
h

ELECTRONIC PUBLISHING, VOL . 2(2), 91–100 (DECEMBER 1989)

Do we need maps to navigate round hypertext
documents?

P.J. BROWN

Computing Laboratory
The University
Canterbury
Kent, CT2 7NF, UK

SUMMARY

In many hypertext systems users are provided with a map of the underlying directed graph of
their hypertext document. Arguably this is like filling a program with goto statements and
then placating the readers of the program by providing a map of all the gotos. In this paper
we present an alternative approach which goes some way — but not the whole way —
towards providing a hypertext user interface that distances the reader from the underlying
directed graph.

KEY WORDS Hypertext Navigation Map Guide

INTRODUCTION

The object of hypertext is to represent a body of information in a form that captures all
the inherent interlinks in the information. Readers can then peruse the information,
following the links of their choice. The aim is that by these means the reader will more
quickly be able to gain an understanding of the information, and extract the parts he
wants.

There is debate about the extent to which information is inherently like an interlinked
mass of spaghetti. However, a good insight has been provided by Brooks [1] who says
that information is like spaghetti but the duty of a good author is to cut links so that, to a
beginner, the information appears to have a simple hierarchical structure — the backbone
— with a few cross-reference links that cut across the hierarchy. Only more advanced
readers need be presented with a full gamut of cross-reference links. This view holds,
incidentally, independent of whether the material is presented on paper or via hypertext.

If this view is accepted, a hypertext system must provide special support for
hierarchical links, but should also support cross-reference links — as indeed most
systems do. Furthermore if there are to be documents for advanced readers which
contain thousands of cross-reference links, there should be mechanisms to tame the
resultant complexity. On top of this, there is a requirement that a hypertext system must
be economical in the number of facilities that readers need to master: if the system is to
be used by casual readers, it is no good expecting them to read a 50-page user manual
before they start.

REPRESENTATION OF HYPERTEXT

We shall start by considering the representation of information. A body of information

0894–3982/89/020091–10$05.00 Received 14 October 1988
 1989 by John Wiley & Sons, Ltd. Revised 17 November 1988

© 1998 by University of Nottingham.

h

92 P. J. BROWN

Figure 1. Spaghetti links

stored in a form suitable for hypertext processing is called a hyperdocument. There are at
the moment no accepted standards for hyperdocuments, and each hypertext system has its
own representation. Nevertheless the underlying principles are common in that the
hyperdocument normally consists of a directed graph [2]. At the nodes of the graph are
fragments of text, and the arcs represent links between the fragments. (Identical
principles apply in hypermedia systems, where fragments at the nodes need not be
textual. In this paper, however, we will talk in terms of text in order to simplify the
discussion.) Even if authors make efforts to simplify the hyperdocument by cutting links,
its structure soon becomes a challenge for the human mind. Figure 1 shows an extremely
simple case: a set of eight leaf nodes with three alternative hierarchies, yet the picture is
still a bit hard to understand. Conklin’s [2] survey shows a directed graph representing a
real document and its complexity is mind-boggling.

We thus have the well-known problem of ‘getting lost in hyperspace’. This can
trouble both authors and readers, but we shall start by examining the problem from the
reader’s viewpoint.

The first point to be made is that, although getting lost is often claimed to be a great
problem, the evidence is largely circumstantial and conflicting. In some smallish
applications it is not a major problem at all, as, for example, in Shneiderman’s report [3]
of the use of a hypertext encyclopedia in a museum; he cited unusually careful and

h

DO WE NEED MAPS TO NAVIGATE ROUND HYPERTEXT DOCUMENTS? 93

skilled authorship as a prime reason for suppressing the ‘getting lost’ problem. It is
certainly true that the general standard of hypertext authorship is, because of
inexperience, dreadful. Doubtless when, in ten year’s time, we look back on current
hyperdocuments we shall be horrified at the poor grasp that authors had of the medium.
(A similar phenomenon applies, for example, to user manuals for software: the standard
of presentation ten years ago was much worse than it is today — even though the art of
writing such manuals has been evolving for forty years.) As time goes by, hypertext
authors will learn good presentation techniques, using various cues to help the reader
know where he is. These new techniques will be different from the techniques used by
authors of paper documents, since the medium is so different. The reason for the
currently conflicting reports on the seriousness of the ‘getting lost’ problem is doubtless
due to variability in authorship skills.

Although improvement in authorship techniques is the prime way to tackle the
‘getting lost’ problem, it will not solve the problem. What it will do is raise thresholds:
readers should have no trouble navigating round small to medium hyperdocuments, and
the ‘getting lost’ problem will only be paramount in largish documents. Thus we need to
continue to provide extra navigation aids for readers.

CURRENT METHODS

The current wisdom is that readers should be presented with a map of the
hyperdocument. Usually this map is a representation of (part of) the directed graph that
underlies the hyperdocument. Halasz [4] even claims that such a map is a requirement.

We are uncertain that this is wisdom. To understand why, it is best to take an
analogy. In the sixties programs were full of goto statements, and it was found that such
programs were hard to read. However, people did not attack the problem by creating
tools which, when fed a program, created a map which showed where all the gotos went.
(Perhaps fortunately, graphics terminals were extremely rare in those days so such an
approach had severe practical difficulties. There were, nevertheless, some attempts to
generate flowcharts automatically from programs.) Instead the problem was attacked
more directly, and gotos were largely superceded by better mechanisms. In fact the goto
was still present in programs in the sense that the underlying hardware that executed
programs was based on gotos, but readers of programs — and indeed writers of programs
— no longer had to be aware of this.

The purpose of this paper is to explore a step towards achieving a similar advance for
readers of hyperdocuments. We must emphasize that it aims to be a step rather than a
complete solution and that it is aimed at readers rather than authors of hyperdocuments
— though every author is, of course, also a reader. The essential tenet of the approach is
that a reader of a hyperdocument should not be made aware of the underlying structure of
the document any more than the user of, say, a database or information retrieval system
need be fully aware of its underlying structures. This same view has been expressed by
Oren [5] of Apple Computer, who points out that ‘getting lost in hyperspace’ can be a
bogus problem in that it relates to the creations of a piece of software rather than the real
nature of the information presented.

The approach has been implemented within the Guide hypertext system [6] so we
shall now give a brief description of Guide.

h

94 P. J. BROWN

THE GUIDE HYPERTEXT SYSTEM

Guide is a hypertext system that has been the subject of research and development at the
University of Kent at Canterbury since 1982. In 1984 Office Workstations Ltd (OWL)
became interested and they have since produced successful implementations on the
Macintosh and PC. The University has continued to develop Guide, and its rôle has been
to try out new ideas whereas OWL’s has been to produce successful products for the
marketplace — though the market driven approach has itself certainly led to new ideas.
The University’s work has been based on UNIX1 workstations, and here we will use the
term UNIX Guide to mean the University’s implementation rather than OWL’s. The fact
that it runs on UNIX rather than some other operating system is not, however, relevant to
this paper.

Most hypertext systems are based on pages (often called cards) of information, i.e.
each node of the directed graph is treated as a page. When the reader wants to go from
one page to another, either the current page is overwritten by the new one or, on systems
that support multiple windows, the new page may come up in a separate window. Guide
takes a different approach from the majority. In essence the user sees a single scroll.
Within this scroll are replace-buttons, and when the user selects a replace-button it is
replaced in situ by the text associated with the button. To be exact, a region around the
button is replaced: the region is normally just the button itself, but it could be a question
(an enquiry in Guide’s parlance) in which the button is embedded — or even a ‘page’ if
authors prefer that style. For readers unfamiliar with Guide, Figure 2 shows a Guide

Figure 2. Guide viewing a document

1 UNIX is a trademark of Bell Laboratories.

h

DO WE NEED MAPS TO NAVIGATE ROUND HYPERTEXT DOCUMENTS? 95

Figure 3. The result of selecting the Example button in Figure 2

scroll, and Figure 3 shows the same scroll after the replace-button Example has been
selected. Replace-buttons are shown in bold to distinguish them from ordinary text.

This mechanism is therefore a step away from the goto: material is inserted in context
rather than in a separate place. The replace-button is, however, only one of the linkage
mechanisms in Guide. There are also mechanisms for out-of-line replacement (i.e. the
new material comes up in a new window or sub-view) and for performing a goto (e.g. by
refocusing the current scroll at a new position).

There are thus mechanisms both for hierarchical links, that are implemented by in situ
replacement, and cross-reference links, that are implemented by bringing up a new
window or refocusing the current one.

IN-LINE CROSS-REFERENCE

A strong hierarchical backbone certainly helps the reader to orient himself. Indeed
Akscyn et al. [7] believe that this on its own makes the need for a map marginal.
Inserting hierarchical material in situ, we believe, helps further. UNIX Guide, however,
has taken one extra step down the path distancing the reader from the underlying directed
graph: cross-referenced material can also be inserted in situ.

The approach is best illustrated by considering one of Guide’s current applications.
This is an application where it is used to display information on hardware faults, and to
allow the reader, by selecting the replace-buttons relevant to his current problem, quickly
to arrive at the section of the hyperdocument that diagnoses the fault. Initially the reader
is presented with an enquiry containing a list of possible problems, e.g. ‘Will not load’,
‘Printing problem’, ‘Hot smell’, each represented by a replace-button. He selects one of

h

96 P. J. BROWN

these and this typically leads to a further enquiry with several embedded buttons for
selecting the reply; for example

Is the screen Blank or Flickering or OK?

The user continues answering questions until he reaches a point in the hyperdocument
that suggests the cause of the fault. (There is, incidentally, no element of artificial
intelligence: it is just walking a directed graph, in this case a non-cyclic one.)

In practice, of course, different paths through the document often converge. If, say,
cables are faulty this may manifest itself to the user as ‘Will not load’, ‘Blank screen’,
‘Drive will not start’, etc. Whichever of these replace-buttons the user selects, he will
eventually come to the part of the hyperdocument that deals with cabling problems.

In the old paper-based system on which this hyperdocument is based, the cabling
problems in fact came under loading problems, and the other manifestations led to cross-
references to this part of the manual.

The simplistic approach, therefore, is to make the hyperdocument ape the original
paper document: i.e. to make the link to cabling from the ‘Will not load’ dialogue a
hierarchical link and to make any other link to cabling a cross-reference link. This,
however, makes no sense from the reader’s viewpoint, since he sees all the paths to
cabling as equally hierarchical. UNIX Guide provides a mechanism that supports the
reader’s natural view. The mechanism is a special sort of replace-button called a usage-
button; this appears to the user just like an ordinary replace-button, but in fact gets its
material by following a cross-refence link in the hyperdocument. The exact mechanism
is that the author designates the material on cable faults to be a definition, and the usage-
buttons make use of this definition. When the usage-button is selected the definition is
copied and this acts as the replacement of the button.

MULTIPLE COPIES

We now move on to a more esoteric but nevertheless important point. If two usage-
buttons share the same definition it may happen that the user has expanded both. This is
unlikely, perhaps, in our example, where the user has a well-defined goal of following a
path until the fault is diagnosed, but in applications where the user is exploring
information it can, and does, happen. This brings up a design choice: are multiple copies
independent of each other or are they treated as several views on the same information?
There is no easy answer: the first approach is better for user-inserted bookmarks, since
the user will not want lots of duplicate bookmarks, and the first approach is also normally
better for marginal notes; for most kinds of editing, on the other hand, the second
approach is preferable. The first approach is easier to implement unless an infrastructure
that supports multiple views of information. e.g. the Andrew Toolkit [8] is available.
UNIX Guide has chosen the first approach; it thus unequivocally maintains its
hierarchical model to the user.

Users of UNIX Guide can edit their scroll and save the resulting hyperdocument, and
thus the inherent disadvantages of multiple copies need to be faced. UNIX Guide’s rule
is that there is one master (the definition) and any other copies are transient copies of the
definition (made at a certain moment and not subsequently changed if the definition
changes). If a user tries to edit a transient copy he is given a warning message, since the
results of the editing will not be saved. (To be exact, Guide offers two kinds of saving:

h

DO WE NEED MAPS TO NAVIGATE ROUND HYPERTEXT DOCUMENTS? 97

one saves the document with all its structure; the other saves the current instantiation.
Transient copies are only lost on the structural save.) There are also mechanisms —
currently somewhat imperfect — that help the user find where the definition is.

This approach seems to work well on those few occasions when the problem of
duplicated information arises.

A DIFFERENT EXAMPLE

The purpose of usage-buttons is to reinforce the user’s hierarchical view of the way he
explores a hyperdocument and to disguise the underlying leaps round a directed graph. It
turns out, however, that usage-buttons have other merits in that they open out new
applications not normally associated with hypertext systems.

One example — a diversion from the main theme of this paper but perhaps of some
interest in itself — is the exploration of a BNF definition of a language. For example the
BNF definition of Pascal could be transliterated into corresponding Guide definitions.
Given this, an author can take any Pascal language construct — here we will assume
<while-statement> — and provide a usage-button corresponding to it. On selecting the
<while-statement> usage-button, the user would see a copy of the corresponding
definition, which is

whileiiiii <expression> doii <statement>

The user can instantiate the above by selecting either of the two replace-buttons within it.
If, for instance, he selects the first, the above will be replaced by

whileiiiii <simple-expression> | <relational-expression> doii <statement>

Each replace-button in the above expansions is a usage-button which causes a copy of the
corresponding definition to be inserted when the button is selected. Where there is an
alternative, such as <simple-expression> or <relational-expression>, this is represented
by a Guide enquiry. Guide allows recursion: indeed, selecting <statement> above
would lead back to <while-statement> as one of the alternatives.

The whole arrangement, which is built entirely in terms of Guide’s usage-buttons,
definitions and enquiries, can be used by readers to get a feeling for a BNF definition of a
language by investigating the various instantiations of each language construct. (The
approach depends, incidentally, on Guide’s property that multiple copies are independent
of each other: most fully instantiated examples will contain many independent
occurrences of such constructions as <expression>.)

UNDOING

In any application of hypertext, readers will need to go backwards as well as forwards.
In particular they will want to undo (i.e. fold back) previous replace-button selections in
order to go back to an earlier state and then, perhaps, explore other paths.

Guide’s use of in situ replacement makes it possible to provide a particularly simple
user-interface for this operation. The rule for the user is simply: ‘if you want to get rid of
anything, simply point at it and click the undo button on the mouse’. When this is done

h

98 P. J. BROWN

the replacement disappears and the original replace-button (or the enquiry in which it is
embedded) reappears in its place. There is no need for maps or other paraphernalia, such
as the history-trail mentioned below.

OTHER TYPES OF BUTTON

We emphasized at the start that our approach was only a step in tackling the ‘getting lost’
problem. In situ replacement is suitable for many applications and works well, but it is
not suitable for everything. As we have explained, Guide also supports buttons that
generate out-of-line material (which is displayed in a separate sub-window — an
ephemeral one in the case of note-buttons in OWL’s Guide), and buttons that cause a
goto. As examples the underlined terms in Figure 3, syntaxiiiiii and write permissioniiiiiiiiiiiiii, are
buttons; if one of these is selected the corresponding definition — an explanation of what
the term means — comes up in a sub-window. Authors see a need for these facilities and
make quite extensive use of them. Extra mechanisms are therefore still needed to help
readers know where they are, and retrace their steps. OWL’s Guide, for example,
provides a ‘history trail’ icon that allows recent steps to be retraced; UNIX Guide
provides a pop-up menu on an undo operation, and this allows the user to see the current
hierarchy — each item on the menu is the name of a button used to move down the
hierarchy — and to go back to a previous level. Figure 4 shows an example of one such

Figure 4. Pop-up menu giving current position in the hierarchy

h

DO WE NEED MAPS TO NAVIGATE ROUND HYPERTEXT DOCUMENTS? 99

pop-up menu. These mechanisms are, of course, something else for the user to learn, and
although simpler than full-blown maps, are steps in that direction.

Furthermore the mechanism of usage-buttons, although, we trust, helpful to readers is
of no special advantage to authors over a normal cross-reference mechanism. The author
still needs to keep track of how the usage-buttons link with the corresponding definitions.

RESTRICTED VIEWS OF THE HYPERDOCUMENT

Finally, we will mention one other common facet of hypertext systems: the restricted
view.

A popular way of simplifying a hyperdocument for certain users is to provide paths.
A path constrains (or, in less authoritarian systems, advises) the user to make certain
choices when travelling through the hyperdocument. This may be done either (a) by not
revealing to the user what the other choices are, thus making parts of the hyperdocument
totally invisible to him, or (b) by making it clear to the user what path is being taken, and
also what other alternatives could be available if the user was not constrained.

In a system like Guide which supports replace-buttons, a facility similar to paths can
be achieved by pre-setting buttons. A pre-set button is automatically replaced
immediately before the user examines the material in which the button is embedded.
UNIX Guide supports two kinds of pre-setting: one permanent, one undoable.
Permanent pre-setting prevents the reader seeing parts of a hyperdocument, whereas
undoable pre-setting sends the reader down a suggested path but still allows adventurous
readers to explore other possibilities. Undoable pre-setting therefore helps the reader get
a feel for a complete hyperdocument without the danger of getting lost in it. Pre-setting
is implemented by attaching a level number to each button: only users whose profile puts
them higher than this level will see the button. (One detail: usage-buttons can be pre-set,
but to guard against endlessly recursive usage-buttons, Guide gives up gracefully at a
certain maximum depth.) The level numbers are in fact a somewhat crude realization of
link attributes and a more general attribute mechanism would be a considerable
improvement.

An attraction of the use of pre-set buttons to implement paths is that it does not
represent a new concept for the reader to learn; indeed the whole purpose of a
permanently pre-set button is that the reader is totally unaware that some dictatorial
author has removed a choice from his view of the hyperdocument.

CONCLUSIONS

One approach to aiding navigation in hypertext is to provide a map of the complicated
structure that may underlie a hyperdocument. An alternative approach is to try to present
material to the reader in such a way that he need not be aware of the underlying
structures. Even a partial achievement of this goal, as is presented here, may be a
valuable advance.

Finally, it is worth emphasizing that maps have other uses than showing the reader
where he is at a particular moment. For example, a special map might be designed to
give an impression of the overall scope and structure of a hyperdocument, and perhaps
even to highlight the areas that the reader has not visited; it is an open question whether
the ideal map for such an application resembles a traditional navigational map.

h

100 P. J. BROWN

ACKNOWLEDGEMENTS

Two anonymous referees provided useful suggestions for improving this paper.

REFERENCES

1. F.P. Brooks Jr., ‘Banquet talk: the newly burning bush’, at Hypertext 87, Chapel Hill, North
Carolina (1987).

2. J. Conklin, ‘Hypertext: introduction and survey’, IEEE Computer, 20 (9), 17–41 (1987).
3. B. Shneiderman, ‘User interface design for the HyperTIES electronic encyclopedia’, in

Hypertext 87, Chapel Hill, North Carolina, pp. 189–194, (1987).
4. F.G. Halasz, ‘Reflections on NoteCards: seven issues for the next generation of hypermedia

systems’, Communications of the ACM, 31 (7), 836–852 (1988).
5. T. Oren, Personal communication, 1988.
6. P.J. Brown, ‘Interactive documentation’, Software—Practice and Experience, 16 (3), 291–299

(1986).
7. R. Akscyn, E. Yoder, and D. McCracken, ‘The data model is the heart of interface design’, in

CHI’88 Proceedings, Addison-Wesley, Reading, Mass., pp. 115–120, (1988).
8. A.J. Palay, F. Hansen, M. Kazar, M. Sherman, M. Wadlow, T. Neuendorffer, Z. Stern, M.

Bader, T. Peters, ‘The Andrew Toolkit — an overview’, Proceedings of EUUG Conference,
London, April 1988, pp. 311–314

	SUMMARY
	INTRODUCTION
	REPRESENTATION OF HYPERTEXT
	CURRENT METHODS
	THE GUIDE HYPERTEXT SYSTEM
	IN-LINE CROSS-REFERENCE
	MULTIPLE COPIES
	A DIFFERENT EXAMPLE
	UNDOING
	OTHER TYPES OF BUTTON
	RESTRICTED VIEWS OF THE HYPERDOCUMENT
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

