
ELECTRONIC PUBLISHING, VOL . 2(3), 119–142 (OCTOBER 1989)

triroff, an adaptation of the device-independent
troff for formatting tri-directional text

ZEEV BECKER בקר) זאב � � 6 � 9 � K �

9

,

N

�

) AND DANIEL BERRY ברי) דניאל + � K � 9 J �

T

�

,

X

)

Computer Science Department
Technion
Haifa 32000
Israel

SUMMARY

This paper describes a system for formatting documents consisting of text written in
languages printed in three different directions, left-to-right, right-to-left, and top-to-bottom.
For example, this paper is such a document because it contains text written in English,
Hebrew, Japanese, and Chinese. The system assumes that the input is in the order in which
the text is read aloud, and it produces output in which each language is printed in its own
correct direction, but for which a human cognizant of the reading conventions will reproduce
the input order. The system consists of three major pieces of software: Ossana and
Kernighan’s ditroff for formatting text consisting of only left-to-right or unidirectional text,
Buchman and Berry’s ffortid for rearranging right-to-left language text occurring in ditroff
output to be printed from right to left, and a new program bditroff for rearranging top-to-
bottom text occurring in ditroff output to be printed from top to bottom.

Below are translations of this English language abstract, except for this paragraph, into
Hebrew, Japanese, and Chinese. The latter two are each printed twice, once in a modern left-
to-right style, and once in a more traditional top-to-bottom style. The software described in
this paper was used to format and typeset this paper.

תקvיר

לשמאל oמימי ,oלימי משמאל ,mשוני mכווני בשלושה הנכתבות שפות mהמכילי mמסמכי לעריכת מערכת מתאר זה מאמר
וסינית. יפנית עברית, באנגלית, הכתוב טכסט מכיל שהוא oמכיוו כזה, jמסמ הנו זה מאמר לדוגמא, למטה. ומלמעלה
mאד jא ,oהנכו oבכוו מודפסת שפה כל שבו פלט מפיקה והיא ,mר בקול נקרא הוא בו בסדר oנתו הקלט כי מניחה המערכת
ו- Ossana של ditroff :mעיקרי mחלקי משלושה מורכבת המערכת הקלט. סדר את מחדש ייvר הקריאה למוסכמות המודע
הכתוב הטכסט לסידור Berry-ו Buchman של ffortid אחד, oבכוו או oלימי משמאל רק הכתוב טכסט לעיבוד Kernighan
למטה מלמעלה הטכסט לסידור ,bditroff חדשה ותכנית לשמאל, oמימי שיודפס jכ ditroff-ה של בפלט oהטמו לשמאל oמימי

למטה. מלמעלה שידפס jכ ditroff-ה של בפלט oהטמו

� 6 � (I � (

� � I � � � � I � � E � I � � . ; * K � $.] ^ + U Z � L K � T . L

+ H # & 2 � L �) E A S (R 5 	 � > # (� K � � & @ R 2 P � K � C

� 0 < � / � 1 L � 8 6 I � L � \ < L � F Q L ' 2 � L &
 J � � . H

� *) E A S (. � $ ' � K � < � � & @ / � & � (.) > L K G + ^ /

� � � I L � B . (� & � � L � L . L � � � �] ^ + U Z � L K H � + 0

/ R � � � K B . ' � K � �) ?] R . # & � K - 6 * I � 0 / � I ^ / G X

R & � � � K � (B $ � ' � K � < � � & @ / � � � I � > � / � L] ^ . &

 � (. ? � I * K � Q R 5 	 � > # (� K � A . � Ossana(Kernighan. ditroff
� ditroff. 0 / + D A ^ > L � � � I � . & � (R � � � U Z � K � A . �
Buchman(Berry. ffortid� � � & � ditroff. 0 / + D A ^ > L � E � I � . &
� (R � � � U Z � K � A . � � � � 7 M � I @ bditroff� . � $. G 7 � 5 (
� � � � I � � � L & � K �

0894–3982/89/030119–24$12.00 Received 22 August 1988
 1989 by John Wiley & Sons, Ltd. Revised 22 November 1989

© 1998 by University of Nottingham.

120 Z. BECKER AND D.M. BERRY

(� I (� 6 �

� � � � T R U A T S * I � 6 K � L � F < > H K �

K $ � . R R Z ^ R S K � (* B] � & E Q # # � �

� . � & O Y � > O A � > B I . ^ B A L � (& $ I

G 7 F . K L F N Q � $ � ' + . � S ' / � . �

7 M � F F � � F A R / � 0 � U (((� K 2] �

� � (. F A � � (5 � ' / K Z � . . 2 1 � � ^ �

5 I R 0 O . � D + 	 L � � � � &) � � L � L + �

(@ � / R � I I E �] K I � L � > $ L � & � U I

� B � + T " � T R > ^ � ^) K � L ' & 8 @) Z �

� D � D I U . R N # . < / ? H L K �
 6 R � �

� I U A D C & O I (& � G] � � G K J I 2 E L E

� T Z ^ � H F G � � X R + L + � � � P A K �

I R � > � M � F H K � & R . 0 . ^ < � L � S � I

� O K L � A (. A � (@ & # / / � . � K (T �

� F � � & N R 0 N A . / � & R L � � H \ � R . �

� F A E � (� / . . ? � � � � � � & � < C 5 .

L � . � D " � + D � � � � K � � � @ * L � 	 L ;

& . � I I E � D I / I � K - � � I /) � 0 � + *

� 7 �

? � � P � � � L � � O $ � R 1 E V O 4 � L � � 	 < / � � P 2 � � 8 � Y

� � � ^ � $
 * � � 4 � L � 4 �
 4 3 � � � � � � � 8 $ N L C � X �

F � ^ E 1 � 1 � � � L � � � \ � : F � � . � � L � O � F � 8 � O 4 3

* � � � ,
 � � � J � � � � J � � : � E J � � � @ /]
 3 S � � * 6 �

^
 3 X
 � � � � 	 � ^ G # & L �
 4 3] ^ � � @ N - W � < / � & L �

 �] * � � � @ 4 	 * � /] � G 7 � T � P O � � ,
 � Ossana and
Kernighan’s ditroff* 1 N] � � J � � % L] ^ 3 S
 � � + � Buchman and
Berry’s ffortid* 1 N] Y W + � bditroff*
 3 S
 E J �
 � � + �

� 7 �

 Y � N 3 1 A A � @ < � X / � 3 � � L
 � � R ?

3 W F � S N N � P 4 /

] � * � � C 4 $ � 1 �

S + F A
 	 ' A O 	 � 4 �
 J � L L � 3
 P E �

 � O N �] S N � * & 3 � 3 � � � � X � * 2 V P

E B R D � � � D � � L] � S � � O � � � � � O �

J D T � + � D � , / � ^ � � : , � � F � � � 4 �

� I I " � J I +
]
 � 	 � �
 F \ � � 4 8 � �

 T D E " � T E � � � � � * E � � � ^ � � � L L

� R * R U � R R / G] @ ^ 6 J � 8 : E � L Y � �

� O 1 R C % O N S 7 * N G � � � F 1 � � � � �

+ F N Y H L F I S � - # ^ � J � � � 8 � 	 O

� F 	 ' M] F G A � � W &
 � � O � 1 $ 4 � < $

*] S A ^ * H N T � � L 3 @ � 4 . � N � ^ / �

KEY WORDS Document preparation Multi-lingual Multi-directional Troff Typesetting

BACKGROUND

With variants of the UNIX operating system spreading throughout the world[1], there
is a concern to adapt the various UNIX facilities to be usable in a variety of languages
and in mixed language environments[2]. There has already been much work done in
multi-lingual formatting. For example, Becker describes one such what-you-see-is-what-

FORMATTING TRI-DIRECTIONAL TEXT 121

you-get (WYSIWYG) formatting system[3]. This paper describes new software whose
general goal is to help adapt the facilities of the UNIX device-independent troff, known
as ditroff[4, 5], to a multi-lingual environment.

The ditroff system is composed of a basic formatter called ditroff[5, 4] plus a number
of preprocessors, postprocessors, and macro packages. Among the preprocessors are

1. refer, for handling bibliographical citations[6]
2. ideal, for drawing pictures[7],
3. pic, for drawing pictures[8],
4. grap, for plotting graphs[9],
5. drag for drawing directed graphs[10],
6. flo for drawing flowcharts[11],
7. psfig for including figures drawn in POSTSCRIPT[12],
8. alg and its derivatives for formatting included program code[13]
9. tbl for laying out tables[14], and

10. eqn for laying out mathematical formulae[15].

Among the postprocessors are

1. all the various device drivers for translating ditroff output into the instructions
needed to print the formatted documents on various printing devices, ranging
from line printers, dot matrix printers, laser printers, through to photo-
typesetters,

2. all the various software that allows a preview, on a high resolution screen, of
how a document will appear when printed on some printing device, and

3. indx[16], for preparing a back-of-document index.

Finally, the macro packages include mm, man, ms, me, and mX, which are described in
the various versions of the UNIX Programmer’s Manual[17]. The primary advantage of
the ditroff system over other more monolithic systems is precisely that it is not monol-
ithic and is composed of many programs, which may be combined for application to a
document to get their combined functionality. It is relatively easy to add new programs
with new functionality as evidenced by the ever growing collection of pre- and postpro-
cessors cited above. Thus, it is relatively easy to experiment with new functionality in the
context of a full-function system.

These formatting programs were developed in a primarily English-speaking environ-
ment. However, in principle, these programs can be used in conjunction with any
language written from left-to-right with lines flowing top-to-bottom for which fonts are
mounted on the printing device.

The goal of the authors and their colleagues has been to adapt the ditroff collection to
the multi-lingual setting. A ditroff postprocessor, ffortid[18], has been developed to
make the collection usable as a bi-directional formatting system in conjunction with Ara-
bic, Farsi, and Hebrew fonts. In addition, the ability to handle very large character sets,
such as those used in Japan, Korea, and the People’s Republic of China, requiring two
bytes for encoding characters, has been added[19]. Interestingly, the three character sets
from these countries, the JIS, KS C 5601, and GB-2312 standards are all arranged as
94×94 matrices. Since all characters in these character sets are exactly the same square
size, the width tables and the processing for these character sets are nearly identical.

122 Z. BECKER AND D.M. BERRY

For the purpose of identifying groups of languages with similar formatting problems,
the following group names are used in this paper.

1. The group of languages, including English, whose members are printed with
alphabets of size less than 256 in the left-to-right direction is called the Latin
languages, even though it includes many languages, such as Greek, and Rus-
sian, not written with the Latin alphabet.

2. The group of languages, including Arabic, Farsi, and Hebrew, whose members
are printed with alphabets of size less than 256 in the right-to-left direction is
called the Middle East languages, even though it includes languages, such as
Urdu, whose locale is not really in the Middle East.

3. The group of languages including Chinese, Japanese, and Korean whose
members are printed with alphabets of size greater than 256, traditionally in
the top-to-bottom direction, is called the Far East languages.

There are a number of writing directions dealt with in this paper, they are identified
as follows.

1. The direction of writing in which the characters flow from left to right on a
line and the lines flow from top to bottom is called the left-to-right direction.

2. The direction of writing in which the characters flow from right to left on a
line and the lines flow from top to bottom is called the right-to-left direction.

3. The direction of writing in which the characters flow from top to bottom on a
line and the (vertical) lines flow from right to left is called the top-to-bottom
direction.

4. Together the left-to-right and right-to-left directions are called the horizontal
directions while the top-to-bottom direction is a vertical direction.

THE NEED FOR BI- AND TRI-DIRECTIONAL FORMATTING

Throughout the Far East, documents are written containing a mixture of text in Far East
and Latin languages. The Latin language text may include mathematical formulae. It is
often desired to print the Far East language text in the traditional top-to-bottom direction.
While it is possible to print the Latin language text letter-by-letter in the same direction,
it is preferable to print the Latin language text in its traditional left-to-right direction.

Moreover, in Hong Kong and Japan, newspapers and magazines have their main-line
Far East language written in the top-to-bottom direction and their headlines written in the
right-to-left direction. These same newspapers and magazines have advertisements using
Latin language text written in the left-to-right direction. Thus, in one document, text is
written in three directions, left-to-right, right-to-left, and top-to-bottom.

In the Xinjinang Uighur autonomous region of the People’s Republic of China, inha-
bitants speak the languages, Uighur, Kazak, and Kirgiz[20], which are written in the
right-to-left direction, as are their linguistic cousins Arabic, Farsi, and Urdu. When com-
bined with the general use of Chinese and Latin languages in the country, the need arises
in the region for tri-directional formatting. For example, at universities in the region, a
technical paper might very well be written in a local language, use English for technical
words, have formulae, and be required to have a Chinese abstract.

FORMATTING TRI-DIRECTIONAL TEXT 123

Finally, any business contract for high technology work done jointly by companies
from a Far East country and a Mid East country could require tri-directional formatting.

There is an additional language used in the Xinjinang Uighur region, whose correct
traditional printing direction was learned only after the software was written and the
referees’ comments on the first draft of this paper had been received. Mongolian is the
language, and in its traditional writing direction, the characters flow from top to bottom
on a line, and the lines flow from left to right! How this direction can be handled is dis-
cussed later in the section on weaknesses; implementing this solution is left for future
work.

Note that if the tri-directional formatting problem is solved, then any bi-directional
sub-problem, e.g., left-to-right and right-to-left, left-to-right and top-to-bottom, and
right-to-left and top-to-bottom, is also solved.

THIS PAPER

This paper describes a pair of programs that enhance the ditroff collection to be tri-
directional. One of these, ffortid, which provides the right-to-left formatting capability,
was described in detail in an earlier paper[18]. The second of these, bditroff, which pro-
vides the top-to-bottom formatting capability, is the focus of this paper. The sequential,
piped composition of ditroff with these two programs is called triroff. By enhancing an
existing full-function formatting system, it is intended to be able to use the existing
system’s preprocessors and macros with no change. Indeed, this very paper was typeset
camera-ready for this journal on a Linotronic 300 at 1250 dpi with the help of refer,
pic, eqn, ditroff, ffortid, bditroff, and variants of the ms and mX macro packages that
were developed for this journal.

The plan for the rest of the paper is as follows. Existing software is surveyed in order
to be able to determine desirable properties of a tri-directional formatting system. Then it
is possible to identify a basic structure that allows these properties to be met. The basic
structure proposed works because of certain observable invariants in tri-directional text.
An algorithm that exploits these invariants is given. The algorithm allows a tri-directional
formatter to be built on the existing full-function ditroff system. It is explained how the
algorithm and the underlying ditroff system can be exploited by the layout designer to
achieve most desired effects. Some of these effects are illustrated by examples. However,
not all desired effects are achievable; the weaknesses of the present system are identified
and solutions are proposed for them. Implementation of these solutions is left to future
work.

EXISTING SOFTWARE

There are a variety of systems for formatting Japanese or Chinese printed from left to
right mixed with other left-to-right languages, e.g., English. These include Kameyama
and Hasebe’s jtroff[21, 22], Nagashima and Kawabata’s early adaptation of TEX[23]
for Japanese[24], Saito’s JTEX[25], and Berry’s and Chow’s adaptations of ditr-
off[19, 26]. These can also print Japanese and Chinese from top to bottom simply by
printing from left to right in landscape mode with a font consisting of the characters
rotated 90° counterclockwise. All of these systems use the standard 94×94 matrix
arrangement of the Japanese or Chinese characters, as the case may be. The first four of

124 Z. BECKER AND D.M. BERRY

these formatters have modified the base program, troff or TEX, so that two-byte character
codes are acceptable as input. The two-byte codes are generally distinguished from
ASCII characters by having the eighth bit turned on in each of the two bytes. The latter
two formatters avoid having to modify the base program, ditroff, by considering each row
of the matrix to be a separate font and addressing the cdth character of the abth row as
\f(ab\(cd. This, by the way, is the scheme adopted by the system presented here, as it
too is based on ditroff.

Among the products for Japanese and Chinese word processing on the Macintosh
are EgWord[27] and FeiMa[28]. Both EgWord, a Japanese word processor, and FeiMa,
a Chinese word processor, seem not to be able to deal with bi-directional text. All of their
examples are strictly left-to-right. However, since they run on a Macintosh computer
with its standard user interface, there is nothing to stop the user from rearranging some
text to be written from top to bottom, and cutting out this text and pasting it into another
document whose text is printed from left to right. In addition, FeiMa gives the user a
choice of printing direction when requesting the printing of a document; however, this
direction applies to the whole document.

One paper from the Xinjinang Uighur autonomous region[20] describes UKKMC-
DOS, a version of MS-DOS which is capable of accepting input in English, Uighur,
Kazak, Kirgiz, Mongolian, and Chinese. The text of each language is displayed on the
screen, printed in its own proper direction as it is being entered. The system is a
WYSIWYG system in which the screen appearance reflects exactly what is in the file.
The text in the file is broken into pages. Each page is treated as a two-dimensional array
of characters. When a page is seen on the screen, the array is displayed directly on the
screen with each row of the array being displayed on a separate row of the screen. Entry
of a Latin character causes cursor movement one position to the right both on the screen
and in the array, entry of a Uighur, Kazak, or Kirgiz character causes cursor movement
one position to the left, and entry of a Chinese or Mongolian character causes cursor
movement one position downward. In the editor, one moves around this array to address
directly each character in its own position.

Working with this system is rather straightforward precisely because the visual image
is a very accurate model of the internal structure. One is formatting the text as it is
entered, with the software taking care of most of the global formatting details, such as
keeping to the line length and to the page length. It is easy to address each character for
direct manipulation.

However, certain formatting operations are difficult with this system, most notably
changing the page sizing characteristics, e.g., the line length, and the page length.
Because the formatting is done during entry, based on the current setting of line and page
lengths, and the file is stored as it appears, changing either of these lengths means mas-
sive manual editing. If one could recover the original entry order of the characters from
the text, the original entry algorithms could be applied to the stream of characters relative
to the new line and page lengths. However, with raw printable characters, in which punc-
tuation is not distinguished by language, complete recovery is impossible because of
punctuational ambiguities. Thus a system in which the text is stored in the original input
order with the original language information is more general. This same problem occurs
with many, but not all, WYSIWYG systems, because many of them store the characters
in the visual order.

FORMATTING TRI-DIRECTIONAL TEXT 125

DESIRABLE PROPERTIES OF A TRI-DIRECTIONAL FORMATTING
SYSTEM

There appear to be a number of desirable properties that should be satisfied by a tri-
directional formatting system that make it more general, more functional, easy to use,
and easy to program.

In order to allow maximum formatting flexibility with easily changed sizing charac-
teristics, it is necessary to store the characters of the document in the order entered (with
backspacing corrections normalized out), and to let the formatting algorithm be applied at
the time of printing. This suggests a batch formatting system, but it does not preclude a
WYSIWYG system, so long as the formatting algorithm is fast enough to be applied on
the fly, with little observable delay to the user. This order of input is called time order; it
is the order in which the text is thought of as it is being written. It is the order in which
the properly formatted text is read out loud by a human reader cognizant of the multi-
directional text reading conventions. It is also the order in which the letters would appear
on paper if all languages were written in the same, say left-to-right, direction. This time
order is the input order that is assumed by a variety of multi-lingual systems, specifically
those implemented by Joseph Becker[3, 29], by Pierre MacKay and Donald Knuth[30],
and by Cary Buchman, Daniel Berry, and Jakob Gonczarowksi[18]. The groups doing
these projects seem to have arrived, independently, at the conclusion that time order is
best. That is, each group had written at least a draft of its paper and code before any of
the others’ papers had appeared.

Thus, from the input, shown in stylized form:

.ft R \"Roman
English
.in .5i \" effective ...
.ll 4.5i \" line length 4 inches
.br
.PR \" predominantly right-to-left
.ft HB \"Hebrew
תירבע
.br
.PL \" predominantly left-to-right
.ft KT \"Katakana
� � � *

.br

.BT \" begin top-to-bottom

.ft HR \"Hiragana
2 I � *

.sp

.ft CH \"Chinese
! Z

.br

.ET \" end top-to-bottom

assuming that English and Katakana are printed from left to right, Hebrew is printed from
right to left, and Hiragana and Chinese are printed from top to bottom with the columns
laid out from right to left, one gets as output something like:

126 Z. BECKER AND D.M. BERRY

English
עברית

� � � *

2

I

�

*

!

Z

To minimize both programming effort and user learning effort, it is useful for the for-
matting software to be an upward compatible extension of an existing system. For max-
imum functionality, it is useful for the underlying existing system to be a stabilized sys-
tem capable of dealing with pictures, tables, graphs, equations, indices, tables of con-
tents, bibliographical citations, program code formatting, indexing, etc. One example of
such a system is the UNIX documentor’s workbench (DWB) or ditroff collection.
Another is the TEX collection.

In this respect, it is best if the underlying system’s software can be used unchanged.
Then, only the new capabilities need to be programmed. Full functionality is obtained
with no additional programming effort. Finally, the user community can rely on extant
behavior being reproduced, even down to the bugs that have become features.

BASIC STRUCTURE OF SYSTEM

This paper describes a system for tri-directional formatting based on the UNIX DWB or
ditroff collection. The system assumes input

1. in time order,
2. with line breaks before and after each contiguous stream of constant width

characters—in Far East language fonts, all characters are the same width—to
be printed from top to bottom,1 and

3. with the current language and direction being identified by the current font.

The system uses the standard, essentially unchanged underlying ditroff formatting
program to make all the formatting decisions. Fonts for the standard character sets from
Korea, Japan, and the People’s Republic of China are arranged as a 94×94 matrix. For
the purpose of ditroff formatting of Far East language text, the martix is treated as 94
fonts each containing 94 characters, all exactly the same size. Thus, the only changes to
the ditroff program as distributed by AT&T are the changes of the constant defining the
number of fonts mounted to a number large enough to accommodate the 94 row fonts
plus whatever else is mounted on the local printing devices and of the constant defining
the size of the character set to something large enough to accommodate the 94 characters
1 To make sure that requiring line breaks before and after each block of top-to-bottom text is reasonable, we

went to the neighborhood bookstore and bought a Japanese magazine with both left-to-right and top-to-
bottom printing of Japanese. In all cases of switch of direction, there was an accompanying line break. That is
there was no case of beginning top-to-bottom printing on the same horizontal line that contains the preceding
left-to-right text, and there was no case of beginning left-to-right printing on the same horizontal line serving
as the bottom line of the rectangle of the preceding top-to-bottom text.

FORMATTING TRI-DIRECTIONAL TEXT 127

per row in addition to whatever else is available for the device. Because the standard
ditroff program is used, all existing preprocessors and macro packages still work. The
system generates output in exactly the same format as is generated by the existing stan-
dard ditroff. Thus all existing postprocessors still work, and the formatted output can be
printed on any existing device for which both a device driver and all the required fonts
are available. The ability to format right-to-left and top-to-bottom text in addition to
left-to-right text is created by the addition of two programs between the basic ditroff pro-
gram and the device drivers. These two programs each accept as input the output of ditr-
off and produce output in the same form as ditroff output. Thus these two programs can
accept as input each other’s output as well and can send their outputs to the same post-
processors to which ditroff can send its output. Because the input to the underlying ditroff
is in time order, ditroff’s output reflects formatting decisions made as if all the text were
written from left to right.

The first of the additional programs is ffortid, which, on a line-by-line basis, reorgan-
izes the line of text so that each contiguous sub-line of text in left-to-right fonts is printed
from left-to-right and each contiguous sub-line of text in right-to-left fonts is mirrored
about its own center in its current position so that it is printed from right to left. To this
program, top-to-bottom text is treated as left-to-right text. The second of the additional
programs is bditroff.2 On a page-by-page basis, bditroff reorganizes the text on a page so
that each contiguous n×m rectangle of text in top-to-bottom fonts, scanned left to right,
top to bottom, is permuted to become an m×n rectangle, scanned top to bottom, right to
left. Because the scanning directions of the two rectangles are perpendicular to each
other and the characters are all the same size, the n×m and the m×n rectangles actually
occupy the same area on the paper. Thus the structure of the system is as given in Figure
1.

INVARIANTS THAT ALLOW THE triroff SYSTEM TO WORK

The simple, modular structure described in the previous section works because of a
number of invariants that apply both to the text and its printing.

1. A given horizontal line on the page consists either of left-to-right and right-
to-left text or of top-to-bottom text. This is the case because of the line breaks
that are required at each point of changing from horizontal to vertical text or
vice-versa.

2. While reading, within each contiguous rectangle of horizontal text on a page,
one does not move from a line l to the next until one has finished reading all
the text on line l. Within line l, one may in fact bounce around reading in
alternating directions; however, no text is read more than once.

3. Within any such horizontal line, any permutation of the characters in the line
will have exactly the same length.3

4. Within any contiguous rectangle of top-to-bottom Far East language text
2 The origin of the name ‘bditroff’ is that to get ‘ditroff’ written from top to bottom in the unenhanced ditroff,

one says \b’ditroff’; this utterance appears to the shell as ‘bditroff’.
3 For the length to be totally independent of the order, it is required that any kerning algorithm has the current

font’s direction as a parameter in order to know which pairs of letters must be kerned. If the algorithm is
table-driven, then the kerning distance of the pair (X,Y) must be adjusted to look good when Y is printed to the
left of X.

128 Z. BECKER AND D.M. BERRY

Preprocessors

ditroff input format

ditroff

ditroff output format

ffortid

ditroff output format

b
d
i
t
r
o
f
f

ditroff output format

Postprocessors

Figure 1. Data flow of triroff

FORMATTING TRI-DIRECTIONAL TEXT 129

within a page, any permutation of the text within the rectangle will exactly fill
the rectangle. For the purpose of this statement, trailing blanks are considered
to be characters. This invariant works because the widths and the heights of all
Far East language characters are the same.

Observe that application of ffortid to the output of ditroff should not affect the holding
of the invariants. ffortid merely permutes the characters of horizontal lines; these lines
remain horizontal. In fact, whether or not ffortid has been applied is irrelevant to bditroff
because it leaves horizontal lines intact.

The description of the algorithm in the next subsection appeals to these invariants to
demonstrate that the algorithm does work.

THE bditroff ALGORITHM AND ITS USE

The following discussion assumes the following input, in which lower case letters
represent characters of a variable-width font to be printed from left to right and in which
upper case letters represent characters of a constant width font to be printed top-to-
bottom. Note that the algorithm can be used to print any text from top to bottom so long
as the text is composed entirely of characters that have the same width, either naturally or
via the .cs command. Consider the input:

.ft R
\s9ada is a trademark of the u.s. dept. of defense.
ms-dos is a trademark of microsoft, inc.\s(10
.br
\!x TS
.ft C
A B C D E F
G H I J K L
M N O P Q R
S T U V
W X Y Z
.br
\!x TE
.ft R
\s9ffortid is a trademark of berry computer scientists, ltd.
unix is a trademark of at&t bell laboratories.\s(10

Note the .br commands before and after what is considered top-to-bottom text. Note
also the transparent outputs, \!x TS and \!x TE, signalling the start and end of what
is to be printed from top to bottom. Assuming a line length that allows 5 constant width
characters and intervening blanks per line, and ignoring page breaks that might occur in
the midst of the example, the output of ditroff follows, shown schematically, i.e., after
passing it through the device driver:

ada is a trade-
mark of the
u.s. dept. of
defense. ms-

130 Z. BECKER AND D.M. BERRY

dos is a trade-
mark of
microsoft, inc.
A B C D E
F G H I J
K L M N O
P Q R S T
U V W X Y
Z
ffortid is a
trademark of
berry com-
puter scien-
tists, ltd. unix
is a trademark
of at&t bell
laboratories.

The rectangular region to be reorganized by bditroff is the 5×6 region containing the
typewriter font characters. This region’s last four characters are blanks of exactly the
same size as the letters. Suppose that all of the text fits on one page. Then, bditroff reads
the characters in the region in a left-to-right, top-to-bottom sweep, as A, B, C, . . . blank,
blank, blank, blank. It then lays them out in a top-to-bottom, right-to-left sweep in the
same order to fill the same region. After this reorganization, the text is, schematically:

ada is a trade-
mark of the
u.s. dept. of
defense. ms-
dos is a trade-
mark of
microsoft, inc.
Y S M G A
Z T N H B

U O I C
V P J D
W Q K E
X R L F

ffortid is a
trademark of
berry com-
puter scien-
tists, ltd. unix
is a trademark
of at&t bell
laboratories.

The reader should note that the algorithm is being applied by the formatting software on
these examples. If however, the page break were to come, relative to the original ditroff
output, after the third line of the constant width text, i.e., between the O and the P, the
output would be, schematically:

ada is a trade-
mark of the

FORMATTING TRI-DIRECTIONAL TEXT 131

u.s. dept. of
defense. ms-
dos is a trade-
mark of
microsoft, inc.
M J G D A
N K H E B
O L I F C
hhhhhhhhhhh

Y V S P
Z W T Q

X U R
ffortid is a
trademark of
berry com-
puter scien-
tists, ltd. unix
is a trademark
of at&t bell
laboratories.

Here, the horizontal rule represents the page boundary.
If one is using a ditroff macro package in which page headers and footers are gen-

erated, even just page numbering, then additional measures must be taken lest the header
and footer be included in the regions that are to be rearranged into top-to-bottom printing.
The macro that is invoked at the page bottom trap must issue the same commands that are
used to end a top-to-bottom region before it emits any of the regular page footer text.
Moreover, it must arrange that the very next invocation of the page header macro issue
the same commands that are used to begin a top-to-bottom region after it has emitted any
of the regular page header text. This arranging is done by setting a register to a value that
is later interrogated by the page header macro.

Consider any region in which bditroff has been asked to rearrange the text to be
printed from top to bottom. The beginning of the region may have been requested expli-
citly by the user or it may be the top of a page. The end of the region may have been
requested explicitly by the user or it may be the bottom of a page. In any case, the region
cannot be larger than one page. Any such region is a rectangle bounded by

1. the beginning,
2. the end,
3. the left margin of the page, and
4. the right margin of the page.

The rearrangement algorithm makes a column of text as long as necessary to fill the
region. All the extra blanks end up in the left most columns. If the user does not desire
this sort of filling, then it is straightforward for the user to adjust the page offset, line
length, page length, line spacing, etc. to obtain the desired physical appearance. The
authors examined Japanese magazines and found that the spacing between successive
characters in a column is about 0.1 times the character size, but that the space between
columns is about 1.2 times the character size. To achieve this appearance with the algo-
rithm, it suffices for ditroff to be told that the vertical spacing is 1.1 times the current

132 Z. BECKER AND D.M. BERRY

point size (as opposed to the more usual 1.2 times), and that the spacewidth is 1.2 ems (as
opposed to the more usual approximately 0.333 ems for variable width fonts or 1 em for
fixed width fonts). Of course, it is necessary to reset these upon leaving a region of top-
to-bottom text.

Observe that with this algorithm, text of length n residing within one line in ditroff,
e.g.,

A B C D

will end up being in what appears to be a right-to-left order, e.g.,

D C B A

as the algorithm fills a 1×n region top-to-bottom, with the columns of length one being
filled in from the right to the left. If it is desired to obtain an n×1 space, with all the text
down one column, one must trick the formatter a bit; ditroff can be forced to format the
text in a line length equal to the width of one character. Then the text gets printed
correctly, top-down, without application of bditroff, and applying bditroff reorganizes the
rectangle of one character width into itself. Thus, one can have the A B C D printed
downward, in a right justified column, by giving the input:

.\" set the page indentation to the current line length

.\" minus the new line length defined below

.nr XX \n(.lu-\w’\fCA’u

.in +\n(XXu

.\" set line length to the indentation plus the width of a

.\" standard character

.nr XX +\w’\fCA’u

.ll \n(XXu
\!x TS \" additional \ if invoked from diverted text
.br
A B C D
.br
\!x TE \" additional \ if invoked from diverted text
.br
.in \" reset indentation to previous value
.ll \" reset line length to previous value

Doing so yields the output:

A
B
C
D

One can obtain a centered column by giving the input:

FORMATTING TRI-DIRECTIONAL TEXT 133

.\" set the indentation to half of (the current line length

.\" minus the new line length defined below)

.nr XX (\n(.lu-\w’\fCA’u)/2u

.in +\n(XXu

.\" set line length to indentation plus the width of a

.\" standard character

.nr XX +\w’\fCA’u

.ll \n(XXu
\!x TS \" additional \ if invoked from diverted text
.br
A B C D
\!x TE \" additional \ if invoked from diverted text
.br
.in \" reset indentation to previous value
.ll \" reset line length to previous value

The output obtained is:

A
B
C
D

In other words, the layout of the page is unchanged by the application of bditroff.
Thus, the page prepared only by ditroff and a device driver can be used as a guide to the
ultimate appearance of the page after application of bditroff.

Finally observe that the algorithm is page preserving. That is, the page on which a
given occurrence of a character appears does not change, although the character’s loca-
tion on that page might very well change. This fact means that the algorithm needs only
to consider one page at a time, that the maximum storage required for the program is that
to store one page, and that the output of the algorithm can be conveniently passed to any
device driver that works page by page. That is, it can assume that once it has built the
description of page n and has seen the beginning of the next, it may print page n with the
assurance that no more information for page n can arrive later.4 A POSTSCRIPT device
driver behaves under this assumption, as the POSTSCRIPT language is a page description
language.

REQUIREMENTS ON THE INPUT TO bditroff

In order for the algorithm described in the previous section to work it must be possible
for the program

1. to determine the exact position of each character on the page, and
2. to determine independently the line and page boundaries in the input.

4 A major source of problems with tbl is that it can violate this single pass page construction property. If a table
with more lines than can fit on the current page also has vertical lines, which are normally drawn after
finishing the last row of the table, these lines get drawn on the second page from the projection of the start of
the table onto this page to the end of the table on this page.

134 Z. BECKER AND D.M. BERRY

The ditroff output consists of a preamble describing the device, followed by a
sequence of page descriptions each beginning with a page command of the form pn sig-
nalling the beginning of page number n. The description of a page consists logically of a
sequence of (position, character) pairs, each describing exactly where on the page to print
a character. The actual form of the position information is as occasional absolute coordi-
nates with intervening horizontal and vertical movements. Thus a program reading this
output must keep a position state and follow the relative movements in order to calculate
the exact position of each character. Embedded among these (position, character) pairs,
and actually independent of them, are end-of-line markers, of the form nb a; the impor-
tant thing here is the n; the b and the a give the amount of space before and after the line
in the device’s units. These markers are necessary and cannot be calculated from the
movements. There is no guarantee that all large movements to the left with small move-
ments downward are ends of lines. One finds such movements in equations, graphs, pic-
tures, tables, etc.

Because there are no end-of-line markers in TEX’s DVI output format, the system
structure adopted in this paper cannot be applied to make a tri-directional version of TEX.
Instead, one must make modifications to TEX either to have it do the reorganization or to
have it emit end-of-line markers[30]. In either case, one cannot use the standard distri-
buted TEX and one faces the problem of maintaining more than one version of the pro-
gram.

ACTUAL PROGRAM

In the input, one must signal the beginning of the text to be printed vertically by use of
the transparent output \!x TS and signal its ending by use of \!x TE. If the text to be
printed vertically appears in a diversion, the signals must be preceded by one ‘\’ per
level of diversion. In addition, if the signals occur in macro definitions, each ‘\’ must be
doubled. These signals must be preceded by breaking commands such as .br. To assist
the user in dealing with the top-to-bottom text, macros .BT and .ET are defined that do
these activities and that also adjust the line and word spacing to produce nicely spaced
columns. Their definitions are:

.de BT \" begin top-to-bottom processing

.\" The user is presumed to have properly set the .ps .ll

.\" and .in for desired printing

.br \" break

.\" Make sure that the appearance of mono-spacing is not

.\" destroyed by spreading characters to fill the line

.na

.\" signal beginning of vertical text
\\!x TS \" additional \\ if invoked from diverted text
.vs \\n(VV \"set vertical spacing
.ss \\n(VM*12 \" set space width to be the distance between
.\" columns
..
.nr VM 5
.\" should be 4 or 5 to get spacewidth 4 or 5 times normal
.nr VV \n(.s

FORMATTING TRI-DIRECTIONAL TEXT 135

.\" should be 1 or 1.1 times current .ps

.de ET

.br \"break

.\" signal ending of vertical text
\\!x TE \" additional \\ if invoked from diverted text
.ad \" go back to normal spreading of lines
.vs \" reset vertical spacing what it was
.ss 12 \" set space width back to normal
..

The .BT macro uses the values of the registers VM and VV to adjust the inter-word (hor-
izontal) space and the inter-line (vertical) space to help make it clearer to the human eye
that the text is to be read from top-to-bottom rather than horizontally. It is recommended
that VM be set to 4 or 5 and that VV be set to 1 or 1.1 times the current point size.

To assist the user in in forcing the location of the columns, the macros .RA, .BC, and
.EC are defined that force a given number of right adjusted columns, force a given
number of centered columns, and reset normal page margins, respectively. Their
definitions are

.de RA \"force right adjusted \$1 columns

.\" set the page offset to the current line length minus the

.\" new line length defined below

.nr XX \\n(.lu-(\\$1*\\w’\\f(a1\\(a1’u)

.nr XX -((\\$1-1)*\\w’\\f(a1\\ ’u)

.in +\\n(XXu

.\" set line length to (\$1 times the width of a standard

.\" character) plus ((\$1 minus 1) times the width of the

.\" inter-word space)

.nr XX +(\\$1*\\w’\\f(a1\\(a1’u)

.nr XX +((\\$1-1)*\\w’\\f(a1\\ ’u)

.ll \\n(XXu

..

.de EC \" end columns or centering

.in \" reset left margin to previous value

.ll \" reset right margin to previous value

..

.de CE \" centering \$1 columns

.\" set the page offset to half of (the current line length

.\" minus the new line length defined below)

.nr XX (\\n(.lu-(\\$1*\\w’\\f(a1\\(a1’u)

.nr XX -((\\$1-1)*\\w’\\f(a1\\ ’u))/2u

.in +\\n(XXu \" if invoked in diverted text, use \\!.po

.\" set line length to (\$1 times the width of a standard

.\" character) plus ((\$1 minus 1) times the width of the

.\" inter-word space)

.nr XX +(\\$1*\\w’\\f(a1\\(a1’u)

.nr XX +((\\$1-1)*\\w’\\f(a1\\ ’u)

.ll \\n(XXu

..

136 Z. BECKER AND D.M. BERRY

In order that .RA and .CE work properly with respect to the spacewidth established for
the top-to-bottom text in the .BT macro, it is necessary that the .RA or .CE come after
the .BT.

Obviously, these and other macro definitions given in this section must be modified to
use different names for macros and registers if any of them conflict with those of the base
macro set used, as indeed happened when these were used with the macro package sup-
plied by the editors of this journal for preparing the camera-ready copy. Moreover, these
macros assume that their invocations are not inside diverted text. If they are invoked in
diverted text, the transparent output commands beginning with \\!x must be changed to
begin with \\\\!x, i.e., an extra pair of ‘\’s must be added to delay the output until the
surrounding text is printed.

In order to allow proper control of horizontal spacing in a horizontal printing of the
Far East language fonts, the following special characters have been provided:

1. The interword space has been set at 0.125 em so that the proper horizontal
inter-character spacing can be obtained just by making each Far East language
character a word.

2. The blank character \f(a1\(a1 in the upper left hand corner of the charac-
ter matrix has the same 1 em width that all other characters have.

3. The \| character, which is normally 1/6 of an em space, has been set to have
the width of a full character so it can be used to force a full character width
without forcing a font switch to font a1, the font of the blank character and
without forcing emission of a character; i.e, ditroff treats use of \| as a move-
ment.

4. The \ˆ character, which is normally 1/12 of an em space, has been set to have
half the width of the \| character. It too is treated by ditroff as a movement
with no character emission.

5. The \& character is still the zero width character.
6. Finally the \(XX character has been provided in the S font as printing nothing

but having a width equal to that of the blank and all other characters. It is a
true character, so ditroff emits a character. It is on the first special font, so it
can be used regardless of the current font without having to request a new
font.

EXAMPLES

This section shows a sample of input and of printing it both from left to right and from
top to bottom. Unlike in [19], there is no need for cutting and pasting to get both of the
outputs on the same page!

The text is a famous Chinese poem, composed around 700 A.D. by the most
renowned poet in China, Li Bai. The input is:

\f(e0\(ae \f(c1\(b0 \f(cc\(c0 \f(b7\(ee \f(b8\(f7 \f(a1\(a4
\f(b5\(bf \f(c0\(a7 \f(c3\(cf \f(be\(e5 \f(c1\(fa \f(a1\(a3
.br
\f(da\(aa \f(c6\(ac \f(cb\(be \f(cc\(c0 \f(b7\(ee \f(a1\(a4
\f(c4\(e3 \f(c6\(ac \f(bb\(d7 \f(b8\(ce \f(b6\(bf \f(a1\(a3

FORMATTING TRI-DIRECTIONAL TEXT 137

Its output in left-to-right mode is:

� � N W � � � / E Z �

 � � N � C � 7 . � �

Its output in top-to-bottom mode is:

 �

� �

�

 N

N W

� �

C �

� �

7 /

. E

� Z

� �

This printing was done using the .BT, .ET, .RA, and .EC macros defined above.

WEAKNESSES

The enthusiasm of the authors notwithstanding, the tri-directional formatting system
described herein has some weaknesses. Some are easily repaired, and others are not. The
problems and possible solutions are presented one by one in this section.

Orientation of punctuation characters

Readers who know a Far East language will have noticed that the punctuation symbols in
the examples are oriented incorrectly for top-to-bottom printing! They are oriented
correctly for horizontal printing. Specifically, the stand-alone punctuation symbols, the
period, the comma, etc., are in the lower left hand corner of their bounding boxes, and
the bracketing punctuation symbols, the parentheses, the braces, etc., are oriented in their
bounding boxes to wrap around the ends of enclosed horizontal text. A stand-alone sym-
bol needs to be in the center of gravity of its bounding box, and a bracketing symbol
needs to be rotated 90° counter-clockwise in its bounding box so that it can wrap around
an end of top-to-bottom text.

Probably the simplest solution is to add the missing alternative forms to the character
sets in unused positions. Then, the bditroff program can be modified so that when it is
working with a region of top-to-bottom text, it simply replaces the codes for the horizon-
tal versions of these characters by those for the alternative, vertical versions of the same
characters.

138 Z. BECKER AND D.M. BERRY

Inclusion of proportional spaced Latin characters in top-to-bottom text

triroff supports inclusion of Latin language text among top-to-bottom text, but only in an
unrotated, advancing-downward form using the constant width Latin characters found in
row three of the JIS, the GB-2312, and the KS C 5601 character sets. It is also common
these days, to rotate the Latin language text so that its natural right-to-left flow matches
the top-to-bottom flow of the surrounding Far East language text. That is, the Latin text
is printed in a variable width font sideways with its base line coinciding with the line run-
ning down the left edge of the vertical column containing the text. This printing is
achieved by having a Far East language font with its letters rotated 90° counter-
clockwise, and printing this Far East font together with the available Latin fonts from left
to right. If such a page is then rotated 90° counter-clockwise, it appears to the reader that
the Far East language characters are printed right side up top-to-bottom and the Latin
letters are printed sideways. Probably, this style arose simply because it is so easy to
implement with modern printing devices.

Figures 2 and 3, found in the appendix, show the Japanese and Chinese abstracts of
the paper printed in that style. The reason these figures are in the appendix is to preserve
the truth of the claim, made at the beginning of the paper, that the entire paper is printed
as a single document with the software described herein. The appendix figures cannot be
printed in the same run of ditroff that prints the rest of the paper, even with a rotated
Latin font, because the Latin font does not meet the constant width requirement for using
bditroff. It is typeset as a separate document using the trick of the rotated Far East
language font.

In order to be able to print the appendix in the same run of ditroff that prints the
paper, it is necessary to have a ditroff device driver that can change from portrait to
landscape mode and vice-versa at any arbitrary point in the document. The particular
device driver used to print this paper, psdit, from Adobe’s TRANSCRIPT package, does
not have this capability. There exists a device driver, namely Pipeline Associate’s
devps that has facilities for rotating arbitrary text at any angle. Thus, it should be pos-
sible to put the needed capability into any device driver.

In top-to-bottom Far East language text, a short multi-digit numeral in a Latin text
font is occasionally printed as a unit unrotated, with its base line perpendicular to the
vertical axis of the column that contains it. This works nicely when the numeral is short
enough so that it does not stick out too far from the width of the column. This cannot be
done in the current version of the software. However, there are a number of ways that
this feature can be implemented as an easy extension of the current software.

1. Add to the Far East language font all possible short multi-digit numerals as
single characters. If the fonts are POSTSCRIPT fonts, then the added characters
can, in fact, be POSTSCRIPT programs that build and show the numerals using
digits from one of the available Latin fonts. Since the length of these numerals
cannot be too much longer than the width of a normal Far East language char-
acter, the number of these is limited. Given the fonts used in this paper, it
appears that the maximum length of such numerals is two digits; thus only 99
numeral characters would have to be added to the Far East font.

2. Use the above mentioned facility, such as available in devps, that can rotate
any text any angle to build a macro that rotates its argument about its center

FORMATTING TRI-DIRECTIONAL TEXT 139

and fools ditroff into believing that the size of the argument is the same as that
of the normal Far East font character.

As one of the referees pointed out, in the Xinjinang Uighur region of the PRC, there
is another language spoken which is not written in any of the directions covered so far in
this paper. The language is Mongolian, and it is written from top to bottom on lines that
flow from left to right! Even if a font were available for the language, the current version
of the software cannot handle its printing direction. However, it would not be difficult to
make printing in the Mongolian direction another direction supported by the bditroff pro-
gram. It would mean making the direction in which the reconstructed columns flow
determined by a variable. The variable would be set to mean ‘right-to-left’ when the
result of saying ‘\!x TB’ is found and would be set to mean ‘left-to-right’ when the
result of saying ‘\!x TM’ is found. The result of saying ‘\!x TE’ can be used to end
the top-to-bottom region for either.

CONCLUSIONS

As can be seen from this paper, triroff works mostly as desired. That is, the three pro-
grams ditroff, ffortid, and bditroff combine to produce an effective tri-directional for-
matter that accepts any input accepted by ditroff, including that produced by any of
ditroff’s preprocessors, works with any set of ditroff macros, and generates output indis-
tinguishable from ditroff’s. This output is then acceptable to any ditroff device driver.
The use of this software to typeset this paper is a demonstration of this claim.

The main strength of the triroff approach is its modularity. This modularity allows
each new direction of printing to be attacked as a separate problem uncluttered by con-
cerns with other directions and other formatting problems. This modularity allows the use
of an unmodified ditroff, which in turn allows the use of all of ditroff’s preprocessors and
macro packages.

There are a number of minor problems both in appearance and in function. However,
their solutions are straightforward because of this modularity. For example, changing the
orientation of the punctuation symbols and moving them in the bounding box involves no
change to any of the programs composing triroff; it requires only the use of a different
Far East language font containing the reoriented and repositioned punctuation symbols as
added characters. The solutions to these problems are left for future work.

Of course, the ultimate judge of the quality of the software is the user. Accordingly,
the bditroff software described herein is available from the second author for a nominal
fee and under a non-disclosure agreement.

ACKNOWLEDGEMENTS

The Japanese and Chinese translations of the abstract were provided by Taiichi Yuasa
(R U L) and Kam Pui Chow (3 O) respectively. Low Hwee Boon (E �)
provided samples of Hong Kong and Singaporean magazines and newspapers.

The authors thank one particular enthusiastic, but critical, anonymous referee, whose
hard questions resulted in a greatly improved paper.

devps is a trademark of Pipeline Associates, Inc. DWB is a trademark of AT&T
Bell Laboratories. ffortid is a trademark of Berry Computer Scientists. Linotronic is a

140 Z. BECKER AND D.M. BERRY

trademark of Linotronic, Inc. Macintosh is a trademark of Apple Computers, Inc. MS-
DOS is a trademark of Microsoft, Inc. POSTSRIPT is a trademark of Adobe Computer
Systems. TEX is a trademark of the American Mathematical Society. TRANSCRIPT is a
trademark of Adobe Computer Systems. UNIX is a trademark of AT&T Bell Labora-
tories.

REFERENCES

1. International UNIX, Supplement to UNIX World, 1989.
2. R. Kasbarian, ‘The language of choice’, International UNIX 41–46 (1989).
3. J.D. Becker, ‘Multilingual word processing’, Scientific American, 251 (1), 96–107 (1984).
4. J.F. Ossana, ‘NROFF/TROFF user’s manual’, Technical Report, Bell Laboratories (11

October, 1976).
5. B.W. Kernighan, ‘A typesetter-independent TROFF’, Computing Science Technical Report

No. 97, Bell Laboratories (March, 1982).
6. M.E. Lesk, ‘Some applications of inverted indexes on the UNIX system’, Computing Science

Technical Report No. 69, Bell Laboratories (21 June, 1978).
7. C. J. Van Wyk, ‘IDEAL user’s manual’, Computing Science Technical Report No. 103, Bell

Laboratories (17 December, 1981).
8. B.W. Kernighan, ‘PIC — a graphics language for typesetting, revised user manual’, Computing

Science Technical Report No. 116, Bell Laboratories (December, 1984).
9. J.L. Bentley and B.W. Kernighan, ‘GRAP — a language for typesetting graphs, tutorial and

user manual’, Computing Science Technical Report No. 114, AT&T Bell Laboratories, Mur-
ray Hill, NJ 07974 (December, 1984).

10. H. Trickey, ‘DRAG — a graph drawing system’, in Electronic Publishing ’88, ed. J. André and
H. van Vliet, Cambridge University Press, Cambridge, UK, pp. 171–182, (1988).

11. T. Wolfman, ‘flo — a language for typesetting flowcharts’, M.Sc. Thesis, Technion, Haifa,
Israel (1989).

12. N. Batchelder and T. Darrell, ‘Psfig — a DITROFF preprocessor for POSTSCRIPT figures’, Techn-
ical Report, Computer and Information Science Department, University of Pennsylvania, Phi-
ladelphia, PA 19104.

13. S. Carson and D.M. Berry, ‘Alg* — filters for typesetting algorithms’, News, Usenet (1985).
14. M.E. Lesk, ‘TBL — a program to format tables’, Technical Report, Bell Laboratories (1978).
15. B.W. Kernighan and L.L. Cherry, ‘Typesetting mathematics — user’s guide (second edition)’,

Technical Report, Bell Laboratories (1978).
16. K.K. Abe and D.M. Berry, ‘indx and findphrases, a system for generating indexes for ditroff

documents’, Software—Practice and Experience, 19 (1), 1–34 (1989).
17. ‘The UNIX programmer’s manual’, Technical Report, Bell Telephone Laboratories, Murray

Hill, NJ 07974 (June, 1981).
18. C. Buchman, D.M. Berry, and J. Gonczarowski, ‘DITROFF/FFORTID, an adaptation of the

UNIX DITROFF for formatting bi-directional text’, ACM Transactions on Office Information
Systems, 3 (4), 380-397 (1985).

19. C.H. Ip, D.M. Berry, and K.P. Chow, ‘CWPR, a chinese/japanese word-processing system for
use with UNIX device-independent TROFF’, in Proceedings of Second International Confer-
ence on Computers and Applications, Beijing, PRC, pp. 570–577, (June, 1987).

20. Z. Wu, W. Islam, J. Jin, S. Janbolatov, and J. Song, ‘A multi-Language characters operating
system on IBM PC/XT microcomputer’, in Proceedings of Second International Conference
on Computers and Applications, Beijing, PRC, pp. 579–585, (June, 1987).

21. � � 7 and � � T
 �, ‘" � � G � Q (? ' � � & @ JTROFF . � �’, in P
S H] 8 Q H 31 S (� " 60 � E \) � Q G Q, pp. 1413–1414, (1985).

22. � � T
 � and � � 7, ‘" � � G � Q (? ' � � & @ . N N ((? ' � �

. � �’, in \ < L � Q H] � F Q Q !, pp. 1–10, (1985).
23. D.E. Knuth, The TEXbook, Addison-Wesley, Reading, MA, 1984.

FORMATTING TRI-DIRECTIONAL TEXT 141

24. � G � and N � . L, ‘TEX� . \ < L 0 /’, O 2S TEXF � � Q � ; ; 0 !,
CANONT � Q 6 (1986� 7N 17\).

25. Y. Saito, ‘Report on JTEX: a Japanese TEX’, TUGboat, 8 (2), 103–116 (1987).
26. K.P. Chow and C.T. Hung, ‘Chinese workbench: an interactive environment for chinese writ-

ers’, Technical Report TR-87-07, Centre of Computer Studies and Applications, University of
Hong Kong (June, 1987).

27. EgWord Version 2.2 English Reference Manual, Ergosoft Corp., Tokyo, Japan, October 1986.
28. FeiMa-II, Chinese Word Processor, English Reference Manual (Version 3.0), Wu Corp.,

Avon, Connecticut, August, 1986.
29. J.D. Becker, ‘Arabic word processing’, Communications of the ACM, 30 (7), 600–611 (1987).
30. D.E. Knuth and P. MacKay, ‘Mixing right–to–left texts with left–to–right texts’, TUGboat, 8 (1),

14–25 (1987).

APPENDIX

This appendix contains the Japanese and Chinese abstracts printed in the additional form
mentioned in the section on weaknesses, i.e., with variable width Latin language text
printed sideways so that its left-to-right flow matches the top-to-bottom flow of the con-
taining Far East language text. Due to the limitations mentioned in that section, these
abstracts could not be typeset as part of the document comprising pages 119 through 141
and the captions of page 142. Instead they had to be typeset as a single other document
and pasted in.

142 Z. BECKER AND D.M. BERRY

�
7
�

�
�
?
�
�
P
�
�
�
L
�
�
O
$
�
R
1
E
V
O
4
�
L
�
�
	
<
/
�
�
P
2
�
�
8
�
Y
�
�
�
^
�
$

*
�
�
4
�
L
�

4
�

4
3
�
�
�
�
�
�
�
8
$
N
L
C
�
X
�
F
�
^
E
1
�
1
�
�
�
L
�
�
�
\
�

:
F
�
�
.
�
�
L
�
O
�
F
�
8

�
O
4
3
*
�
�
�
,

�
�
�
J
�
�
�
�
J
�
�
:
�
E
J
�
�
�
@

/
]

3
S
�
�
*
6
�
^

3
X

�
�
�
�
	
�
^
G
#
&
L
�

4
3
]
^
�
�
@
N
-
W
�
<
/
�
&
L

�

�
]
*
�
�
�
@
4
	
*
�
/
]
�
G
7

�
T
�
P
O
�
�
,

�

O
ssana

and
K

ernighan’s
ditroff

*
1
N
	

]
�
�
J
�
�
%
L
]
^
3
S

�
�
+
�

B
uchm

an
and

B
erry’s

ffortid
*
1
N
	
]
Y
W
+
�

bditroff
*

3
S

E
J
�

�
�
+
�

�
6
�
(
I
�
(

�
�
I
�
�
�
�
I
�
�
E
�
I
�
�
.
;
*
K
�
$
.
]
^
+
U
Z
�
L
K
�
T
.

L
+
H
#
&

2
�
L
�

)

E
A
S
(
R
5
	
�
>
#
(
�
K
�
�
&
@
R
2
P
�
K
�
C
�
0
<

�
/
�
1
L
�
8
6
I
�
L
�
\
<

L
�
F
Q
L
'

2
�
L
&

J
�
�
.
H
�
*
)

E
A
S
(
.
�
$
'
�
K
�
<
�
�
&
@
/
�
&

�
(
.

)
>
L
K
G
+
^
/
�
�
�
I
L
�
B
.
(
�
&
�
�
L
�
L
.

L
�
�
�
�
]
^
+
U
Z
�
L
K
H
�
+
0
/

R
�
�
�
K
B
.
'
�
K
�
�
)
?
]
R
.
#
&
�
K
-
6
*
I
�
0
/
�
I
^
/
G
X
R
&
�
�
�
K
�
(
B
$

�
'
�
K
�
<
�
�
&
@
/
�
�
�
I
�
>
�
/
�
L
]
^
.
&

�
(
.
?
�
I
*
K
�
Q
R
5
	
�
>
#
(
�

K
�
A
.
�

O
ssana

(
K

ernighan
.

ditroff
�

ditroff
.
0
/
+
D
A
^
>
L
�
�
�
I
�
.
&

�
(
R
�
�
�
U
Z

�
K
�
A
.
�

B
uchm

an
(

B
erry
.

ffortid
�
�
�
&
�

ditroff
.
0
/
+
D
A
^
>
L
�
E
�
I
�
.
&

�
(
R
�

�
�
U
Z
�
K
�
A
.
�
�
�
�
7
M
�
I
@

bditroff
�
.
�
$
.
G
7
�
5
(
�
�
�
�
I
�
�
�
L
&
�
K
�

Figure 2. Japanese abstract Figure 3. Chinese abstract

	SUMMARY
	BACKGROUND
	THE NEED FOR BI- AND TRI-DIRECTIONAL FORMATTING
	THIS PAPER
	EXISTING SOFTWARE
	DESIRABLE PROPERTIES OF A TRI-DIRECTIONAL FORMATTING SYSTEM
	BASIC STRUCTURE OF SYSTEM
	INVARIANTS THAT ALLOW THE triroff SYSTEM TO WORK
	THE bditroff ALGORITHM AND ITS USE
	REQUIREMENTS ON THE INPUT TO bditroff
	ACTUAL PROGRAM
	EXAMPLES
	WEAKNESSES
	Orientation of punctuation characters
	Inclusion of proportional spaced Latin characters in top-to-bottom text

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX

