
ELECTRONIC PUBLISHING, VOL. 2(4), 193–209 (DECEMBER 1989)

On integrated bibliography processing1

MICHAEL A. HARRISON AND ETHAN V. MUNSON

Computer Science Division
University of California at Berkeley
Berkeley, CA 94720
USA

SUMMARY
Bibliography processing systems are important to the production of scholarly and technical
documents. While the existing systems are a significant aid to authors, their designs are not suf-
ficient to handle the demands that have arisen with their continued use. These demands include
larger bibliographic databases, sharing of databases among multiple authors, integration with
document editors, and the desire for new features.

This paper examines these issues as they are reflected in three enhancements to the
bibliography processing facilities of the GNU EmacsBibTEX-Mode and TEX-Mode integrated
editing environment. The added features were a reference annotation facility, support of forms-
based queries for automatic citation, and an enhanced reference inspection facility supporting
WYSIWYG display of references. The design and implementation of the three features are
discussed in detail. Their relationship to other bibliography processing tools is discussed.

KEY WORDS Bibliography processing Document processing Integrated systems Annotations
Forms-based query Reference inspection

1 INTRODUCTION

Document preparation systems are now in widespread use for many purposes on a variety
of computers. Our concern is with systems which can be used for the preparation of
scholarly and technical documents. The issues in the design and implementation of these
systems have been discussed extensively in the research literature. Discussion of these
issues and further references can be found in the paper by Chen and Harrison[1] and in
Chen’s thesis[2].

An essential part of the scholarly process is to provide references to the work of others
through a bibliography. Efficient and convenient methods for searching bibliographic
databases and then constructing bibliographies can lead to a significant improvement
in the scholarly process. In this paper, we present some enhancements to an integrated
bibliography processing system.

The first bibliography processing system,refer[3], is now slightly more than a decade
old. The user ofrefer specifies the logical components of his references with a simple
language and places symbolic citations to these references in hisnroff or troff document.

1 Sponsored by the Defense AdvancedResearch Projects Agency (DoD), monitored by Space and Naval Warfare
Systems Command under Contract N00039-88-C-0292.

0894–3982/89/040193–17$8.50 Received 1 December 1989
c
1989 by John Wiley & Sons, Ltd. Revised 15 February 1990

© 1998 by University of Nottingham.

194 MICHAEL A. HARRISON AND ETHAN V. MUNSON

Referreplaces the symbolic citations with the actual citations that appear in the formatted
document and inserts formatting commands for a sorted bibliography at a user-specified
point in the document.Refer is limited by an implementation that sacrifices speed for
storage efficiency and by a lack of formatting options.

In the period since the introduction ofrefer, several other bibliography processing
systems have emerged and their use has become widespread, at least within the computer
science research community. Scribe[4] is a document processing system which includes
a bibliographic component. Both its language for defining references and its method for
specifying citations are quite different fromrefer. It also provides much greater control
over bibliography and citation formatting. BibTEX [5] is designed to work with the LaTEX
document processing system[6]. Its design is heavily influenced by Scribe. It is described
in more detail inSection 2. Bibgives users ofnroffandtroff a more efficient implementation
and greater control over bibliography and citation formatting than provided byrefer, with
which it is largely compatible.Tib [7] allows the use ofrefer andbib database files with
the TEX family of document formatters[6,8,9]. GNU Emacs TEX-Mode[10] and BibTEX-
Mode[11] provide an integrated environment for editing TEX and LaTEX documents and
BibTEX databases.

With most software, the passage of time gives rise to demands which were not originally
anticipated. For bibliography processing systems, some of the common pressures are:

Database SizeThe bibliographic databases of long-term users are becoming fairly large,
containing a few thousand entries. At this size, the lack of database management
tools begins to tell. Another common problem is that the symbolic citation schemes
used by these systems no longer work well. The problem is becoming more severe as
these systems have spread outside the computer science community to fields which
have a higher volume of publication and which make widespread use of on-line
reference services.2

Sharing Entries in a bibliographic database generally do not change. So, it makes good
sense to amortize data entry effort over several people by sharing the database. Also,
a shared database is more likely to be useful as a general reference tool, since it can
be used by an individual to locate sources he has not yet read. Existing bibliography
processing systems provide little direct support for sharing.

Integration Bibliography processing tools are not used in isolation. Rather they are just
one component of a set of editing, formatting, and information management tools.
Users naturally want these tools to be integrated, which they generally are not.

New Features A bibliographic database can be used for more than just producing a
document with citations and a bibliography. The sources identified by bibliographic
references are a central component of the scholarly enterprise and, as such, can be
put to many uses. Thus, a bibliographic database can be used to produce reading
lists and annotated bibliographies or to maintain notes on the documents it refers to.
Bibliography processing systems provide only limited support for these activities.

2 We know of abib database used by medical researchers which contains more than fifty thousand entries[12].

ON INTEGRATED BIBLIOGRAPHY PROCESSING 195

These pressures, combined with the inherent importance of bibliographic data, have
made bibliography processing an area of continued research. Several interesting systems
have resulted from this research. BiblioText[13] is a browser forbib databases. Bib-
Tool[14] is a bibliographic front-end to a relational database system compatible withbib.
BibIX [15]. is a collection of updates and additions tobib that corrects bugs and makesbib
more suitable for use in a biomedical research environment.

This paper describes three recent extensions to the bibliographic facilities of GNU
Emacs TEX-Mode and BibTEX-Mode. The three extensions are:

� Modification of BibTEX-Mode to support the attachment of annotations to an entry
in the reference database.

� An improved query method for use with the automatic citation mechanism of
TEX-Mode, which is better suited to large databases.

� A WYSIWYG display mechanism for the reference inspection feature of TEX-Mode.

This section is an introduction to the issues discussed in this paper.Section 2gives
some background on our document processing environment. The motivation and design
goals of the newly added features are presented inSection 3, while Section 4details their
implementation andSection 5discusses their relationship to other work on bibliography
processing. Thefinal sectionpresents some conclusions and suggestions for further
research.

2 BACKGROUND

While the concepts investigated for this research apply to any bibliography processing
environment, the tools which were developed to examine the concepts do not. These tools
help users who prepare documents which will be formatted using the LaTEX document
preparation system[6]. and its companion bibliography processing system, BibTEX [5].3

They are implemented as part of GNU Emacs TEX-Mode and BibTEX-Mode, which run as
part of the GNU Emacs programmable editor[16]. The remainder of this section gives brief
descriptions of each of these five systems, with special emphasis on their bibliographic
features.

2.1 LaTEX and BibTEX

LaTEX is one of the family of TEX document formatters. Like Scribe[4], on which it is
based, LaTEX’s formatting language is declarative, rather than procedural. BibTEX is its
accompanying bibliography processing program and closely resembles the bibliographic
component of Scribe.

The user provides LaTEX with a text file containing formatting commands and the
text of his document. All formatting commands begin with the backslash (‘\ ’) charac-
ter. If LaTEX is run on a file calledfoo.tex , it will produce a log file (foo.log), a
3 Actually, the features of GNU Emacs TEX-Mode allow the use of BibTEX with all members of the TEX family

of document formatting systems. However, for the sake of simplicity, we will only consider LaTEX documents.

196 MICHAEL A. HARRISON AND ETHAN V. MUNSON

@ARTICLE f kay:fairshare ,
AUTHOR =fJ. Kay and P. Lauder g,
TITLE = f A Fair Share Scheduler g,

JOURNAL = cacm ,
YEAR = f1988 g,
VOLUME =f31g,
NUMBER =f1g,
PAGES = f44--55 g,
MONTH = jan

g

H H Hj

Entry
Type

�����

Entry
Key

@
@I

Text of
the Field

� � � � �*
Field

Name

�
A

A
A

A
AK

Abbreviations

The Fields
of the Entry

Figure 1. A sample entry from aBibTEX database file

device-independent output file (foo.dvi), and an auxiliary file (foo.aux). When the
user wants to cite a source, he places a symbolic citation command in his file. For example,
the LaTEX command:

\cite{kay:fairshare}

cites a reference whose key iskay:fairshare . LaTEX records each symbolic citation
in the auxiliary file along with the bibliography style requested and the set of bibliography
database files specified by the user.

BibTEX reads the auxiliary file and searches the database files specified there for entries
whose keys match the symbolic citations. BibTEX then sorts the references according to one
of several predefined criteria and computes the actual citations that will appear in the final
document. The formatted references and the actual citations are recorded in a bibliography
file (which, for a main document namedfoo.tex , will be calledfoo.bbl).

A BibTEX database is a collection of text files containing entries specified in a simple
language. This language is based on the one used by Scribe and BibTEX will run correctly
with a Scribe reference database. A sample entry in shown inFigure 1. Each entry is
composed of a type name, a left brace or parenthesis, a key, a list of fields separated by
commas, and a right brace or parenthesis. The type name explicitly specifies the reference
type (e.g. @BOOK or @PHDTHESIS). The key acts as a unique identifier for the reference
(it is the user’s responsibility to insure uniqueness). Each field is composed of a name,
an equals sign (possibly surrounded by white space), and some text delimited either by
matching braces ordouble quotes.

Each of the fourteen entry types has a (possibly empty) set of required fields and a set
of optional fields. If the user fails to include a required field, BibTEX emits a warning but
continues to format the reference as best it can. In general, all required and optional fields
will appear in the bibliography (some styles may not output certain fields). BibTEX ignores
fields for which it does not have formatting instructions, effectively giving the user the
ability to add useful non-printing fields.

ON INTEGRATED BIBLIOGRAPHY PROCESSING 197

2.2 GNU Emacs TEX-Mode and BibTEX-Mode

GNU Emacs is a screen-oriented text editor, which runs on both glass-tty devices and
bit-mapped displays (using a tty-style interface). Emacs allows the user to have multiple
files open and to view several files simultaneously by dividing the tty screen into a number
of windows. User input and prompting is performed through a one-line window at the
bottom of the screen called the minibuffer.

For our purposes, the most important feature of Emacs is that it contains an embedded
Lisp interpreter. By writing programs for this interpreter, it is possible to change key
bindings, create keyboard macros, and to add complex features to the editor. Routines that
are useful when editing a particular type of file are often collected into amode. These
routines can communicate with the user through the minibuffer and can perform any editing
operation available to the user.

GNU Emacs TEX-Mode is just such a mode, designed to speed and simplify the
production of TEX and LaTEX documents. Its non-bibliographic features include automated
insertion of simple commands, spelling checking, indexing support[17], and automated
invocation of formatters, previewers, and printers. TEX-Mode provides three bibliographic
features:

� Bibliographypreprocessingscans the LaTEX source file for citations, builds a dummy
auxiliary file, and then runs BibTEX. This eliminates the need for the first run of
LaTEX. This facility can also replace symbolic citations with actual citations in
the source file and reverse the process, which allows the use of BibTEX with TEX
documents.

� Automatic citationprompts the user for a regular expression and then searches for
matching entries in his BibTEX database files. When the user tells BibTEX-Mode that
the correct entry has been found, a citation of that entry is placed in the document
file.

� Reference inspectionis essentially the inverse of automatic citation. It lets the user
view, in a separate Emacs window, the reference corresponding to a particular
citation in the document source file.

GNU Emacs BibTEX-Mode is used when editing BibTEX database files. Its most
important feature is forms-based editing. As can be seen fromFigure 1, the language used
to specify references is rather verbose. The forms-based editing routines can create a blank
template of a reference for the user to fill in. They also provide entry-wise and field-wise
operations for navigation, copying and deletion. These routines greatly reduce the user’s
data entry effort. BibTEX-Mode also supports automatic construction and formatting of
draft bibliographies, abbreviations which fill in the text of more than one field, and routines
for sorting database files.

3 DESIGN GOALS

As with any system in active use, experience with BibTEX-Mode and the bibliographic
features of TEX-Modehas identified areas whereadditional functionality would bedesirable.

198 MICHAEL A. HARRISON AND ETHAN V. MUNSON

The research described here involved the design and implementation of three new features
intended to meet some of these desires. The three new features were:

� A mechanism for attaching annotations to references,

� A more powerful query method for use with the automatic citation mechanism of
TEX-Mode,

� Enhancement of the reference inspection mechanism of TEX-Mode to allow the user
to view fully formatted references.

This section describes the design goals for each of the three features.

3.1 Annotations

The user of a bibliography processing system may wish to attach various types of
annotations to the references in his database. Some examples of possible reference
annotations are:

� an on-line version of the original document,

� source code of a relevant program,

� a collection of electronic mail messages discussing the document,

� the user’s evaluation of the document in his role of referee for a journal,

� informal notes about the document.

The variety of types of annotation shows clearly that reference annotation is an interesting
instance of the general problem of document annotation. Many types of documents can be
viewed as using annotations. For instance, comments in a program are a kind of annotation.
A link in a hypertext system can be viewed as pointing to an annotation. It is quite possible
that a mechanism for annotation of bibliographic references can be extended to other
domains.

BibTEX already supports the traditional notion of reference annotation with the AN-
NOTE field, which is intended to be printed in annotated bibliographies. However, not
all annotations should appear in an annotated bibliography and others do not belong in
the reference database. For example, some annotations, such as the original document,
could easily be larger than the bibliography database. The electronic mail messages might
well contain character strings which would cause formatting errors. Also, some of these
annotation types present security problems (e.g. the reviewer’s comments or program
source). It would be odd to place the entire text of a document in an annotated bibliography
and it would be inappropriate for a journal referee to store his comments in a shared
reference database. Clearly, this approach to annotation is too limited.

After considering these issues, we set the followinggoals for BibTEX-Mode’s annotation
facility:

ON INTEGRATED BIBLIOGRAPHY PROCESSING 199

Integration The user should be able to view a reference’s annotations at any time that
the reference’s database entry is visible, without exiting the editor. If the annotation
is itself a TEX document or BibTEX database file, all the features of the appropriate
mode should be available while visiting it.

Security If a reference database is shared, the user must be able to make his annotations
as public or private as he wishes. If possible, he should be able to hide the fact that
he has made any annotations to a reference at all.

Low Overhead The annotations mechanism should be simple and place only limited
additional burdens on the user. It must not require alterations in BibTEX or TEX or
require that the user maintain special files. Encryption-based security is possible but
is outside the scope of the present paper.

3.2 Improved queries for automatic citation

The purpose of the automatic citation mechanism of TEX-Mode is to help the user quickly
cite a reference without having to remember its unique identifier. Instead of remembering
the unique identifier, the user forms a query that will match the reference he wishes to cite,
though it may also match other, irrelevant references. TEX-Mode then searches through the
database for references which match the query. The user inspects them one by one until he
finds the correct reference, at which point he instructs the system to insert a citation of that
reference into the document he is editing.

In the original implementation of automatic citation, the user’s query was a regular
expression[16]. The regular expression approach to pattern selection is but one of many
possible approaches to a “query language”. An enormous amount of work has been done
by the information and database communities onaccessing bibliographic items using these
techniques. The reader can consult[18] for a sample of this work.

It is possible to express a wide range of complex queries using regular expressions.
However, it is not always easy. Suppose the user wants to locate a reference whose authors
include both Kay and Lauder. In TEX-Mode, he would use the case-insensitive regular
expression,

author *= *{[^}]*\(kay[^}]*lauder\|lauder[^}]*kay\).*}

This regular expression is not a simple construction, because it must account for alternate
orderings of the two names and the possibility of intervening text. In fact, it took a minute
to conceive and correctly type it. Yet, for all its complexity, there exist correct BibTEX
reference entries which it would not match, because, for instance, it ignores the possible
use of tabs or newlines instead of spaces to separate the word “author” from the equals
sign. Because of this complexity, searches are usually performed with simple regular
expressions. Often the regular expression will just be a single word, such as an author’s
last name or a word that appears in the title. These simple regular expressions cannot
specify which field a word appears in or specify alternate orderings of words separated by
intervening text.

When searching small reference databases, simple search queries may be adequate.

200 MICHAEL A. HARRISON AND ETHAN V. MUNSON

@QUERY{,
ANYFIELD = {},
AUTHOR/EDITOR = {kay lauder},
TITLE = {fair},
JOURNAL/BOOKTITLE = {},
INSTITUTION/ORGANIZATION/SCHOOL = {},
YEAR = {198[6-8]}

}

Figure 2. A sample forms-based query

However, when used to search large databases, they are likely to match many irrelevant
references. For instance, suppose the user knows that the reference he wishes to cite was
written by Knuth and contains the word “sorting” in its title. He could search his database
using either “Knuth” or “sorting” as his one word query. Whatever word is chosen is likely
to match many more references than a query which could specify the presence of both
words and the fields in which they were expected to appear.

In light of the shortcomings of regular expressions, we decided to implement an
improved query mechanism using a synthesis of the Query-by-Example database query
language[19] and the forms-based editingprovided by BibTEX-Mode. We call this approach
a forms-based querybecause the user specifies his query by “filling out a form”. A sample
forms-based query is presented inFigure 2. This query would match any entry whose
authors or editors included Kay and Lauder, contained the word “fair” in its title, and was
published between 1986 and 1988.

A forms-based query is constructed by placing regular expressions in the fields of the
query template. If multiple regular expressions are placed in a single field, they must be
separated by white space. Regular expressions which contain white space must be enclosed
in double quotes. The query inFigure 2has four regular expressions: “kay” and “lauder”
in the AUTHOR/EDITOR field, “fair” in the TITLE field, and “198[6-8]” in the YEAR
field.

For an entry to match the query, it must contain text matching each regular expression
in the query and that text must be in the same field as the regular expression. Regular
expressions that appear in fields with multiple labels (e.g. AUTHOR/EDITOR) may be
matched by text appearing in either field in the reference entry. Regular expressions that
appear in the ANYFIELD field of the query may be matched by any text in the reference
entry. It is important to note that the regular expressions that compose a query are combined
using an implicit “and” operation. The forms-based queries do not support all possible
combinations based on an “or” operation. Combinations based on “or”can be constructed
within single regular expressions using the alternation operator (“\| ”) and through the
use of fields with multiple labels. Thus, it is possible to search for a reference authored by
Karp, Knuth, or Kruskal, but it is not possible to search for one that was either authored
by Tarjan or published in 1972. We believe that the former type of query is much more
common in practice.

ON INTEGRATED BIBLIOGRAPHY PROCESSING 201

The forms-based query has a number of advantages over single regular expressions.
The user can easily specify in which field a string occurs, although this is not necessary.
It is also straightforward to specify multiple strings appearing in different fields. Since
no assumptions are made about the order in which regular expressions occur, it is not
necessary to specify all possible orderings (contrastFigure 2with the regular expression
example on page 199 above). Finally, it appears that it is easy for users to compose correct
forms-based queries. The same cannot be said of complex regular expressions.

One criticism of the forms-based query might be its use of regular expressions,
which is a formalism not widely understood outside the computer science community. We
anticipated that most searches would be based on simple strings, which are a special case
of regular expressions (cf. the AUTHOR and TITLE fields inFigure 2). Thus, a naive user
could simply ignore the regular expression features and think ofeach query as a collection
of simple search strings. Regular expressions allow more powerful queries because they
provide a concise mechanism with which to specify alternate words or spellings and, to a
lesser degree, numeric ranges. Moreover, because GNU Emacs provides regular expression
search, no further implementation was required to handle them.

In addition to the general form of the new query method, we established several other
design goals. First, the query template shown in Figure 2 represents a reasonable default
form, but it may not suit all users. For example, the author and editor fields were combined
because they seldom occur together and both contain similar types of information (i.e.
names). Some users may prefer to keep fields separate that are currently combined. They
may wish to reduce the size of the template by eliminating fields or wish to change their
order. Therefore, the choice of which fields appear and their order should be user-definable.
A second goal is that the new query method should not be substantially slower than the
regular expression-based search. The last design goal was that the new query mechanism
should be implemented as an independent component which can later be used for other
search-based operations.

3.3 Enhanced reference inspection

The original implementation of reference inspection suffered from a major shortcoming.
When the user invoked the reference inspection routine, what he wanted to see was some-
thing like what appears inFigure 3. Instead what he saw under the original implementation
was part of the bibliography file produced by BibTEX. This text contained many macros in
which the user has no interest. For example, this partially formatted version of the same
TEX-Mode reference is shown inFigure 4.

The goal of the third bibliographic enhancement was to support the display of fully
formatted references, such as that shown inFigure 3. This goal was chosen for two reasons.
First, it would enhance the aesthetic qualities of TEX-Mode. Second, it would demonstrate
that TEX-Mode could be used to control the on-screen page previewers[20,21] developed
as part of the VORTEX project. While TEX-Mode was already able to start the previewers,
it did not control them once they had been started. Thus, the implementation of this
feature demonstrates a new level of integration between the previewers and the editing
environment.

202 MICHAEL A. HARRISON AND ETHAN V. MUNSON

Figure 3. Sample display of fully formatted reference inspection

\bibitem{phc:texmode}
Pehong Chen.
\newblock Gnu Emacs {\TeX} Mode.
\newblock Technical Report 87/316, Computer Science

Division, University of California, Berkeley, California,
October 1986.

Figure 4. Sample display of partially formatted reference inspection

ON INTEGRATED BIBLIOGRAPHY PROCESSING 203

4 IMPLEMENTATION

This section describes the implementation of the three enhancements whose design goals
were presented in theprevious section.

4.1 Annotations

The annotation mechanism was implemented as part of BibTEX-Mode. Annotations are
stored in files whose names are recorded in a new field, the NOTEFILES field. For example,
a reference might contain the line:

NOTEFILES = {/usr/public/publicnotes, mynotes, hisnotes}

which names three different files of annotations. The user can examine annotations by
placing the editor’s cursor somewhere within the text of the entry and typing a sequence of
two keys. He is then given the option of viewing each file in the list, one at a time. If he
chooses to view a file, it is shown in a separate window of the editor. The user may then
decide to move to the next file in the list or to edit the file of annotations. New files of
annotations can be added simply by adding new file names to the list.

Security of annotations is inherited from features of the file system. If a user wishes
to prevent others from modifying or even from having access to a set of annotations, he
simply places them in a file to which only he has access. Then, even though others know
that such a file exists, it is protected to the same extent any other file can be protected.
However, the list of file names is not protected.

The file names recorded in the NOTEFILES field may be eitherabsoluteor relative.
Absolute file names have only one interpretation to BibTEX-Mode. When a relative file
name is given, a two-step search is made. First, the file is searched for in the context of the
current working directory. If an accessible file of that name is not found, then the second
step is performed. In the second step, the file is located by moving to each directory in the
path defined by the environment variableBTXMODENOTEFILESand searching for the
file from this new context.

The use of relative file names improves security because it allows a user to place a
name for his annotation file in the reference database without fully specifying its location.
Creative use of this feature can allow a user to cloak both his ownership of the file and even
the file’s existence. The disadvantage of allowing relative file names is best illustrated with
an example. Suppose that user A creates an annotation file “foo ” and records its relative
name in the shared bibliographic database. If user B also has a filefoo somewhere in the
directory path specified by hisBTXMODENOTEFILESenvironment variable, he will be
led to believe that his file “foo ” contains annotations for that particular reference when it
probably does not.

Experience with the annotations facility of BibTEX-Mode has shown it to be useful.
The most common use of the facility has been to attach informal notes to references,
particularly sources for which it is impractical to maintain physical copies. The user

204 MICHAEL A. HARRISON AND ETHAN V. MUNSON

interface is acceptable, but it is probably somewhat too rigid. In particular, it does not
easily support simultaneous viewing of multiple annotation files.

4.2 Forms-based queries for automatic citation

When the user invokes the automatic citation mechanism, he is asked to provide a
bibliographic file name, as before. Then, instead of being asked for a regular expression, a
new Emacs window is opened which contains a form like that shown inFigure 2, only not
filled in, and a recursive editing session is begun. The Emacs window which contains the
query operates under BibTEX-Mode, so the user is able to use familiar commands to move
from field to field. When the query has been completed, the user ends the recursive editing
session. The query is parsed and the database files are searched for matching references.
The user then browses the references in precisely the same manner he did under the
previous implementation. From the user’s point of view only the manner in which queries
are stated has changed.

There are two user-definable options. The user can choose whether to use regular
expressions or forms-based queries by setting a boolean variable. This value of this
variable can be toggled with short key sequences during the editing session. Also, the fields
which appear in the query are defined by a GNU Emacs Lisp variable. This variable holds
a list whose elements are lists of the field names which will appear on each line of the
query. For example, in the form shown inFigure 2, the line labeled AUTHOR/EDITOR
corresponds to the list element("AUTHOR" "EDITOR") . It is likely that most users will
set these options by placing the relevant commands in the startup file used by GNU Emacs.

One of the goals for this implementation was that the performance of forms-based query
be comparable to that for regular expression search. To test whether the implementation
fulfilled this goal, a series of informal tests were run to compare its performance to that
of the original regular expression method when searching a database of 1000 entries. The
results of these tests indicate that the forms-based query method is about 20% slower than
the regular expression method for searches having no “false positives”. However, when a
regular expression search did generate false positives, the user had to examine a number of
matching entries and reject them by striking the appropriate key. For searches with many
false positives, the need for user interaction can slow down the search quite a bit. In an
extreme case where there were nineteen such false positives, a forms-based query (which
generated no false positives) was found to be at least 35% faster than the regular expression
method.

This implementation fulfills the goals set for it. The informal measurements described
above indicate that it is able to locate references based on a forms-based query nearly as
fast as the regular expression search does. The display, editing, and parsing of the query is
implemented as an independent set of functions which can be used by other routines. The
user is able to freely define the fields which will appear in the query and which fields will be
combined. Finally, experience in using the new queries has been positive. The queries are
easy to compose and their expressive power is great enough to justify the small keystroke
overhead required to move from line to line and end the recursive editing session.

ON INTEGRATED BIBLIOGRAPHY PROCESSING 205

4.3 Enhanced reference inspection

Reference inspection has two steps. In the first step, the main document file is searched
for a citation. Then, the most recent file of output from BibTEX must be searched for the
corresponding reference. The implementation of this step was not altered. The second step
displays the reference on the screen. It was to this portion of the reference inspection
facility that the enhancements were made.

The implementation of the enhanced reference inspection feature of TEX-Mode depends
heavily on Steven J. Procter’sdvi2x [21] and its auxiliaryprograms.Dvi2x is a previewer
for TEX dvi files which runs under the X window system. Commands fordvi2x can be
issued either by the user (via the mouse and keyboard) or by other programs (via a UNIX
socket with a well-known identifier). One ofdvi2x ’s auxiliary programs isdvisend ,
which is used to send messages to the previewer over this socket. Any command which is
available to an interactive user ofdvi2x can be invoked usingdvisend . In particular,
it is possible to move the display ofdvi2x up and down on the page and to jump to
specific pages. Without Procter’s foresight in supporting the full functionality ofdvi2x
via inter-process communication primitives, the implementation would have been much
more difficult.

The basic notion in the enhanced reference inspection facility was to format the
existing bibliography file as part of a dummy document, preview the dummy document
usingdvi2x and then usedvisend to move thedvi2x window to display the proper
reference. The only problem with this approach is that there is no way to know from the
bibliography file where a reference will appear on the page or even what page it will be on.
Our solution to this problem was to modify the bibliography so that each reference in the
bibliography fell on a separate page. Since references are basically just small paragraphs,
they should never require more than a pageeach. Thus, it is straightforward to keep track
of the correspondence between the reference’s position in the bibliography and its page in
the dummy document.

TEX-Mode produces the type of display seen inFigure 3through a three-step process.
If the user wishes to inspect the references for “foo.tex ”, he must have already run
BibTEX to generate the file “foo.bbl ”. TEX-Mode makes a copy of “foo.bbl ” called
foo++.bbl which contains pagebreaks prior to each reference. Next, TEX-Mode creates a
dummy document file calledfoo++.tex , which has no text but does have a bibliography,
and runs LaTEX on this file. Finally,dvi2x is run to display the resulting output. TEX-Mode
controls the display of the references by invokingdvisend from within Emacs. Each time
a citation is inspected, advisend process is started which instructsdvi2x to display the
proper page.

This new implementation of reference inspection has both considerable power and
substantial limitations. As can be seen from the screen image inFigure 3, it results in a
considerable improvement in display quality. It also demonstrates that a programmable
editor can be used to control other interactive programs in a powerful and interesting way.
However, the success of the implementation results directly from the fact that it can be
assumed that references take up less than one page. There are many related tasks for which
WYSIWYG display would be a valuable tool. However, in many cases, it is not possible to

206 MICHAEL A. HARRISON AND ETHAN V. MUNSON

have thea priori knowledge about the formatted version of the document that is necessary
to construct this type of facility.

5 RELATED WORK

5.1 Annotations

The design of the reference annotation facility of GNU Emacs BibTEX-Mode was influenced
by Van De Vanter’s earlier work onbibview, a browser forbib databases[22]. Bibview
allowed the user to attach a single file of annotations toeach reference in the database by
placing its name in the%Zfield, whichbib does not normally use. These annotations could
then be viewed and edited in a separate window. Van De Vanter has recently released a
descendant ofbibview, called BiblioText[13]. BiblioText has a more general annotation
mechanism whereby certain fields may be defined to hold eitherfile linksor cite links. File
links point to files, while cite links point to other citations in the database. Since each entry
may have many instances of either type of field, BiblioText places no limits on the number
of annotation files.

BibTEX-Mode lacks the sophisticated user interface of BiblioText and does not provide
a true browsing facility. However, theBTXMODENOTEFILESenvironment variable can
be used to gain greater security than BiblioText allows. Also, because BibTEX-Mode is part
of an integrated editing environment and because changes to BibTEX database files do not
require regeneration of an inverted index (as withbib), the user can add file names to the
NOTEFILES field and view them without the need for any external processing.

5.2 Forms-based query

There are a number of interesting query methods used by other tools for bibliography
processing. One of the most common is theimprecise citation. An imprecise citation is
just a collection of words which all appear in the reference being searched for. It was first
used as the symbolic citation method in therefer[3] bibliography processing system. It is
also found in most systems which have descended fromrefer, including BiblioText and
the reference search program,lookup, which accompanies thebib system. BibTEX-Mode’s
forms-based queries can be used to duplicate imprecise citations by placing all the words
of the imprecise citation in the ANYFIELD field of the query.

Pro-Cite[23], a bibliography database system for personal computers, uses a system
of boolean queries to search its database. These boolean queries can express a very wide
range of search expressions. To reduce effort in constructing the queries, Pro-Cite also
supports the use of numeric and date ranges and wildcard characters and provides a query
construction dialogue box. In contrast, the forms-based queries of BibTEX-Mode can only
express disjunction for text within a single field and do not support negation. However, it
is not clear whether the additional expressive power of Pro-Cite’s boolean query language
is worth the increased complexity required for its use.

EndNote[24], another bibliography database system for personal computers, uses a
forms-based approach. When the user requests a search, he is presented with a dialogue

ON INTEGRATED BIBLIOGRAPHY PROCESSING 207

box containing three fields labeled “Author”, “Year”, and “Text”, which correspond to
the AUTHOR, YEAR, and ANYFIELD fields seen under BibTEX-Mode. EndNote does
not support regular expressions, wildcards or numeric ranges and the query dialogue is
not configurable. Thus, while EndNote uses a query method superficially similar to the
forms-based query of BibTEX-Mode, it has considerably less power.

Bib-Tool[14] is a bibliographic front-end to thePostgres database system[25]. It
supports database searches using both imprecise citations and a forms-based query method.
The only limitations of its forms-based queries, relative to BibTEX-Mode, are that the query
form is not configurable and that it cannotaccept multiple regular expressions in a single
field.

5.3 Reference inspection

Two other systems, BiblioText and Grif, can also be said to support reference inspection.
Both systems do so because reference inspection is a special case of a more general
function they provide.

BiblioText supports reference inspection as a special case of browsing. To perform
reference inspection, the user must be viewing the main document file in some other
window. Using the mouse and the features of the SunView[26] selection service, the user
selects the citation. BiblioText then searches the database for any matching references
and displays them. There should only be one such reference and, as with all references
BiblioText displays, it will be shown in formatted form. Thus, BiblioText can be said to
provide reference inspection.

Grif [27], a direct manipulation editor for structured documents, has a much more
general approach. In Grif, bibliographiccitations are just one instance of areference, which
is a link to some other item in the document. One of the many search operations supported
by Grif is a search for a “referenced item”. The referenced item of a bibliographic citation
is its entry in the bibliography. So, by selecting a citation and searching for its referenced
item, the user can perform reference inspection.

6 CONCLUSIONS AND OTHER RESEARCH QUESTIONS

These three enhancements to the bibliographymanagement environment provided by GNU
Emacs TEX-Mode and BibTEX-Mode are quite successful. The annotations mechanism
represents the first feature of the environment which leaves the domain of document
processing and moves toward a more general system of academic information management.
Relying on well-understood file system primitives, it supports sharing of both bibliographic
data and annotations while providing substantial assurances of privacy of annotations. One
question that still needs to be answered is whether the current system of handling relative
file names is acceptable.

The forms-based query system is a considerable improvement over the previous regular
expression mechanism. It is only slightly, if at all, more difficult to form simple queries and
complex queries are much more easily expressed. Most personal bibliographic databases
contain less than two thousand entries. However, there do exist shared databases with many

208 MICHAEL A. HARRISON AND ETHAN V. MUNSON

more entries. The passage of time is bound to create much larger databases with many
entries of substantial similarity. Users of these larger databases will need more powerful
queries like the forms-based queries described here. The forms-based query is not the most
powerful approach, but we believe it offers the best compromise between power and ease
of use of any existing system.

The enhanced reference inspection feature succeeds on several fronts. First, it is
aesthetically far superior to the earlier text-oriented reference display. Secondly, it is a
good example of how the regularity of a class of objects (in this case, formatted references)
can be used to make a difficult problem quite tractable. Finally, it clearly illustrates the
benefits of building systems which provide full control to both programs and users. Here,
the ability to senddvi2x the same commands as a user, but from GNU Emacs, was critical
to the successful implementation of enhanced reference inspection.

GNU Emacs TEX-Mode and BibTEX-Mode are an evolving editing system. In general,
they represent an attempt to emulate a monolithic, integrated editing and formatting
environment using a loosely connected set of programs. The enhancements of this system
have extended it into new areas and thus illustrate the power of a system based on a
programmable editor.

There is room for further research on bibliography processing. The most fundamental
problem with current bibliography processing systems is that they use simple text files
as databases. These systems provide only limited assistance to the user for assuring
the correctness of database entries and of citations. A bibliography system which could
integrate a real database with the document formatting aspects of bibliography processing
would be a substantial advance. One possible model is that of a bibliography server.
The server would allow users on many machines to input, retrieve, and manipulate
entries in a common database. It would communicate through a well-known interprocess
communication port. Text editors, browsers, and document formatting programs could be
altered to interact directly with the server. Such a system might be able to support very
large reference databases and would naturally support sharing.

Bibliography processing brings together database, hypertext, editor design, and docu-
ment formatting issues and poses an important question. Should bibliographyprocessing be
attacked with a monolithic, integrated system or with a collection of independent routines
or with some compromise between the two models? Perhaps the answer for bibliography
processing is also the answer for systems in general.

REFERENCES

1. Pehong Chen and Michael A. Harrison, ‘Multiple representation document development’,IEEE
Computer, 21(1), 15–31 (January 1988).

2. Pehong Cheni ‘A Multiple Representation Paradigm for Document Development’, PhD Thesis,
Computer Science Division, University of California, Berkeley, California, 1987. Available as
technical report UCB/CSD 88/436.

3. Michael E. Lesk, ‘Some applications of inverted indexes on the UNIX system’, Computer
Science Technical Report 69, AT&T Bell Laboratories, Murray Hill, New Jersey (June1978).
Also available in UNIX User’s Manual.

4. Brian K. Reid,Scribe: A Document Specification Language and its Compiler, PhD thesis,

ON INTEGRATED BIBLIOGRAPHY PROCESSING 209

Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, October
1980. Available as technical report CMU-CS-81-100.

5. Oren Patashnik,BibTEXing, Computer Science Department, Stanford University, Stanford,
California, January 1988. Available in the BibTEX release.

6. Leslie Lamport,LATEX: A Document Preparation System. User’s Guide and Reference Manual,
Addison-Wesley, Reading, Massachusetts, 1986.

7. J. C. Alexander,Tib, A TEX bibliographic preprocessor, Department of Mathematics, University
of Maryland, 1986. Version 1.3.

8. Donald E. Knuth,The TEX Book, Addison-Wesley, Reading, Massachusetts, 1984. Reprinted as
Vol. A of Computers & Typesetting, 1986.

9. Michael D. Spivak,The Joy of TEX, American Mathematical Society, 1985.
10. Pehong Chen, ‘GNU Emacs TEX-Mode’, Technical Report 87/316, Computer Science Division,

University of California, Berkeley, California (October 1986).
11. Pehong Chen, ‘GNU Emacs BibTEX-Mode’, Technical Report 87/317, Computer Science

Division, University of California, Berkeley, California (October 1986).
12. R. P. C. Rodgers. Personal Communication, September 1988. Report ofbib database containing

more than fifty thousand entries.
13. Michael Van De Vanter, ‘BiblioText: a hypertext browser for bibliographic data and notes’,

Technical Report 88/455, Computer Science Division, University of California, Berkeley,
California (October 1988).

14. William C. Hunter,BIB-TOOL: A Bibliographic References Manager, Master’s thesis, Computer
Science Division, University of California, 1988.

15. R. P. C. Rodgers, Kenneth Gardels, and Anat Finkelshtain, ‘BibIX—a bibliographic data base &
text formatting system for UNIX’, CALM/MedIX Technical Report 86-1.2, UCSF Laboratory
Medicine (July 1987).

16. Richard M. Stallman,GNU Emacs Manual, Fifth Edition, Version18, Free Software Foundation,
Cambridge, Massachusetts (December 1986).

17. Pehong Chen and Michael A. Harrison, ‘Index preparation and processing’,Software, Practice
and Experience, 18(9), 897–915 (September 1988).

18. Gerard Salton,Automatic Text Processing, Addison-Wesley, Reading, Massachusetts, 1989.
19. IBM, White Plains, N.Y.,Query-By-Example Terminal Users Guide, SH20-2078-0 edition,

1978. as described in[28].
20. Jeffrey W. McCarrell, ‘An overview of dvitool, a TEX dvi previewer under the SunView window

system’, VORTEX internal report, Computer Science Division, University of California, Berkeley,
California (December 1986).

21. Steven J. Procter, ‘Documentation on dvi2x, a TEX dvi previewer under the X window
system’, VORTEX internal report, Computer Science Division, University of California, Berkeley,
California (March 1987).

22. Michael Van De Vanter, ‘The user interface forbibview, a bibliographic browser’. Unpublished
Report, March 1987.

23. Personal Bilbliographic Software, Inc., P. O. Box 4250, Ann Arbor, MI 48106,Pro-Cite for the
Macintosh, User’s Manual, first edition, April 1988. Version 1.3.

24. Niles & Associates, 2200 Powell, Suite 765, Emeryville, CA 94608,EndNote: A Reference
Database and Bibliography Maker, 1989.

25. Michael Stonebraker and Lawrence Rowe, ‘The design of POSTGRES’, inProceedings, 1986
ACM-SIGMOD International Conference on the Management of Data(June 1986).

26. Sun Microsystems, Mountain View, California,SunView Programmer’s Guide, Release A of 17,
February 1986.

27. Vincent Quint and Ir`ene Vatton, ‘Grif: An interactive system for structured document manip-
ulation’, in Text Processing and Document Manipulation, ed., J. C. van Vliet, pp. 200–213.
Cambridge University Press (April 1986).

28. Jeffrey D. Ullman,Principles of Database Systems, Computer Science Press, second edition,
1982.

	SUMMARY
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Latex and Bibtex
	2.2 GNU Emacs Tex mode and Bibtex mode

	3 DESIGN GOALS
	3.1 Annotations
	3.2 Improved queries for automatic citation
	3.3 Enhanced reference inspection

	4 IMPLEMENTATION
	4.1 Annotations
	4.2 Forms-based queries for automatic citation
	4.3 Enhanced reference inspection

	5 RELATED WORK
	5.1 Annotations
	5.2 Forms-based query
	5.3 Reference inspection

	6 CONCLUSIONS AND OTHER RESEARCH QUESTIONS
	REFERENCES

