ELECTRONIC PUBLISHING, VOL. 2(4), 211-229 (DECEMBER 1989)

Automatically transforming regularly structured
linear documents into Hypertext

RICHARD FURUTA, CATHERINE PLAISANT, AND BEN SHNEIDERMAN

Human Computer Interaction Laboratory and Department of Computer Science
University of Maryland

College Park, MD 20742

USA

SUMMARY

Fully automatic conversion of a paper-based documentinto hypertextcan be achieved in many
cases if the original document is naturally partitioned into a collection of small-sized pieces

that are unambiguously and consistently structured. We describe the methodology that we

have used successfully to design and implement several straightforward conversions from the
original document’s machine-readable markup.

KEY WORDS Hypertext conversion Documentstructure Conversion methodology

1 INTRODUCTION

As hypertext systems become widely available and their popularity increases, attention
has turned to converting existing collections of information into hypertextual form. Many
such projects have focused on reuse of previously developed documents; for example Egan
et al's SuperBooK1,2], which automatically provides additional means for traversing
the paper document’s interactive display, Nugtnal’s conversion of the IBM REXX
manual3],?> and Glushko'§4] conversion of an encyclopedia into hypertext, a project
that emphasized the importance of careful design of the resulting hypertext. Like paper
documents, creating a successful hypertext requires care and creativity in its design and
specification. A poorly-thought-out hypertext can be quite unattractive—indeed in such
cases the reader may prefer a more static representation. In many cases the sources
must be restructured to take advantage of the hypertext enviroffsheAt commercial
product, Texas Instrument’'s HyperTRANS, provides the means for iteratively specifying
the conversion from paper-based document representations to hypertext, and Mamrak
et al’s experience in the Chameleon projgg?] in recognizing paper-based document
structures and converting among such document representations (with manual assistance)
is also of relevance.

Conversions such as these address the issues in general conversion of relatively
freely structured paper documents, for example books, articles, and monographs. Also of

1 We appreciate the support of NCR Corporation in providing partial funding for this research.

2 Based on the experience of manually carrying out the REXX translation, Biualn also reconverted part of
the manual in a semi-automatic conversion.

0894-3982/89/040211-19%$9.50 Received 6 November 1987

©1989 by John Wiley & Sons, Ltd. Revised 13 November 1987

© 1998 by University of Nottingham.

212 R. FURUTA

=

. Design the structure of the target hypertext article

2. Determine how the source’s structure corresponds to the desired target’s structure.

w

. Specify the conversion process, which must

(a) Extract the relevant components of the source’s structure
(b) Reorganize the components to form the target’s structure
(c) Augment the target’s structure with representation of relationships (links)

(d) Generate the hypertext database files

4. Automatically convert from source to produce the target hypertext database.

5. Modify the hypertext database, if appropriate, to provide a “wrapper”, to incorporate
additional articles, and to correct errors generated in conversion or carried forward
from original source.

Figure 1. Transformation methodology (modified from referé)ce

importance are conversions that focus on more finely structured collections of information
such as catalog entries, dictionary listings, and databases. (See, for example, the grammar-
based techniques developed by the Oxford English Dictionary pf8ject

In a companion report to this of@], we have described and evaluated our own
experiences in converting preexisting collections of information into hypertext. In that
report we characterize the steps we carried out in defining and executing the conversion
(the steps are shown figure J). These steps can be divided into those that are carried out
manually (e.g., design of the hypertext) and those that can be carried out automatically.
For information sources such as scientific documents, our experience suggests that the
manual steps are most appropriately carried out for each “instance”—the transformation
steps taken are highly specialized for the particular document being converted. Information
sources exhibiting a more regular structure can often be converted as a class instead of
as individuals. Although manual steps must be carefully carried out to produce a usable
design, the resulting design can be applied without further change.

One example of such an information source is the cards in a library’s card catalog. The
catalog as a whole contains many relatively short cards, each card is regularly structured
by predefined rulgd0,11], and consequently the cross-references between the pieces can
be detected mechanically.

A hypertext database corresponding to the catalog might have a separate entry for
each card. The information contained in the entry would be the same as that contained
on the card, but the information might be reordered to take advantage of the electronic
presentation. Separately generated indices could provide access to the cards alphabetically

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 213

by author, title, and subject, while relationships between related books could further be
represented by links from entry to entry.

The specification of the transformation from card to hypertext entry for one card is
quite likely to be applicable to the other cards. Specification of the interrelationshipsamong
entries similarly follows a regular pattern.

Earlier, Shneiderman identified three “golden rules of hyper{é2f:

¢ thereis a large body of information organized into numerous fragments,
o the fragments relate to each other, and
¢ the user needs only a small fraction at any time.

Completely automatic transformation of a class of information sources becomes feasible
when the source follows the “golden rules”, and also is formed from regularly structured
fragments whose boundaries may be detected unambiguously.

In this report, we will describe at length the organization of the systems that we have
used in fully automatic transformation of two such regularly and consistently structured
fragmented information sources. The organization of these systems follows the same
general system architecture (this is step #igure 1'slist), which will be presented in
Section 3 The development of the transformation specification from source to hypertext
is centered around careful analysis of the structure of both the source and of the target.
In our converters, we first detect thegical component®f the input that correspond
to components in the hypertext. We describe the form of the logical components with
a template or simple grammar, extract the components with a parsing program, and
finally automatically create the hypertext database, rearranging the ordering of the logical
components when appropriate. The designs of two transformations based on the architecture
are described i®ection 4

Creation of a hypertext involves two separate but interrelated activities: (1) generation
of the individual articles in the hypertext's databasach with their own internal structure
and (2) identification of the interrelationships among the separate articles (forming
the contextual links). While our description of the architecture focuses on structural
transformation, the identification of logical components is also of use in detecting the
interrelationships among informational elements, as such interrelationships are reflected in
the partitioning of the source into logical components.

Our target hypertext system has been HypeftiBscause specification of the trans-
formation requires understanding of both the structure of the source and the structure of
the target, we will present much of the remaining discussion in Hyperties-specific terms.
However, we wish to emphasize that the framework is general enough to be applied to
many hypertext systems.

w

Hyperties was developed in our lab, and our experience with it dates back to 1983. The IBM-PC version of
the Hyperties browsing and authoring tools are now commercially available from Cognetics Corporation, and
research in our lab continues, based on a Sun version. The work described here targeted the commercial version
of the system.

4 SeeSection 2for a brief review of the relevant structural aspects of paper-based documents and of the Hyperties
database.

214 R. FURUTA

Our major conclusion from this activity is also generally applicable. Our experience
has convinced us that it is wise to separate the conesemmpanying full-scaleypertext
conversion of arbitrary information sources from those concerns associated with smaller-
scale specialized conversions. As the specific transformation examples shown in this paper
will demonstrate, fully automatic conversion of medium-grained information sources
that are regularly and consistently structured can be quite manageable. On the other
hand, conversion of larger, more complexly and arbitrarily structured documents, such
as scientific papers, seems to be a process that inherently requires manual assistance,
even when considering only structural conversighfor no other reason than to provide
the initial partitioning of otherwise undivided text into hypertextual units and to resolve
ambiguous language use in determining links. Fully automatic specialized conversions can
be achieved, even in the absence of complete solutions to full-scale generalized conversion.

2 DOCUMENT STRUCTURES

Before we can design a transformation from a paper-based document to a hypertext, we
must first understand the data representations of the source and of the target. In this
section, we sketch the characteristics of these two representations, first considering the
desired representation of the source, as a structured document, and then describing the
representation of the targeted Hyperties database.

2.1 Structured documents

The transformations that have been defined have started with the assumption that the
paper-based document is described by (or can be converted into) a “structured document”
representatiofl3]. The structured document representation identifies the logical compo-
nents of the document, separating out the specification of the physaarpént of the
components onto the page. The representation is object-based—higher level objects are
formed by composing lower-level objects. As example, a book might be defined as a
sequence of chapters, each chapter as a sequence of sections, with the déoormpos

tinuing until the document is described in terms of “primitive” objects—perhaps individual
characters in this example.

Paper-based document preparation systems generally accept an author-prepared
marked-up documentthe content of the document interspersed with “markup elements”
that identify objects within the document and provide other information to the computer
program (the formatter) that is responsible for converting the marked-up document into
and representation suitable for printing on the page. Identifying the structural components
of the paper-based document is simplified if the marked-up document is available—indeed,
identifying structural components in a scanned document remains an active research
topic. Markup languages come in two flavors: those that describe the document’s struc-
tural components (e.g., Scrib&TEX, and SGML) and those that describe the document'’s

5 One justification for this claim is suggested by the Chameleon project’s demonstration that conversion from
arbitrary markup into SGML is ambiguo[§.

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 215

physical appearance (e.g., Runoff, Script, &odf). When a physically oriented markup
language has been used, we must extract the logical elements. This can be difficult if the
document’s author has not been consistent in use of the markup commands.

2.2 The Hyperties database

The overall model of a Hyperties database, presented both to an author and to a reader, is
based on the metaphor of an “electronic encyclopedia”. From this external point of view,
the database consists of a set of short articles related to one another by links, which are
represented as user-selectable highlighted strings within the body of the sourcé article.
Each article is further subdivided into three fields: the title, a short string naming the
article; the definition, a short phrase describing the article; and the body of the article. The
display of an article shows both the title and the body. When a user selects a link, the
destination article’s title and short description are shown in a separate window. Confirming
the selection causes the source article’s display to be replaced by the destination article.

The full PC-based Hyperties system permits both textual and graphical article bodies,
and has many other features. A global index, listing all articles found in the database, is
accessible to the reader at all times who can use it to select articles of interest. Fast string
search can be enabled over the bodies of the articles, greatly enhancing the usability of
converted databases. It is worth noting, that the datahesess structures generated by
the mechanisms presented in this paper (for example, additional indices) are intended to
complement the facilities already found in Hyperties.

The Hyperties database is represented as a collection of files. Two file types are of
particular interest to us—those containing the articis (files) and the one containing
the global index INDEX.TIE). A detailed description of the format of the article and
index files may be found iAppendix A Here we give an overview of the characteristics
of interest in this report.

Each of the articles is stored in a separate file. The file is subdivided into the article’s
title, its short description, and its body, with imbedded links delimited with-thkaracter.

The target of a link is another article, and as might be expected, the identity of those targets
(the filename containing the target article) is also associated with the source article. In
addition to these fields, the article’s file format contains delimiters and offsets to aid in
locating the fields.

The global index contains an entry for each article, listing the article’s itidexand
synonyms. The index title is usually the same as the article title, just mentioned, but it
is possible that the two may differ. The synonyms are the strings that have been used to
refer to the article—in other words the text of the imbedded links found within the article
bodies.

6 As can be seen from this description, the primary unit of interest to the Hyperties reader is a relatively discretely
sized element ofinformation. The hypertextmodelfavored by some other hypertext systems incorporateslonger
scrolls of information with facilities provided for targeting links within the information and foopbtasting.
Guide[14] is a good example of such a system, and its model more closely corresponds to that of a structured
documents than does Hyperties’. While an appropriate design for a converted hypertext might differ based on
the capabilities of the target system, the characteristics of the task of extracting the structure from the original
documentand of specifying the needed structural transformations would be unchanged.

216 R. FURUTA

3 ARCHITECTURE OF THE AUTOMATIC CONVERSION

Inthis section, we turn our attention to the specification of the converSigare 2sketches

out the architecture that we have used in designing several conversions. As the figure

indicates, the document undergoes several transformations in conversion from paper-based
input markup to Hyperties database. In the figeach of the document’s representations

is shown as an oval and a transformation from one representation to another is shown as
one or more arcs between the corresponding ovals, with the name of the translator shown
adjacent to the arc(s).

The transformation of a source document into a Hyperties database is carried out
in two steps. The first step, performed by the “domain-specific translator” in the figure,
is specialized for each particular class ohgersion. The form of the translator (to be
described in more detail iection 3.} depends on the form of the input and on the design
characteristics of the desired target Hyperties database. The result of this transformation is
a linear representation of significant portions of the Hyperties article file representations
(seeSection 3.2andAppendix B).

The second step, performed by the “linearized Hyperties DB to DB translator”, is
the same for all transformations. This transformation generates the missing parts of the
Hyperties article files, collects the necessary information for the global index and then
creates the necessary set of files that make up the Hyperties database. The resulting files
can be read using the Hyperties browser tool and modified by the Hyperties author tool.

: Domain-specific

Linearized
Hyperties
DB (FIL)

I
: trand ator

: Linearized Hyperties
|

| DB to DB translator

Article1
FIL

INDEX.TIE

Articlen
FIL

Figure 2. Overview of the conversion process

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 217

3.1 Domain-specific translation

Domain-specific translation involves recognition of the source’s components, reorganiza-
tion of the components to form the target representation, and augmentation of the target
with links. Carrying out this step has required specification of the following components:

e A parser that recognizes the relevant parts of the input markup representation,
resulting in a representation of the input as a logically structured collection of
components. The parser’s complexity varies greatly with the complexity of the input
markup language and with the degree of similarity between the objects defined in
the input markup language and the form of the desired logical components.

o Filters that can be applied to the content associated with a component. Filters may,
for example, be needed to interpret or remove imbedded formatting commands.
Another common use of a filter is to add those formatting commands defined in
Hyperties’ markup language to the content of the component.

¢ A function that generates the unique identifier that will serve as the eventual
designator of an associated Hyperties article (i.e.fitaeamein implementation).
The unique identifier is treated as if it were a document component, allowing its use
in the mappings that will be defined subsequently.

¢ A mapping from (possibly filtered) components to an internal representation of the
database. This internal representation will provide an abstraction of the database as
a whole, which can then be used as the target of later specifications.

o Mappings from (possibly filtered) components to external representations. In this
case, the content of selected components can be copied to one or more external files.
These files may be then subjected to separate processing to produce, for example,
one or more index lists. External representation may be employed for convenience
(for example, to permit the use of the system’s sorting routines), or by necessity
(for example when conveying information between processing passes, as described
below).

The result of these mappings is an internal representation of the document and zero or
more external representations. These representations may be manipulated further and the
linearized Hyperties database will then be generated. Manipulation of the representations
and generation of the database encoding is carried out through use of some additional
functions:

¢ “Threading functions” that can be applied to the internal representation connecting
together some subset of the database’'s components. The threads are generally set
based on some attribute of the component’s content. These threads can then be used
in generating links within the Hyperties representation and in generating indices
listing the components along a particular thread. The head of a thread also contains a
unique identifier and a “print name”. This information also can be used in generating
the body of a Hyperties article.

218 R. FURUTA

e Mappings from external representations that modify the internal representation. This
permits use of externally manipulated data within the database. Such data may have
been generated, for example, from information exported on a previous pass through
the input.

e Mappings from the internal representation of the database to produce additional
external database representations, e.g., the linearized Hyperties database. Generally,
what is specified is a traversal of the internal representation and a specification of
how the encountered components should be represented in the linearized database.
Literal strings and thread-based links may be included in the linearized database.

The domain-specific translation must be specified anew for each different class of
database. To date, each translator in this class has been specified either agaaGda
program or as a central C program whose output is postprocessed with other Unix-based
routines. As possible, the structure of these separate translators has been regularized, and
we have developed a collection of library routines to aid in specification of the individual
components of the transformatiddection 4describes the design of two instances of the
the domain-specific translator in more detail.

3.2 Linearized Hyperties database

The output from a domain-specific translator is a linear representation of the “core” of a
Hyperties database. The linear representation encodes only the content of the articles in the
Hyperties database, and only the parts of those articles that cannot be derived from other
parts of the specification; for example, the global index is not directly represented in the
linear representation nor are the binary offset counts found at the beginning of the actual
Hyperties article fileAppendix Adescribes the format of the files in the Hyperties database
andAppendix Bshows the elements of the linearized Hyperties database representation.

The linearized Hyperties database representation identifies the following components
of each article: filename, articlgtle, index title, short description, content, and the
displayed-string/target-filename pair within the content that specifies a link. Converting
the linearized form into an actual Hyperties database requires generation of the individual
article files in the appropriate representation and requires collection of information for the
global index and generation of the global index file.

4 APPLICATION OF THE ARCHITECTURE

In this section, we present two fully automatic conversions that were based on the
architecture sketched out in the previaection Issues in design of these conversions
were discussed in the companion refj@}t Here, we briefly review the characteristics of
this design, focusing on the application of the architecture.

4.1 UMIACS abstract listing

In this section, we describe a conversion from the University of Maryland Institute
for Advanced Computer Studies (UMIACS) annuadff-produced listing of collected

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 219

abstracts from the year’s technical repdri&. sample abstract may be seen in printed
form asFigure 3 This technical report is issued jointly by UMIACS and by the Computer
Science Department; hence it carries two identifying numbers. The abstract was described
by thetroff source ofigure 4 and the corresponding Hyperties article is showRigure 5

Here, the identifying numbers are used as the article’s title, and the article’s body is formed
by rearranging the components of the original listing. The abstract's title is also used as
the Hyperties article’s short descripti®he article’s body is augmented with links to a
global index and to indices for each of the issuing departments, as well as links directly

UMIACS-TR-88—4
CS-TR-1973

Title: Efficient Stochastic Gradient Learning Algorithm
for Neural Network
Author: Y.C. Lee, Department of Physics and Astronomy

Efficient first and second order adaptive learning algorithms of stochastic gradient
descent variety are described. Both algorithms can automatically adjust step sjzes to
achieve optimum convergence rates. Various theorems concerning the convergence
properties of these algorithms are discussed.

Figure 3. A sample UMIACS abstract

(L
b UMIACS\-TR\-88\-4
b CS\-TR\-1973

.Sp

Title: Efficient Stochastic Gradient Learning Algorithm
for Neural Network

Author: Y.C. Lee, Department of Physics and Astronomy

B

.Sp

-pp

Efficient first and second order adaptive learning algorithms of
stochastic gradient descent variety are described. Both
algorithms can automatically adjust step sizes to achieve optimum
convergence rates. Various theorems concerning the convergence
properties of these algorithms are discussed.

.Sp
Figure 4. troff markup of sample UMIACS abstract

7 The 1988 UMIACS abstract listing contained 102 abstractstfHiebased input markup file was approximately
125000 bytes in length.
8 Consequently, the abstract’s title is used both in the Hyperties doticlg and also in the short description.

220 R. FURUTA

UMIACS-TR-88-4/CS-TR-1973 PAGE 10F 1

Efficient Stochastic Gradient Learning Algorithm for Neural Network
Y.C. Lee, Department of Physics and Astronomy

Efficient first and second order adaptive learning algorithms of
stochastic gradient descent variety are described. Both algorithms

can automatically adjust step sizes to achieve optimum convergence
rates. Various theorems concerning the convergence properties of these
algorithms are discussed.

previous<-- report-- >next
previous<--UMIACS report-->next
previous<--Computer Science Department report-->next

EXTRA

Figure 5. Hyperties article corresponding to sample UMIACS abstract

to the preceding and following abstracts in each of these indices. Each of these indices is
automatically generated during the conversion.

Figure 6shows the design of the domain-specific translator that converts the UMIACS
abstract listing. The input source’s markugtiioff describes the appearance of the printed
output, and notthe logical structure of the document. Fortunately, the trefabmmands
was relatively consistent within the markup, although, in a few cases, alternate descriptions
were found producing output that was similar in appearance to the markup used in other
portions of the input. We described the expected sequences of input commands through
a series of regular expressions. The regular expressions were designed based both on the
troff commands found in the input but also on phrases found within the text itself. Alternate
markup command sequences were recognized and aliased to the primary sequence. The
regular expressions were used to label the arcs of a deterministic finite automaton (DFA),
shown inFigure 7° The input stream was read on a line-by-line basis (reflecting the
line-oriented command structuretodff). The input was then matched against the regular

9 We were fortunate in that the beginning of each abstract began with a block of material in which line breaks
were retained. This block was delimited by teff .(I and.)] commands (these commands are defined
in troff's -me macro package). Handling the occasional source misencodings required added complexity in
the translator, for example the transition in Figure 7 in stateATH on “.(I " in addition to the expected
transition on %)l "

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 221

Internal tree

representation

[i R
|
|

Internal threaded
Generate Linearized

tree representation

Linearized

Hyperties
DB (FIL)

Figure 6. Domain-specific translator design for the UMIACS database

222 R. FURUTA

<default>
qL..
.bUMIACS...
bCs...
bTAME ...

(L.

b ..

Tte

Author: ...
Authors: ...

)
(

<default>

... P ...
DA ... p ...
Ip...
r ...
...
Jb...
<space>*
State Description
INIT initial state
CH collect heading of abstract

CH_ID collect id (TR numbers) within heading
CH_TTL collect title of abstract

CH_AUT collect author(s) of abstract
ABST_B beginning abstract’s text
ABST_C collecting abstract’s text
IN_FOOT ignoring footnote within abstract

Figure 7. DFA controlling the translation

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 223

expressions on the arcs leading from the current $atedefault case was specified for
each state, shown aglefault> in the figure, and this default case was selected when no
expression was matched. When a regular expression was matched, a specified routine was
invoked on the input (the exit routine), the DFA's state was changed, and another routine
invoked on the input (the entry routine). (These routines are not shown in the figure.) The
job of the exit routine was frequently to close a data structure in the internal representation
associated with the previous state while the purpose of the entry routine was to perform
the necessary initializations for a data structure associated with the new state or to collect
information to be inserted into an already initialized data structure. When either entry
action or exit action was unneeded, for example when skipping a portion of the input, a
null routine was specified.

The overall result of parsing the input was an internal tree representation of the entire
database. The node corresponding to an abstract consisted of fields containing the generated
filename that was to be associated with the corresponding Hyperties article, the list of the
abstract’s assigned technical report numbers, the abstract’s title, its author list, and the
body of the abstract.

The internal tree was then threaded, producing one thread that connected the articles
sequentially, in order of definition, and one thread for each of the defined technical
report series. (Three different series were defined in this listing: the previously mentioned
UMIACS and CS reports, and a smaller sequence associated with the TAME software
engineering project.) The threads are represented as dotted lffigsiie § with the head
of each thread shown as a box at the beginning of the sequence of threads.

The internal threaded tree was traversed, and as abstracts were encountered the
corresponding Hyperties article was generatededch article was generated, links were
formed by consulting the threads that ran through the corresponding abstract in the internal
threaded tree representation. A separate index listing of reports associated with each of the
defined report series was generated by traversing the associated thread list in its entirety,
collecting and filtering the appropriate subfields as abstracts were encountered along the
thread.

As a measure of the relative complexities of the different subtasks in this transformation,
it is useful to more closely examine the distribution of source code to function. The total
implementation required 3267 lines of C-language code. Of this, 1988 lines (61% of the
total) went into the implementation of the domain-specific translator, 1023 (31%) lines
went into the implementation of the linearized Hyperties DB to DB translator, and 256
(8%) lines into library routines and header files used by both (primarily string manipulation
routines).

Figure 8summarizes the distribution of code within the domain-specific translator. The
entries in the table in the “problem-specific” column are specialized eitheérofbior for
the specific domain of this translation. Those in the “general” column are easily reusable in
other contexts as well. When the library functions are also taken into consideration, about
half of the code in this translator is generic, rather than specific.

The linearized Hyperties DB to DB translator is used without change in other
transformations, and indeed is useful in other applications as well (e.g., interchange of

10 The trailing “. . . " in the figure’s regular expressions matches zero or more arbitrary characters.

224 R. FURUTA

General Problem-specific Total
Activity percentage percentage percentage
DFA state definition 10 9 19
DFA execution 3 3
DFA execution actions 14 14
Pattern matching support 4 4
Thread management 17 17
Filters 2 11 13
Generate linear form 13 13
Guide specific translation 17 17
TOTAL 49 51 100

Figure 8. Distribution of code for UMIACS domain-specific translation

Hyperties databases). The primary task of this translator is regeneration of the portions of
the Hyperties database’s format missing from the linear representation, and the largest part
of this regeneration (34% of the code) is creation of the index.

4.2 University Microfilms dissertation abstracts

A second conversion transformed a collection of 98 University Microfilms dissertation
abstracts, dating from 1985 through the first part of 1989. The design of the Hyperties
database (created by Ben Shneiderman and John Kohl) incorporated indices that permitted
access by topics, author names, university names, and department or discipline names.
The input markup file had been specified in a custom-designed logical-object-oriented
language, as shown Figure 9 In markup, fields are identified by a two-letter code in the
margin. Continuation lines are indented. The two-letter codes are straightforuiddas—
the abstract’s order numbekfor author,IN for institution,T1 for title, SOcontaining a
further cross-referenc®E for the issuing academic department, &mlfor the body of
the abstract.
The structure of the domain-specific translator for this dissertation database is shown
in Figure 10 The structure of the translator differs from that of the UMIACS conversion

AN University Microfilms Order Number ADG87-15461.

AU BROWN, MARC HARRY.

IN Brown University Ph.D. 1987, 179 pages.

TI Algorithm animation.

SO DAI Vv48(04), SecB, ppl1095.

DE Computer Science.

AB An algorithm animation environment is a means for
exploring the dynamic behavior of algorithms that makes

Figure 9. A portion of a sample dissertation abstract in markup form

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 225

[‘‘Capturefile’”

Institution
List

| Generate Linearized

: Hyperties Articles
|

Linearized

Hyperties
DB (FIL)

Figure 10. Domain-specific translator design for the dissertation database

(compareFigure 9, reflecting the different characteristics of the two input documents
and the different features of the two Hyperties database designs. Because of the length of
the dissertation abstracts (the input markup occupied about 235000 bytes), the Hyperties
articles (in linear form) were generated as the input source was parsed, and the content of
the input was not retained in an internal data structure. Fields of the input representation
were slightly reordered in the output Hyperties article, and some fields were slightly filtered
(e.g., the dissertation title field was truncated to 60 characters and used as the Hyperties
article’s title).

The input parsing task was trivial to implemergdause of the regular structure of the
input. The implementation of the input parser and associated filters totaled only 597 lines
of C, and probably could have been made much smaller. Specification of the linearized
form of the Hyperties database relied on the routines of the previous conversion to produce
the linearized form, an additional 254 lines of code.

The implementation of the four index lists was based on summary information captured

226 R. FURUTA

during the transformation of the input. This summary information, stored in an external
file, was sorted and filtered using Unix commands. The resulting sorted abstract lists were
then converted into the linearized Hyperties database form by small (approximately 15
line) awk scripts and merged with the articles produced directly by the parser.

5 DISCUSSION AND CONCLUSIONS

We have demonstrated a framework that can be used to guide the fully automatic
transformation of regularly and consistently structured fragmented information sources.
While such information sources are only a subset of all information sources, they are
frequently found—for example many kinds of catalog listings, traditional databases, and
computer programs. Furthermore, there is great interest in achieving transformation of
these kinds of information sources into hypertext. Even when the reader’s primary means
of gaining access to the database is by specific search queries rather than by browsing, a
hypertextual organization can help provide a better understanding of the context in which
the information exists.

The success of an automatic transformation is tied to the degree to which there is
a natural logical relationship between the components of the input information source
and the generated hypertext.c8assful implementation of the transformation is affected
by the degree to which the components of the information source’s representation are
represented unambiguously. One observation is that there is a natural affinity between
generic markup and logically defined components. However, generic markup is not
requiredin the information source’s representation. Since a document’s logical structure
is generally reflected in its appearance, consistently used physical markup descriptions
permit extraction of logically defined components. Database representations incorporate an
explicit identification of the components ech entry that can be used in transformation.
Even in the absence of markup, carefully applied standards can insure that the logical
components can be detected; for example the previously mentioned cataloging rules of the
American Library Associatiof10,11].

Just as logical structure can be represented in the absence of generic markup, it is also
worth noting that generic markup need not necessarily reflect logical structure. A poorly-
thought-out SGML Document Type Definition, for example, may provide little assistance
for transformation if unrelated cases are merged or if the markup units do not correspond
to natural logical divisions. From the standpoint of the translation developer, a clear
understanding of the structure of the information source is as important in specification as
is understanding of the target hypertext.

As noted, computer programs fall within the class of regularly and consistently struc-
tured fragmented information sources. Syntactically, programs exhibit a structure that is
finer-grained and more highly constrained than that associated with printed documents. We
expect that these structural characteristics can be used to advantage and that transformations
defined for computer programs will be stated for the language (i.e., all programs written in
that particular language) rather than for particular collections of instances, as is the case
with document transformations.

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 227

Based on our experiences with the specific architecture and implementations described
in this report, we are beginning to design a generalized toolkit to simplify the specification
of a transformation. The general routines identified in the implementations described here
form the basis for such a toolkit.

Finally, we have been pleasantly surprised by the significantamount of flexibility gained
through the architectural decision to first produce the hypertext in linearized form, rather
than to generate the hypertext database directly. Some of this flexibility resofigde the
intermediate form permits a clean separation of the generation of the hypertext’s content,
relationships, and structure from the details of generating the specific file representations
of the hypertext components. That the intermediate representation is formed from a string
of printable characters also increases flexibility, as the representation can be generated
from many separate sources, and indeed can be postprocessed easily with general-purpose
utilities if necessary. For example, it would be easier to apply an external spelling corrector
to the intermediate form than to the actual database.

The intermediate form was originally defined to aid in database transfer, as the
transformations have generally been carried out in a computer environment (Unix) that
is dissimilar from the environment that Hyperties runs in (IBM-PC). It may provide a
convenient intermediary for interchange among different versions of Hyperties and for
interchange between other hypertext systems and Hyperties.

REFERENCES

1. Dennis E. Egan, Joel R. Remde, Louis M. Gomez, Thomas K. Landauer, Jennifer Eberhardt,
and Carol C. Lochbaum, ‘Formative design-evaluation of “SuperBodiCM Transactions on
Information Systemg(1), 30-57 (January 1989).

2. Dennis E. Egan, Joel R. Remde, Thomas K. Landauer, Carol C. Lochbaum, and Louis M.
Gomez, ‘Behavioral evaluation and analysis of a hypertext browse€HH89 Proceedings
pp. 205-210 ACM, New York (May 1989).

3. Debbie Nunn, John Leggett, Craig Boyle, and David Hicks, ‘The REXX project: A case study of
automatic hypertext construction’, Technical Report TAMU 88-021, Department of Computer
Science, Texas A&M University (April 1988).

4. Robert J. Glushko, ‘Transforming text into hypertext for a compact disc encyclopedia’, in
CHI'89 Proceedingspp. 293-298 ACM, New York (May 1989).

5. Charles B. Kreitzberg and Ben Shneiderman, ‘Restructuring knowledge for an electronic
encyclopedia’, inProceedings of the International Ergonomics Association's 10th Congress,
Sydney, Australia (August 1988).

6. S. A. Mamrak, M. J. Kaelbling, C. K. Nicholas, and M. Share, ‘A software architecture
for supporting the exchange of electronic manuscriI®mmunications of the ACMN8Q(5),
408-414 (May 1987).

7. SandraA. Mamrak, Michael J. Kaelbling, Charles K. Nicholas, and Michael Share, ‘Chameleon:
A system for solving the data-translation problefBEE Transactions on Software Engineering
15(9), 1090-1108 (September 1989).

8. Gaston H. Gonnet and Frank Wm. Tompa, ‘Mind your grammar: A new approach tdlimpde
text’, Research Report CS-87-13, Department of Computer Science, University of Waterloo
(March 1987).

9. Richard Furuta, Catherine Plaisant, and Ben Shneiderman, ‘A spectrum of automatic hypertext
constructions’Hypermedial(2), 179-195 (1989).

10. Michael GormanThe Concise AACR2merican Library Association, 1981.

228 R. FURUTA

11. Anglo-American Cataloguing Rules, 2nditi@h, eds., Michael Gorman and Paul W. Winkler,
American Library Association, 1988.

12. Ben Shneiderman, ‘Reflections on authoring, editing, and managing hypertéxtte Bociety
of Text ed., E. Barrett, MIT Press, Cambridge, MA, (1989).

13. Richard Furuta, ‘Concepts and models for structured documentStyuctured Documents
eds., Jacques AnelrRichard Furuta, and Vincent Quint, pp. 7-38, Cambridge University Press,
Cambridge (1989).

14. P.J. Brown, ‘Turning ideas into products: The Guide systenPrateedings of Hypertext'§7
pp. 33—-40 (November 1987). Published by the Association for Computing Machinery, 1989.

APPENDIX A PC HYPERTIES FORMAT

In implementation, the PC-based Hyperties’ database (version 2.35i) is represented as a
collection of DOS files. The articles are contained in a set of files with exteR$ionone
article per file. The collection of articles is augmented with a single index file of name
INDEX.TIE . Other types of files are also present, but are not of as immediate relevance
to our transformations.

Each of the articlé-IL files is further subdivided into the following fields:

1. Thettitle of the article.
2. The short description.

3. The body’s contents, with the strings that correspond to links nested within delimiter
characters (the character before and after the string). Note that the filename
corresponding to the link’s target is specified in a subsequent field, not within the
body.

4. Alist of link target filenames. The first target filename corresponds to the first link
defined within the body, the second to the second, and so on.

5. Anote field, left empty in the transformation.

6. An empty field that had significance in earlier versions of Hyperties.

The file begins with a set of offset counts that point to start of these fieldgeaaidfield is
separated from the next by a delimiter character.
The global index filelNDEX.TIE , consists of a sequence of lines of the general form

Title|FILENAME| Status bytdssynonynj synonynj . ..

All'lines but the first correspond to an article. (The first line is a template line, showing the
maximum number of synonyms defined within the index.) The title field is not required to
correspond to the title defined in the article, but it generally does. Synonyms are the other
strings by which the article has been identified in the definition of links. The three status
bytes distinguish the introductory article that is shown when first starting up the Hyperties
browsing program, indicate whether the article is hon-empty, and indicate whether it is
actually present in the database.

TRANSFORMING REGULARLY STRUCTURED DOCUMENTS INTO HYPERTEXT 229

APPENDIX B ELEMENTS OF THE LINEARIZED HYPERTIES
DATABASE REPRESENTATION

This appendix describes the format of the linearized Hyperties database. Only the articles
are represented in the linearized form—the global index is generated from the information
contained here.

The linearized Hyperties database is represented as a sequence of commands, one
command per line. The description of this appendix shows the nine categories of commands
and illustrates the form afach. The order of the elements that encode a particular article,
shown below, is the order in which the commands will appear in the encoding of the
article. The database as a whole will be represented as a sequence of article encodings.
The generally used content designators are used in the indicated places within the article
encoding elements.

Elements that encode a particular article

¢ Begin article mark/filenaméfenamé < 8)
bfilename

Index title for article
i <string>

Article title
t <string>

Article definition marker
d
(< string-set> | < newline>)*

Article content marker
c
(< string-set> | < link-specification> | < newline>)*

Article end marker
e

Generally-used content designators

e < string-set>
s < string>

e <newline>
n

¢ <link-specification> (|filenam¢ = 8)
| filenamec string>

The < string-set> is used to represent strings that may be longer than one line in length
and to represent strings that are to be interspersed with links in the article’s body; the
< newline> marks the end of the generated line. Théink-specification- generates a

link that is represented in the Hyperties article’s body by the specifigtling> with the
givenfilenameas destination.

	SUMMARY
	1 INTRODUCTION
	2 DOCUMENT STRUCTURE
	2.1 Structured documents
	2.2 The Hyperties database

	3 ARCHITECTURES OF THE AUTOMATIC CONVERSION
	3.1 Domain-specific translation
	3.2 Linearized Hyperties database

	4 APPLICATION OF THE ARCHITECTURE
	4.1 UMIACS Abstract Listing
	4.2 University Microfilms dissertation abstracts

	DISCUSSION AND CONCLUSIONS
	REFERENCES
	APPENDIX A PC HYPERTIES FORMAT
	APPENDIX B ELEMENTS OF THE LINEARIZED HYPERTIES DATABASE REPRESENTATION

