used after the last component, and a third to be used
between neighboring components. The spaces are described using the notion of glue
introduced above, with a normal length, a stretchability, a shrinkability, and an actual
length. Omitting the description of one of the three kinds of spacing means that
non-adjustable glue with length zero should be applied at the place in question.

Reference point descriptionsOne or more descriptions of named, user-defined reference
points for the box. The descriptions may refer to the reference points, origin and
extreme of the first and last component. In addition, the extreme and the already
specified reference points of the box itself may be used. All the points in question
are measured relative to the origin of the box itself; when viewed as vectors, they

�
��
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?

horizontal

vertical

depth

First

page

A AU
origin
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Figure 3. Composition of boxes representingpages
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may be combined by vector addition, scalar multiplication, and vertical, horizontal,
and depth projection.

Alignment A specification of how adjacent box components should be aligned when
placed in the given direction with the given spacing. In general, it is possible to
specify that each pair of adjacent componentsc1 and c2 should be aligned with
respect to a givenc1 reference point and a givenc2 reference point.

In the following section, functions for creating boxes are considered and in this connection
a syntax for expressing the above-mentioned box properties is introduced.

An example of the use of two reference points for each box is presented inFigure 4
where the two kinds of reference points are visualized as- and � (coinciding points
are shown as� - ). The box shown represents an entry in a table of contents, the three
components constituting respectively the chapter number, title, and page number. In this
example, the title occupies two lines; they are shown as dashed boxes and their reference
points are not shown but the two reference points of the box containing the whole title are
situated on the base lines of the two parts, respectively. Now, by specifying the alignment
to be such that- of each component is aligned with� of the following component, the
chapter number will be aligned with the first title line and the page number with the last.

Characters are assumed to have a reference point called ‘ref’ centered on the baseline.
During the creation of boxes, their reference points must be defined so they can be used
later to obtain the desired alignment.

Besides the above-mentioned primary properties, a box has two derived properties:
its size and appearance. The size of a box is the size of its aligned and spaced sequence
of components; similarly for the appearance. In the following, we shall use a number
of different terms when discussing sizes: length is used for the size in an unspecified
dimension; width, height, and depth are used for the size in the horizontal, vertical, and
depth dimension respectively.

One of the differences between Knuth’s box notion and the one used here regards
the rôle of boxes in the formatting activity. In Knuth’s model, a box is an unbreakable
unit which, from a formatting point of view, only can be used as a building block in the
construction of other boxes. As discussed in the following section on formatting functions,
we consider boxes in general to be breakable; it will therefore in all practical applications
be necessary to have further properties assigned to boxes, describing the more detailed
rules (e.g. hyphenation rules) and preferences regarding their possible breaking. Such
attributes can be defined but we will not go into the details here.

Other notable differences concern the dimensions and reference points. With multiple
reference points, the combined top/bottom alignment illustrated inFigure 4 is easily

� --

� - �

Figure 4. Alignment of three box components
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specified. Knuth’s boxes have only one reference point so he cannot obtain the desired
alignment of the three boxes in the same straightforward manner.

Regarding dimensions, we use the depth dimension for placing the different pages of a
document, whereas Knuth uses a sequence of two-dimensional boxes,each representing a
page. The space of pagesis discrete so using sequences may look like the natural choice;
there are, however, formatting problems where alignment in the depth dimension is of major
importance, for example, in connection with the preparation of overhead transparencies to
be overlaid. Therefore, we propose the three-dimensional box model, however with the
requirement that the three spacing descriptions are omitted when boxes are laid out in the
depth dimension.

4 FORMATTING FUNCTIONS

In this section, we will consider a number of formatting primitives and some ways of
combining these in order to define the formatting of different kinds of logical entities.

It is today widely accepted among programming language researchers that a clear,
compositionalsemantics5 is instrumental in understanding and using a language. One
way of achieving this is by strictly adhering to a pure, applicative style, refraining from
procedurality and side-effects. Taking this functional approach, it turns out convenient
to adapt a combinator style similar to programming languages such as FP[13] and (the
non-procedural part of) APL[14]. However, in contrast to the high number of combinators
found in these languages, we will only consider two, one of which is the ordinary function
composition.

4.1 Laying out

Given a sequence of characters or boxes representing, for example, words, lines, or whole
pages, a sensible operationwould be to embed these components in a box, thereby: (1) fixing
the direction in which the components should be aligned; (2) determining which reference
points should be used when aligning the components; and (3) optionally specifying the
glue to be used before the first, after the last, and between all the components. For this
purpose, theLayout family of functions is introduced. Besides the direction, alignment,
and glue specifications, eachLayout function is characterized by a specification of the
user-defined reference points of the resulting box. As an example, consider the following
definition of a function for formatting words:

word =Layout[dimension = horizontal
orientation = positive
alignment = refwith ref
glue: between =inter-char-glue
reference: ref = ref(first) ]

Using this function, the characters of a word will be aligned horizontally by their ‘ref’
reference points with a certain kind of glue in between. In many cases, it will be
appropriate to have non-adjustable, zero width glue at this place but in special documents

5 With such a semantics, the meaning of a composite expression is an easily understood composition of the
meanings of the expression components.
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such as newspapers some stretchability might be desired. We abstract from this choice by
introducing the symbolic constantinter-char-gluewhich at this point is left unspecified.

The reference point ‘ref’ of the word is in this example coinciding with that of the first
character. Alternatively, it could have been set to the horizontal center on the baseline of
the word, which may be expressed as:

vertical(ref(first)) + 0:5 horizontal(extreme)

Note that a vertical projection yields a vector with the two other dimensions set to zero
and vice versa for the horizontal and depth projections. The above expression is therefore
a sum of vectors—not a sum of scalars.

Reconsidering the primary properties of boxes, the reader may have wondered why
reference pointdescriptionswere included rather than just reference points. The motive
for this is to retain the intentional descriptions, i.e. the expressions defining the reference
points, rather than the vectors which they denote. By saving the expressions together with
the box they may later be reused, for example, for defining the reference points of the box
after it has been stretched or shrunk.

4.2 Breaking and adjusting boxes

Having laid out words as specified above, let us consider larger units such as sentence
fragments (e.g. separated by commas), sentences (e.g. ended by full stops), and paragraphs.
These may all be laid out in a similar manner, but with increasing amounts of space
between their components. The result of doing this will be a rather wide box which should
be broken into appropriately sized pieces representing lines.

For the purpose of handling this and similar situations, a family ofBreak functions is
introduced. Given a desired length, the functions use Knuth’s optimization technique for
determining exactly where to break a box. The result is a sequence of boxes,each having
approximatelythe desired length. The lengths may vary because theBreak functions do
not perform any adjustment of glue glops; they only do the breaking so a later adjustment
to the desired length will lead to the optimal solution.

The following example illustrates howLayout andBreak functions may be composed
to define a simple paragraph formatting function:

paragraph =Layout[dimension = horizontal
orientation = positive
alignment = refwith ref
glue: before =par-indent

between =inter-word-glue
reference: ref = vertical(ref(first))]�

Break[length =line-width] �
Layout[dimension = vertical

orientation = positive
alignment = refwith ref
glue: between =inter-line-glue
reference: topref = ref(first)

botref = ref(last) ]
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Notice that we define function composition so it can be read from left to right:

(f � g)x = g(f(x))

The function ‘paragraph’ therefore first lays out the paragraph components (say words)
horizontally with par-indent glue before the first word, then breaks the result into a
sequence of lines, and finally lays out these lines vertically.

When a box is broken, its reference point descriptions are inherited by each of the
boxes in the resulting sequence. In this example, the reference point ‘ref’ of the unbroken
box is placed at the left edge, on the baseline; this is due to the vertical projection applied
in the reference points’ description. Each of the lines resulting from the breaking inherits
this reference point description and thus has a reference point ‘ref’ placed at the left edge,
on the baseline.

Therefore, when the lines are laid out vertically with the reference point of each line
being aligned with that of the following, they will be left-justified (flushed left). If they
should be flushed right instead, this could be obtained by placing the reference points of
the unbroken box at the right edge:

vertical(ref(first)) + horizontal(extreme)

Notice that the resulting paragraph has two user-defined reference points situated at the
baseline of the first, respectively the last, line in the paragraph.

In a simplified setting without floating figures, footnotes, etc., the family ofBreak
functions may also be used for column and page breaking:

document =Layout[dimension = vertical . . . ]�
Break[length =column-height] �
Layout[dimension = horizontal . . . ]�
Break[length =text-width] �
Layout[dimension = depth . . . ]

Note that, in this and the following examples, the focus is not so much on the details
of the Layout functions so they will be left partially unspecified as indicated by the
ellipsis. Now, the function ‘document’ first lays out the document components vertically;
these components may simply be boxes resulting from the use of the ‘paragraph’ function
defined above. The resulting box is then broken into a sequence of columns which is laid
out horizontally. Finally, the box containing all the columns, side by side, is broken into a
sequence of pages and these are laid out on top of each other.

Going a little bit more into the details of breaking, consider a boxb embedding a
sequence of components which are laid out in dimensiond and glued withg-before,
g-between, andg-after. Then:

1. Breaks are generally allowed between the individual components ofb and also inside
a component if this is itself a box whose components are laid out in dimensiond.

2. The glue at a break point is discarded. The glue glops before and after a sequence of
box components are never discarded. Considering, e.g., the glueg-beforeandg-after
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of the outermost box, these will be appear in the front of the first, respectively at the
end of the last box resulting from the break.

For stretching or shrinking boxes to a desired length, a family ofAdjust functions is
provided. They map boxes into boxes by adjusting the actual length of the embedded glue
glops (if possible). Glue glops of deeply nested component sequences are also considered—
but only if these are laid out in the same dimension as all embedding sequences. Starting
from the normal length of the glue glops, they are adjusted proportionally to their
stretchability/shrinkability in order to obtain the desired total length.

The reference point descriptions are left unchanged by these functions; therefore,
specifying a reference point of a box to be, for example, at its right edge, it will also be at
the right edge after the box has been adjusted.

Notice that theAdjust functions cannot directly be applied to the lines resulting from
a breaking because these are embedded in a sequence. To solve this and similar problems,
a notion of sequence functions is introduced in the following.

4.3 Parameterized functions and sequence functions

Instead of writing large and complex function definitions, composed directly from the
primitives, it is often convenient to introduce auxiliary, user-defined functions as building
blocks. In order to make the auxiliary functions as generally useful as possible, it is in many
cases desirable to make them parameterized in the same sense as, for example, theBreak
primitive is parameterized with a length. As with the primitives, we use square brackets to
enclose parameters which, in this way, index a family of user-defined formatting functions.
As an example, consider a parameterized version of the previously defined paragraph
function (the right-hand side is the same):

generic-par[line-width] = . . .

Provisions are also needed for operating on each of theboxes in a sequence. We might,
for example, want to adjust each of them to a desired length. There are also examples
where the boxes resulting from a breaking should be handled on a more individual basis;
consider, for example, the formatting of verso and recto pages. With this situation, it might
be tempting to introduce a set of general list processing primitives like those found in
programming languages such as LISP.

However, as mentioned in the section on general design considerations, our approach
to incremental formatting requires the formatting functions to be automatically invertible.
To fulfill the invertibility requirement, a more restricted notion of sequence functions must
be considered. We have found that many interesting formatting problems may be solved
with sequence functions which map arguments sequencess1 into result sequencess2 in the
following way:

1. The number of elements ins2 equals that ins1.

2. An element at indexi in s2 depends only on the corresponding element at indexi in
s1 and the indexi itself.
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This kind of mapping may be illustrated by the following picture:

h e1 ; e2 ; . . . en i
# # #

h f1(e1); f2(e2); . . . fn(en) i

To define such restricted sequence functions, it suffices to define the sequence of element
functionsf 1, f 2, . . . f n. In accordance with this idea, we propose the following primitives
for constructing and combining (partial) sequence functions:

all i: f [i]
With this sequence function, the element function at each indexi is defined asf [i].

first: f
This sequence function has only defined the element function for the element at
index 1.

last i: f [i]
This sequence function has only defined the element function for the last index in
the argument sequence.

every i modulo j from k: f [i]
With this sequence function, the element functions are defined to bef [i] for all
indicesi which satisfy the equation:i mod j = k � 1 for somek in the range: 1 to
j +1. Element functions for elements at all other indices are left undefined.

s1 excepts2

Given two sequence functionss1 and s2, the resulting sequence function has the
same element functions ass1 except for the indices where ans2 element function is
defined. In these cases the element functions ofs2 are used. In other words,s2 may
be used both to extend and to overwrite the collection of element functions defined
with s1.

s1 and s2

As for the aboveexceptcombinator. For the result to be well-defined it is, however,
required that the indices for whichs1 defines element functions arenot overlapping
the indices for whichs2 defines element functions.

With these primitives we may, for example, define a sequence function for adjusting all the
lines of a broken paragraph except the last line (Id is the identity function):

adj-lines =all i: Adjust [length =line-length]
except
last i: Id

Similarly, a function for formatting a sequence of pages as alternating verso and recto
pages may be defined, given the appropriately defined functions for formatting verso and
recto pages:
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verso-recto =every i modulo 2 from 1: verso[i]
and
every i modulo 2 from 2: recto[i]

Notice that ‘recto’ and ‘verso’ are parameterized formatting functions. Foreach number
i, there is a ‘verso’ function which adds the decimal representation ofi, flushed right, as
the footer of a page. Similarly for the ‘recto’ functions, except that the page number is
flushed left. We define these two functions in terms of a function ‘bottom-num’ which is
parameterized with both the page number and a specification of which reference point to
use in the vertical alignment of the number and the text:

verso[i] = bottom-num[i,extreme]
recto[i] = bottom-num[i,origin]

Now, before defining ‘bottom-num’, some new primitives must be introduced. The
Singleton function maps an element, e.g. a box, into a sequence only containing this one
element. TheInsert functions accept sequences as arguments and inserts an additional
element either first or last in the sequence. TheArabic function maps an integer into a
sequence of characters (digits) constituting the decimal representation of the integer. In
the following definition of ‘bottom-num’, the sequences of digits are formatted like words
before they are inserted below the text as page numbers.

bottom-num[i,r] = Singleton�
Insert[place = last

element = word(Arabic(i))] �
Layout[dimension = vertical

orientation = positive
alignment =r with r
glue: between =foot-sep-glue
reference: ref = ref(first) ]

4.4 Multi-dimensional alignment

Wanting to consider two-dimensional structures such as tables and matrices, we must, at
the logical level, choose either a rowwise or a columnwise representation. Deciding on, for
example, the columnwise representation, logical entity types ‘table’ and ‘column’ could
be used:

tablehcolumnh . , . . .i,
...

columnh . , . . .i i

However, it is not possible with the primitives introduced so far to define the corresponding
formatting functions so both a rowwise and a columnwise alignment is obtained. By using
theLayout primitive, a columnwise alignment of the elements is achievable, but there is
no way to ensure the alignment of all elements in a row:

column =Layout[dimension = vertical . . . ]
table =Layout[dimension = horizontal . . . ]
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Looking for new primitives to solve the problem, we might as a first step find a
way to obtain the same potential for doing formatting no matter whether a rowwise or a
columnwise representation is chosen at the logical level. A solution to this problem is to
introduce the matrix transposition operation defined on matrices which are represented by
sequences of sequences of elements.

Consider, for example, the case of having a columnwise representation at the logical
level, but wanting to do some row-oriented formatting such as inserting the row number as
the first element in each row (thus adding a column of numbers to the table). Now, letting
the ‘column’ function be the identity function will leave a sequence of sequences to the
‘table’ function which may transpose it to a rowwise representation. At this point, sequence
functions may be used to format all the rows, and finally the sequence of formatted rows
may be laid out vertically:

column =Id
table =Transpose�

(all i: Insert [place = first
element = word(Arabic(i))]) �

(all i: Layout [dimension = horizontal . . . ])�
Layout[dimension = vertical . . . ]

Having provided theability toswitch between columnwiseand rowwise representations,
let us now return to the problem of two-dimensional alignment. First, it is worth noticing
that there are special cases where the problem is almost solved in advance. Consider, for
example, a columnwise representation where all elements in each column have the same
width and the same horizontal projection of the reference point (�) which should be used
in a vertical alignment:

* h � , h �, h � ,

� , �, � ,

� i, � i, � i

+

Note that this sequence of sequences of boxes does not by itself contain any layout
information (except the ordering of the elements); the two-dimensional presentation
displayed here has been chosen only to emphasize the similarities of those elements which
we consider to be in the same column.

In this very special situation, the table may simply be transposed to the rowwise
representation and the rows laid out horizontally with fixed space between the elements;
owing to the sizes of the elements and the placement of their reference points, the vertical
alignment is already there. In practice, such special cases are rare; usually the elements
have different sizes. However, looking for a way of obtaining two-dimensional alignment,
we may introduce a new primitive which padseach element with glue glops in order to
produce this special case.

The padding of, for example, a sequence of column elements can be realized by
embedding each column element as the only element of abox; the box must be laid out
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horizontally with appropriate glue before and after the element, so the desired width and
vertical alignment with the other padded elements is obtained. In addition, the embedding
box must have reference points coinciding with those of the embedded element. This is
the way the family ofPad functions work; each function is indexed by the dimension of
the boxes used for padding and an identification of the reference points which are to be
aligned.

As an example, consider the following picture which illustrates horizontal padding
of a sequence of column elements. Each element has a single reference point (� ) which
should be used in a vertical alignment. The padded sequence is the one to the right; thick
horizontal bars are used for symbolizing the inserted glue:

h � , h � ,

� , � ,

� i � i

With the Pad and Transposeprimitives, it is thus possible to define the ‘column’ and
‘table’ functions so the desired two-dimensional alignment is obtained:

column =Pad[dimension = horizontal
alignment = . . .with . . . ]

table =Transpose�
(all i: Layout [dimension = horizontal . . . ])�
Layout[dimension = vertical . . . ]

Together with the sequence functions, the primitives are, in fact, powerful enough that they
can be used for solving three-dimensional alignment problems. Such problems may occur
in connection with the preparation of overhead transparencies. Besides this, the primitives
have good uses by themselves, especiallyTranspose. It should be noted, however, that
the primitives only provide for the very basics of high-quality tabular typography as, for
example, considered in Beach’s work[15]. Table heads which span more than one column
and rules which separate rows or columns are some of the features which are not supported
so far. To solve these problems, it is necessary to introduce additional primitives.

5 DOCUMENT STYLES AND TYPE CHECKING

In the foregoing, it has been demonstrated how essential aspects of the mapping from
the logical to the physical view of documents may be modeled by the evaluation of
simple expressions in a functional language. The expressions, which represent the logical
document view, have been exemplified inFigure 2, page 8 and onpage 18.

There, it was implicitly assumed that certain rules were obeyed regarding which
kinds of logical entities could be embedded in which. For instance, in the table formatting
example, a table was expected to contain a sequence of columns. There are good reasons for
requiring such rules to be explicitlystated, e.g. to make it possible for the editing/formatting
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system to ensure uniformity of the documents. Here, we will investigate another task made
possible by such rules, namely the type checking of formatting function definitions.

The formatting primitives introduced are only well-defined for certain types of argu-
ments. For example, theLayout functions only work on sequences of boxes or characters,
the Break functions require boxes as arguments, and theTranspose function is well-
defined only for sequences of elements which, by themselves, all are sequences with the
same length. It would therefore be desirable to have a notion of type, allowing one to
identify bad uses of the formatting functions before doing any actual formatting.

Dealing withspecificexpressions, which represent the logical view of specific doc-
uments, this type checking problem is comparable to type checking in other functional
languages (see Cardelli and Wegner’s work[16] for an introductionand further references).
There are differences, due, for example, to the special box data type, but to discuss the
details of a type system for FFL is not within the scope of this presentation. Instead, we will
look at a more general problem which is relevant to the type checking of formatting func-
tion definitions as opposed to the type checking of function definitions in general-purpose
languages.

Defining a set of formatting functions, it is the aim that the functions be well-defined
not just for a given, specific document, i.e. a specific expression, but for a whole class of
documents. Usually, such a document class is defined by a context-free grammar describing
the possible logical structures of documents belonging to the class. Consider, for example,
the following very simple grammar where the notationl�is used to denote zero, one, or
more repetitions of the kind of logical entities which are described byl.

document ::= paragraph�

paragraph ::= sentence�

sentence ::= word�

word ::= CHAR�

With the FFL primitives, formatting functions corresponding toeach kind of logical entity
may be defined; let us name these:f document, etc. Now, assume that the types of these
functions may be inferred by use of a type system which defines the type of each FFL
primitive. The problem is then to establish a connection which will allow utilization of the
grammar in the type checking.

It turns out that each production in the above grammar may be viewed as atype
assertionconcerning the type of the corresponding formatting function. Let us assume that,
in the type system considered, ‘char’ is the type of characters and ‘seq of t’is the type of
sequences of elements which themselves are of type ‘t’.Then, the grammar asserts:

fdocument: seq of paragraph ! document
fparagraph: seq of sentence! paragraph
fsentence : seq of word ! sentence
fword : seq of char ! word

Here, the names ‘document’, ‘ paragraph’, ‘ sentence’, and ‘word’ may be viewed as type
variables denoting arbitrary types, but with the restriction that a type variable which is
used in different assertions must denote the same type in all of these.



22 BO STIG HANSEN

In this setting, the type checking task reduces to the problem of checking whether there
exists an assignment of types to the type variables such that all assertions become correct
with respect to the inferred types. Consider, for example, a type system where ‘box’ is the
type of boxes andLayout functions have the type: ‘seq of t ! box’ for arbitrary types ‘t’.
If f word then is defined just to lay out the characters, it also receives this type and, in that
case, the type variable ‘word’ must stand for the type ‘box’ in order for the last assertion
to be correct. With this information, the second last assertion may be checked, thereby
determining the type corresponding to the variable ‘sentence’ and so forth.

Grammars are generally not as simple as the one shown here; there may, for example,
be productions which allow a given kind of logical entity to be composed in a number of
alternative ways. The grammar may also be circular, thus reflecting that a certain logical
entities may appear inside other entities of the same kind. To cope with those situations,
sum types6 and recursively defined types must be included in the type system; these kinds
of types can then be used to express how a grammar should be viewed as a set of type
assertions.

5.1 Context-dependent formatting

Having combined the notion of formatting functions with that of document grammars, it is
a natural step to go from simple, context-free grammars to the more expressive attributed
grammars originally introduced by Donald Knuth[17]. Attributed grammars could, for
example, be used for synthesizing the table of contents or for systematic production of
section and subsection numbers. They may also be used to propagate information about the
context, such as the current font and line width, down in the logical structure. This topic is
considered further in work by the author[18] and a master’s thesis by M. N. Jakobsen and
J. H. Hansen[19].

As a link between the attributed grammar and formatting functions, the attributes could
then be used as parameters in the function definitions, for instance for specifying the break
length used with aBreak function or for specifying an element to be inserted with an
Insert function.

Recent work in attributed grammars has concentrated on incremental evaluation of the
attributes in connection with changes to an expression (in our case a document) satisfying
the grammar; for a survey, see the work by Deransart, Jourdan and Lorho[20]. This means
that formatting function parameters, such as a break length or a synthesized table of
contents, may be very efficiently re-evaluated after a change to the document. Efficient
re-evaluation of the formatting functions themselves is, however, not covered by this
scheme. The following section addresses this problem.

6 INCREMENTAL FORMATTING

With integrated editing/formatting/viewing systems, it is the main idea that the effect
of making a change to the logical view of the document, such as adding or deleting a

6 Sum types are also called union types or variant types.
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character, should be immediately observable. This implies that the formatting and viewing
must occur simultaneously with the editing.

The response time requirements, which follow from this approach, rule out the possi-
bility of implementing such systems by simply re-evaluating the expression representing
the logical view of the whole document for each change made to the expression. To
meet the requirements, it it necessary to use techniques for incremental formatting. Rather
than mapping the whole expression to its physical representation (a box), incremental
techniques mapchangesto the expression into changes which can be efficiently applied to
the corresponding box.

We will in the following restrict ourselves to only consider one kind of editing
operation: replacement of character instances in expressions. However, owing to the
potential difference in character widths, such replacements call for a rather general
treatment which can be extended straightforwardly to cover insertions and deletions of
characters and subexpressions representing whole logical entities.

Consider a notion oflogical andphysical indices, which uniquely identify character
instances in respectively expressions and boxes. Given an expressioneand the boxb which
results from evaluatinge, there is then a relation between those logical and physical indices
which identify the same character instance in respectivelyeandb. Disregarding characters
which have been introduced with theInsert functions, this relation is one-to-one. In the
following, we will use the symbolsi and i0 to denote such related logical and physical
indices.

The result of replacing the character instance at logical indexi in the expressionewith
the new characterc is written�c;i(e). When replacing the same character instance in the
corresponding boxb, the result is expressed as�c;i0(b).

Regarding the mapping of changes to the expressione into changes to the corresponding
box b, it would be desirable to show that character replacement ine could be mapped
directly to character replacement inb, i.e. to show that the following diagram commutes:

e
�c;i

- e0

?
E

?
E

b -

�c;i0

b0

In this diagram,E is the function which evaluates an expression into a box, given a
definition of all formatting functions used.

We have not presented any definitions precise enough to serve in a formal argument
concerning this property. However, the assumption that “real” typographical breaking,
e.g. of paragraphs, can be modeled by theBreak primitive on boxes gives a sufficient
basis for concluding that, in general,the above diagram cannot be expected to commute.
Considering the breaking of paragraphs, it is clear that replacing a character instance in the
expression representing the paragraph implies more than just replacing the corresponding
instance in the box. If the old and new characters differ in width, the new paragraph may
in addition have to be broken in a different way.
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6.1 Two approaches

Having rejected the simple relationship between updates of expressions and boxes, we will
in the following consider two other approaches to incremental document formatting.

The first of these is based on a subsumed property ofE : that the result of evaluating an
expressione is some function of the evaluation of its subexpressions. This means that after
replacing a character instance ine, it is only necessary to applyE to the subexpressions of
e which embed the new instance. The application ofE to the other subexpressions is not
affected by the replacement, so the previous results can be reused in these cases. We call
this “the reuse approach”.

Thesecond approach is based on a somewhat broad interpretation of the requirement that
“theeffects of changes to the logical view of adocument should be immediately observable”.
Rather than re-evaluating the expression representing the whole document, it is the idea to
obtain a first approximation bylocally re-evaluatingthe subexpression which immediately
embeds the changed character; this could, for example, be an expression representing
a word. The effects, which are immediately observable in this first approximation, only
concern the very local context of the changed character, but a series of better approximations
may be obtained by locally re-evaluating the embedding expressions which represent the
paragraph, section, etc., until the whole document has been reformatted.

The key to this approach is a property which the mappingE from expressions to boxes
may possess (depending on the formatting function definitions). As mentioned above, the
resultE(e) of evaluating an expressione is some function of the boxes resulting from
evaluating the subexpressions ofe. For some subexpressions, this function may simply
have the effect of embedding the corresponding boxes as components ofE(e). Consider a
subexpressions and the corresponding boxE(s) which can be identified as a component
c of E(e). This situation is illustrated inFigure 5. Assume further that a character ins is
replaced, so we obtain a modified expressione0 with the modified subexpressions0. Now,
the correspondence betweens andc motivates a local re-evaluation by simply replacing
c with E(s0). The result of this replacement can be shown to be an approximation to the
correct resultE(e0) in the sense that only the breaking is incorrect. For example, the line'
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Figure 5. Preservation of the result of evaluating a subexpression
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containing the changed character may be too long or too short and the page may not have
the correct height.

The strong point of the local reformatting approach is the efficient construction of
the first approximations, and the possibility of postponing the later approximation steps
if necessary. Postponing the later steps allows for fast response in the case of multiple
successive changes to the logical view of the document.

6.2 Construction of approximations

Keeping track of the relationship between subexpressions and box components illustrated
in Figure 5is not straightforward. In work by the author[21] this is done by extending the
notions of boxes and sequences to allow for annotations. Different annotations are used to
inform about:

� The kind of logical entity which a box or sequence represents (if any). This gives
information about the formatting functions which have been used to generate the
object.

� The fact that a box is a fraction resulting from a breaking.

� The annotations which were attached to an immediately embedding sequence prior
to a transposition. Transposing, for example, a table from rowwise to columnwise
representation, the annotations previously attached toeach row are “saved” as
annotations attached toeach element of the row.

By defining how to invert formatting functions composed from the build-in primitives,
these annotations make possible a retrieval of the expression from which a box stems
(when this has a meaning). We call this toinvert the box.

Now, the character replacement function� working on boxes can be used to obtain the
first approximation and subsequent approximations may then be constructed by searching
outwards to the nearest enclosing box which corresponds to a logical entity. This box
is first inverted, then re-evaluated and the result is inserted in its place. Continuing the
construction of approximations, the box representing the whole document will be reached
in a finite number of steps. Having inverted and re-evaluated this, the resulting box should
be the correct physical representation of the whole changed document. This strategy is
illustrated by the following diagram whereA denotes the function for constructing new
approximations:

e

�c;i
- e0

?

E

?

E

b -

�c;i0

b0
-

A
b1

-

A
� � � -

A
b0

One of the interesting aspects of this approach is the possibility of working only with the
extended box representation of documents. As the bottom line of the above diagram shows,
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the initial change to the expressione may instead be applied to the corresponding box
b and after a series of approximations, the correct boxb0 is obtained.

As one might expect, the definition of the approximation function is quite complex.
This does not, however, worry us since it is just a part of an efficient implementation for
which the abstract specification is very clear:

E(�c;i(e))

In this way, there is a firm reference against which to validate the implementation. With
the formal definitions given[21], there is even a basis for a mathematical proof of the
correctness of the stepwise approximation technique, i.e. a proof that the diagram above
actually does commute.

7 FURTHER WORK

The elements of FFL presented in the previous are not sufficient for handling a number of
interesting formatting problems. Some of these are listed in the following and it is outlined
how they may be dealt with by introducing suitable extensions.

Consider, for example, the placement of footnotes, margin notes and floating figures.
It is common for these problems that they involve nontrivial constraints on the relative
placement of twoboxes representing respectively a reference and the material referred
to. By extending the notion of boxes to allow for temporarily invisible components, new
families of functions could be introduced thereby enabling problems of this kind to be
solved. The functions could: (1) make a box invisible and classify it by giving it a certain
name; (2) extract from a box, the sequence of all embedded, invisible boxes of a certain
class; and (3) break a box by extracting and placing certain classes of its embedded invisible
boxesaccording to specified rules.

Another class of problems concern box distances which depend not only on the box
shape enclosing the box contents but also on other features of the contents. Examples
include kerning and line spacing with respect to baselines. Like in TEX, the problems
may be solved by: (1) dropping the restriction that the same kind of glue must be
used between all adjacent components in a box; and (2) introducing new functions for
inserting or replacing glue glops. Kerning must then be handled in anad hocmanner,
by recognizing the individual cases where the use of box shapes leads to unacceptable
spacing. Alternatively, more general geometric shapes may be introduced in order to allow
for a general handling of kerning-like problems.

Regarding implementation issues, the notion of three-dimensional boxes with multiple
reference points in the three-dimensional space will lead to unrealistic space and time
requirements in a straightforward, naive implementation. Using compilation and optimiza-
tion techniques there is, however, a good basis for overcoming this problem. Given a
document grammar and a set of formatting function definitions, it will, for example, be
possible with a static analysis to identify the dimensions and reference points actually
utilized in the different kinds of boxes which may be constructed during the formatting.
Based on such an analysis, individual, space-optimal box representations may be generated
automatically and, correspondingly, the code generated for formatting functions may be
individually tailored to fit the different box representations.
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Our desire to have theBreak primitives produce optimal breaks, following the ideas
of Knuth and Plass[1], presents us with another implementation problem. Compared with
traditional, suboptimal, one-line-at-a-time paragraph breaking, Knuth’s algorithm needs
only about twice as much computation for finding the optimal breakpoints of a paragraph.
However, in combined editing/formatting/viewing systems, the problem is that paragraphs
may be changed at speeds of 10 operations per second and when considering efficient
re-computation of breakpoints after a change, Knuth’s approach looks less attractive.

The simpler, suboptimal approaches invite efficient, incremental implementations
which start from the previously computed breakpoints, “fixing” exceedingly long or short
lines, one at a time, and allowing new changes to be introduced in between. The fact that
optimal breaking requires a global view of the whole paragraph rather than a local view
of a single line has kept researchers and designers from considering it in connection with
combined editing/formatting/viewing systems.

In a recent master’s thesis by Ulrikka Thyssen[22] it is, however, shown that the search
tree needed for finding an optimal solution may be efficiently constructed from previously
computed search trees. We plan to incorporate this technique in a prototype implementation
of an FFL interpreter.

8 CONCLUSION AND DISCUSSION

A document formatting model has been proposed and the development of its central
component, a functional language, has been presented. The model, as it appears here, only
accounts for some of the many formatting aspects which must be considered in “real”
document production. To this, we have two comments to add.

First, we have done some experiments with the model and believe that it may be
extended in a consistent and natural way to cope with many of the relevant formatting
problems. New primitives must be added to the functional language and the notion of
boxes may have to be extended.

Secondly, it should be emphasized that we consider the process of developing the
model as important as the model itself. The paper does describe a formatting model and a
language, but the aim has also been to illuminate the different rˆoles of document models
and the advantages which can be obtained by recognizing these rˆoles.

Compared to previous work, the formatting language presented as part of the model
is distinctive in several ways: it is founded on simple mathematical concepts, such as
sequences, functions and function compositions, it may be type checked to ensure that
no run-time errors can occur, and it is designed to allow for an efficient incremental
implementation.
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