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SUMMARY
We present a new solution to the tree drawing problem that integrates an excellent tree
drawing algorithm into one of the best text processing systems available. More precisely, we
present a TEX macro package called TreeTEX that produces drawings of trees from a purely
logical description. Our approach has three advantages: labels for nodes can be handled
in a reasonable way; porting TreeTEX to any site running TEX is a trivial operation; and
modularity in the description of a tree and TEX’s macro capabilities allow for libraries of
subtrees and tree classes.

In addition, TreeTEX has an option that produces drawings that make thestructure of
the trees more obvious to the human eye, even though they may not be as aesthetically
pleasing.
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1 INTRODUCTION

The problem of successfully integrating pictures and text in a document processing
environment is tantalizing and difficult. Although there are systems available that allow
such integration, they fall short in many ways, usually in document quality. Furthermore,
most authors using document preparation systems are neither book designers nor graphic
artists. Just as modern document preparation systems do not expect an author to be a
book designer, so we would prefer that they do not expect an author to be a graphic
artist. The second author, Wood, needed to draw many trees in a series of papers and
in a projected book on trees. This problem enabled us to tackle the integration issue
for one sub-area of graphics, namely, tree drawing. We had the decided advantage that
there already existed good algorithms to draw treeswithout any author intervention.
Previous experience of the integration of pictures and text had been uninspiring; the
systems expected the author to prepare each picture in total. For example, a tree could
be built up from smaller sub-trees but the relative placement of them was left to the
author. This situation continues to hold today with the drawing facilities available on
most personal computers, and, because of this, the resulting figures still appear to be
‘hand-drawn.’ Additionally, they are of inferior quality when compared with the quality
of the surrounding text.

In this paper we present an entirely new solution that integrates a tree drawing algorithm
into one of the best text processing systems available. More precisely, we describe
TreeTEX, a TEX macro package that produces an aesthetically pleasing drawing of a
tree from a purely logical description. We made two fundamental design decisions that
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heavily influenced the method of implementation. First, we wanted to allow an author
to label the nodes of a tree. This decision means that the tree drawing package must be
able to typeset labels exactly as they would be typeset by the typesetting program. There
are two reasons for this. Text should be typeset consistently, wherever it appears in a
document, and the tree drawing program needs to know the dimensions of the typeset
labels. Second, we wanted to ensure that the program could be ported easily to other
installations and sites, so that other, putative users would be able to use it easily. Indeed,
TreeTEX has been used successfully to typeset trees in[1], [2], and[3].

By basing our package on TEX, which more for subjective reasons we preferred over
other typesetting systems such astroff , we could ensure wide interest in the package. By
implementing it as a TEX macro package instead of a preprocessor we made porting trivial
and, furthermore, ensured consistency of typeset text within a document. The adverse
side of this decision is that we had to program with TEX macros, not an experience to
be recommended, and we had to live with the inherent register limitations of TEX.

This paper consists of a further nine sections. In Sections2, 3 and 4, we discuss the
aesthetics of tree drawing and the algorithm of Reingold and Tilford[4]. In Sections5,
6, and7, we describe our method of incorporating tree drawing into TEX. Then, in the
last three short sections, we consider the expected number of registers TEX needs to draw
a tree, the user interface (and three TreeTEX examples), and discussion of, among other
things, the performance of TreeTEX.

2 AESTHETICAL CRITERIA FOR DRAWING TREES

In this paper, we are dealing with ordered trees in the sense of[5], specifically binary
and unary–binary trees. Abinary tree is a finite set of nodes that is either empty, or
consists of a root and two disjoint binary trees called the left and right sub-trees of the
root. A unary–binary treeis a finite set of nodes that is either empty, or consists of a
root and two disjoint unary–binary trees, or consists of a root and one non-empty unary–
binary tree. Anextended binary treeis a binary tree in which each node has either two
non-empty sub-trees or two empty sub-trees.

There are some basic agreements on how such trees should be drawn, reflecting the
up–down and left–right ordering of nodes in a tree. In[4] and[6] these basic agreements
were formalized as the following axioms.

1. Trees impose a distance on the nodes; no node should be closer to the root than
any of its ancestors.

2. Nodes on the same level should lie on a straight line, and the straight lines defining
the levels should be parallel.

3. The relative order of nodes on any level should be the same as in the level order
traversal of the tree.

These axioms guarantee that trees are drawn as planar graphs: edges do not intersect
except at nodes. Two further axioms improve the aesthetical appearance of trees.

4. In a unary–binary tree, each left child should be positioned to the left of its parent,
each right child to the right of its parent, and each unary child should be positioned
below its parent.
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5. A parent should be centred over its children.

An additional axiom deals with the problem of tree drawings becoming too wide and
therefore exceeding the physical limit of the output medium:

6. Tree drawings should occupy as little width as possible without violating the other
axioms.

In [6], Wetherell and Shannon introduce two algorithms for tree drawings, the first
of which fulfills axioms 1–5, and the second 1–6. However, as Reingold and Tilford in
[16] point out, there is a lack of symmetry in the algorithms of Wetherell and Shannon
which may lead to unpleasant results; therefore, Reingold and Tilford introduce a new
structured axiom.

7. A sub-tree of a given tree should be drawn the same way regardless of where it
occurs in the tree.

Axiom 7 allows the same tree to be drawn differently only when it occurs as a sub-
tree in different trees. Reingold and Tilford give an algorithm which fulfills axioms 1–5
and 7. Although this algorithm does not fulfill axiom 6, the aesthetical improvements are
well worth the additional space.Figure 1illustrates the benefits of axiom 7, andFigure
2 shows that the algorithm of Reingold and Tilford violates axiom 6.
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Figure 1. The left tree is drawn by the algorithm of Wetherell and Shannon[6] , and the tidier right
one is drawn by the algorithm of Reingold and Tilford[4]
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Figure 2. The left tree is drawn by the algorithm of Reingold and Tilford[4] , but the right tree
shows that narrower drawings fulfilling all aesthetic axioms are possible
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3 THE ALGORITHM OF REINGOLD AND TILFORD [4]

The algorithm of Reingold and Tilford (hereafter called ‘the RT algorithm’) takes a
modular approach to the positioning of nodes. The relative positions of the nodes in a
sub-tree are calculated independently of the rest of the tree. After the relative positions
of two sub-trees have been calculated, they can be joined as siblings in a larger tree
by placing them as close together as possible and centring the parent node above them.
Incidentally, this modular approach is the reason that the algorithm fails to fulfill axiom 6;
see[7]. Two sibling sub-trees are placed as close together as possible, during a post-order
traversal, as follows. Imagine that the two sub-trees of a binary node have been drawn and
cut out of paper along their contours. Then, starting with the two sub-trees superimposed
at their roots, move them apart until a minimal agreed-upon distance between the trees is
obtained at each level. This can be done gradually. Initially, their roots are separated by
some agreed-upon minimum distance; then, at the next level, they are pushed apart until
the minimum separation is established there. This process is continued at successively
lower levels until the last level of the shorter sub-tree is reached. At some levels no
movement may be necessary, but at no level are the two sub-trees moved closer together.
When the process is complete, the position of the sub-trees is fixed relative to their
parent, which is centred over them. Assured that the sub-trees will never be placed closer
together, the post-order traversal is continued.

A non-trivial implementation of this algorithm has been obtained by Reingold and
Tilford in [4] that runs in time O(N), whereN is the number of nodes of the tree to
be drawn. Their crucial idea is to keep track of the contour of the sub-trees by special
pointers, called threads, such that whenever two sub-trees are joined, only the top part
of the trees down to the lowest level of the smaller tree need to be taken into account.

The nodes are positioned on a fixed grid and are considered to have zero width;
labelling is not provided. Although the algorithm only draws binary trees, it is easily
extended to multiway trees.

4 IMPROVING HUMAN PERCEPTION OF TREES

It is common understanding in book design that aesthetics and readability do not
necessarily coincide, and—as Lamport[8] puts it—‘documents are meant to be read,
not hung in museums.’ Therefore, readability is more important than aesthetics.

When it comes to tree drawings, readability means that the structure of a tree must be
easily recognizable. This criterion is not always met by the RT algorithm. As an example,
there are trees whose structure is different even though they have the same number of
nodes on each level. The RT algorithm might assign identical positions to these nodes
making it very hard to perceive the structural differences. Hence, we have modified the
RT algorithm such that additional white space is inserted between sub-trees ofsignificant
nodes. Here a binary node is called significant if the minimum distance between its two
sub-trees is achievedbelow their root level. Setting the amount of additional white space
to zero retains the original RT placement. The effect of having non-zero additional white
space between the sub-trees of significant nodes is illustrated inFigure 3.

Another feature we have added to the RT algorithm is the possibility to draw an
unextended binary tree with the same placement of nodes as its associated extended
version; this makes the structure of a tree more prominent; seeFigure 4. We define the
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Figure 3. The nodes of the first two trees are placed in the same positions by the RT algorithm,
although the structure of the two trees is different. The alternative drawings highlight the structural
differences of the trees by adding additional white space between the sub-trees of (�!) significant

nodes

s

s

s

s�
�A
As

�
�
�
�A
As

s�
�A
As

s

s

s

s�
�A
As

�
�A
As

�
�A
As
A
As

s

s

s

s�
�A
As

�
�
�
�@

@s

s�
�A
As

s

s

s

s�
�A
As

�
�A
As

�
�@

@s

A
As

s

s

s

s�
�A
As

�
�A
As

�
�@

@s

s�
�A
As

Figure 4. As inFigure 3, the nodes of the first two trees are placed in the same position by the RT
algorithm, although their structure is different. The modified RT algorithm highlights the structural
differences of the trees by drawing them like their identical extended version (given in the third

row), but suppressing the additional nodes

associated extended versionof a binary tree to be the binary tree obtained by replacing
each empty sub-tree having a non-empty sibling with a sub-tree consisting of one node.

5 TREES IN A DOCUMENT PREPARATION ENVIRONMENT

Drawings of trees do not usually appear by themselves, but are included in some text
that is itself typeset by a text processing system. Therefore, a typical scenario is a pipe
of three stages. First, we have a tree drawing program that calculates the positioning of
the nodes of the tree to be drawn and outputs a description of the tree drawing in some
graphics language; this is followed by a graphics system that transforms this description
into an intermediate language that can be interpreted by the output device; and, finally,
we have the text processing system that integrates the output of the graphics system into
the text.

This scenario loses its linear structure once nodes have to be labelled, since the
labelling influences the positioning of the nodes. Labels usually occur inside, to the
left of, to the right of, or beneath nodes (the latter only for external nodes). Their widths
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should certainly be taken into account by the tree drawing algorithm. But the labels have
to be typeset first to determine their extent, preferably by the typesetting program that
is used for the regular text, because this ensures uniformity in the textual parts of the
document and provides the author with the full power of a text processing system for
composing the labels. Hence, a more complex communication scheme than a simple pipe
is required.

Although a system of two processes running simultaneously might be the most elegant
solution, we wanted a system that is easily portable to widely different machines at our
sites including personal computers with single process operating systems. Therefore, we
decided to use a text processing system having programming facilities powerful enough to
program a tree drawing algorithm and graphics facilities powerful enough to draw a tree.
One text processing system rendering outstanding typographic quality and satisfactory
programming facilities is TEX, developed by Knuth at Stanford University; see[9]. The
TEX system includes the following programming facilities.

1. Datatypes:
integers (256), dimensions1 (512), boxes (256), tokenlists (256), and boolean
variables (unrestricted).

2. Elementary statements:
a := const,a := b (all types);
a := a + b, a := a � b, a := a=b (integers and dimensions); and
horizontal and vertical nesting of boxes.

3. Control constructs:
if-then-else statements testing relations between integers, dimensions, boxes, or
boolean variables.

4. Modularization constructs:
macros with up to 9 parameters (can be viewed as procedures without the concept
of local variables).

Although the programming facilities of TEX hardly exceed the abilities of a Turing
machine, they are sufficient to handle small programs. How about the graphics facilities?
Although TEX has no built-in graphics facilities, it allows the placement of characters
in arbitrary positions on the page. Therefore, complex pictures can be synthesized from
elementary picture elements treated as characters. Lamport has included such a picture
drawing environment in his macro package LATEX, using quarter circles of different sizes
and line segments (with and without arrow heads) of different slopes as basic elements;
see[8]. These elements are sufficient for drawing trees.

This survey of TEX’s capabilities implies that TEX may be a suitable text processing
system to implement a tree drawing algorithm directly. We base our algorithm on the
RT algorithm, because this algorithm gives, aesthetically, the most pleasing results. In
the first version presented here, we restrict ourselves to unary–binary trees, although our
method is applicable to arbitrary multiway trees. To take advantage of the text processing
environment, we expand the algorithm to allow labelled nodes.

In contrast to previous tree drawing programs, we feel no necessity to position the

1 The termdimensionis used in TEX to describe physical measurements of typographical objects; for example,
the length of a word.
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nodes of a tree on a fixed grid. While this may be reasonable for a plotter with a coarse
resolution, it is certainly not necessary for TEX, a system that is capable of handling
arbitrary dimensions and producing deviceindependentoutput.

6 A REPRESENTATION METHOD FOR T EXTREES

The first problem to be solved in implementing our tree drawing algorithm is how
to choose a good internal representation for trees. A straightforward adaptation of the
implementation by Reingold and Tilford requires, for each node, at least:

1. two pointers to the children of the node,
2. two dimensions for the offset to the left and the right child (these may be different

once there are labels of different widths to the left and right of the nodes),
3. two dimensions for thex- andy-coordinates of the final position of the nodes,
4. three or four labels, and
5. one token to store the geometric shape (circle, square, framed text, etc.) of the node.

Because these data are used frequently in calculations, they should be stored in registers
(that is what variables are called in TEX) rather than being recomputed, to obtain
reasonably fast performance. This gives a total of 10N registers for a tree withN nodes,
which quickly exceeds TEX’s limited supply of registers. Therefore, we present a modified
algorithm hand-tailored to the abilities of TEX. We start with the following observation.
Suppose a unary–binary tree is built bottom-up, using a post-order traversal. This can
be done by repeating the following three steps in an order determined by the tree to be
built.

1. Create a new sub-tree consisting of one external node.
2. Create a new sub-tree by appending the two sub-trees last created to a new binary

node; seeFigure 5.
3. Create a new sub-tree by appending the sub-tree created last as a left, right, or

unary sub-tree of a new node; seeFigure 5.

(A pointer to) each sub-tree that has been created in steps 1–3 is pushed onto a stack,
and steps 2 and 3 remove two trees or one tree, respectively, from the stack before the
push operation is carried out. The tree to be built is the tree remaining on the stack.
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This tree traversal is performed twice in the RT algorithm. During the first pass, at
each execution of step 2 or 3, the relative positions of the sub-tree(s) and of the new
node are computed. A closer examination of the RT algorithm reveals that information
about the sub-tree’s coordinates is not needed during this pass; the contour information
alone is sufficient. Complete information is only needed in the second traversal, when
the tree is really drawn. This is where we can use a special feature of TEX that allows
us to save registers. Unlike Pascal, TEX has the capability of storing a drawing in a
single box register that can be positioned freely in later drawings. This means that in our
implementation the two passes of the original RT algorithm can be woven into a single
pass, storing the contour and drawing of each sub-tree on the stack. Although the latter
is a complex object, it takes only one of TEX’s precious registers.

7 THE INTERNAL REPRESENTATION

Given a tree, the corresponding TEXtree is a box containing the ‘drawing’ of the tree,
together with some additional information about the contour of the tree. The reference
point of a TEXtree-box is always in the root of the tree. The height, depth and width of
the box of a TEXtree are of no importance in this context.

The additional information about the contour of the tree is stored in registers for
numbers and dimensions and is needed in order to put sub-trees together to form a larger
tree. An arrayloff of dimensions contains for each level of the tree the horizontal offset
between the left end of the leftmost node at the current level and the left end of the
leftmost node at the next level. The horizontal offset between the root and the leftmost
node of the whole tree is held inlmoff, and the horizontal offset between the root and
the leftmost node at the bottom level of the tree is held inlboff. Finally, ltop holds
the distance between the reference point of the tree and the leftmost end of the root.
We useroff, rmoff, rboff, and rtop as the corresponding variables for ‘left’ replaced by
‘right.’ Finally, height holds the height of the tree, andtype holds the geometric shape
of the root of the tree.Figure 6shows an example TEXtree, which is a tree drawing and
corresponding additional information.

Given two TEXtreesA andB, how can a new TEXtreeC be built that consists of a new
root and hasA andB as sub-trees? An example is given inFigure 7. First we determine
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Figure 6. A TEXtree consists of the drawing of the tree and the additional information. The width
of the dots is 4pt, the minimal separation between adjacent nodes is 16pt, making a distance of
20pt centre to centre. The length of the small rule labelling one of the nodes is 5pt. The column
left (right) of the tree drawing is the arrayloff (roff), describing the left (right) contour of the
tree. At each level, the dimension given is the horizontal offset between the border at the current
and at the next level. The offset between the left border of the root node and the leftmost node at
level 1 is�10pt, the offset between the right border of the root node and the rightmost node at

level 1 is 15pt, etc.
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roff (B)
10pt

-30pt

roff (C)

A B C
height 3 5 6
type dot dot dot
ltop 2pt 2pt 2pt
rtop 2pt 2pt 2pt
lmoff -10pt -30pt -30pt
rmoff 20pt 10pt 30pt
lboff 10pt -30pt -10pt
rboff 10pt -30pt -10pt

level totsep currsep
0 20pt 0/16pt
1 25pt 11/16pt
2 40pt 1/16pt
3 40pt 16pt

Figure 7. The TEXtreesA and B are combined to form the larger TEXtreeC. The first table gives
the additional information of the three TEXtrees, and the second table gives the history of the

computation for totsep and currsep

which tree is higher; this isB in the example. Then we have to compute the minimum
distance between the roots ofA and B, such that at all levels of the trees there is free
space of at leastminsepbetween the trees when they are drawn side by side. For this
purpose we keep track of two values,totsepandcurrsep. The variablestotsepandcurrsep
hold the total distance between the roots and the distance between the rightmost node of
A and the leftmost node ofB at the current level. To calculatetotsepand currsep, we
start at level 0 and visit each level of the trees until we reach the bottommost level of
the smaller tree; this isA in our example.

At level 0, the distance between the roots ofA and B should be at leastminsep.
Therefore, we settotsep := minsep+ rtop(A) + ltop(B) and currsep := minsep. Using
roff (A) andloff (B), we can calculatecurrsepfor the next level. Ifcurrsep< minsep, we
have to increasetotsepby the difference and updatecurrsep. This process is repeated
until we reach the lowest level ofA at which pointtotsepholds the final distance between
the nodes ofA andB, as calculated by the RT algorithm. If the root ofC is a significant
node, then the additional space, which is 0pt by default, is added tototsep. However, the
approach of synthesizing drawings from simple graphics characters allows only a finite
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number of orientations for the tree edges; therefore,totsepmust be increased slightly to
fit the next orientation available.

Now we are ready to build the box of TEXtreeC. Simply putA andB side by side, with
the reference pointstotsepunits apart, insert a new node above them, and connect the
parent and children by edges. Next, we compute the additional information forC. This
can be done by using the additional information forA andB. Note that most components
of roff (C) and lroff (C) are the same as in the higher tree, which isB in our case. So, if
we can avoid moving this information around, the number of counters we have to access
to update the additional information forC is within a small constant of the height ofA.
Hence, we can apply the same argument as in[4], which gives us a running time of O(N)
for drawing a tree withN nodes.

We must design the allocation of storage registers for the additional information of
TEXtrees carefully to fulfill the following requirement. If a new tree is built from two sub-
trees, the additional information of the new tree shares storage with its larger sub-tree.
Organizational overhead, that is, pointers that keep track of the locations of different parts
of additional information, must be avoided. This means that the additional information for
one TEXtree should be stored in a sequence of consecutive dimension registers such that
only one pointer for access to the first element in this sequence is needed. On the other
hand, each parent tree is higher and, therefore, needs more storage than its sub-trees. So
we must ensure that there is always enough space in the sequence for more information.

The obvious way to fulfill these requirements is to use a stack and to allow only the
topmost TEXtrees of this stack to be combined into a larger tree at any time. This leads to
the following allocation of registers: a contiguous sequence of box registers contains the
tree-boxes of the sub-trees in the stack. A contiguous sequence of token registers contains
the type information for the nodes of the sub-trees in the stack. For each sub-tree in the
stack, a contiguous sequence of dimension registers contains the contour information of
the sub-tree. The ordering of these groups of dimension registers reflects the ordering of
the sub-trees in the stack. Finally, a contiguous sequence of counter registers contains
the height and the address of the first dimension register for each sub-tree in the stack.
Four address counters store the addresses of the last tree-box, type information, height,
and address of contour information. A sketch of the register organization for a stack of
TEXtrees is provided inFigure 8.

When a new node is pushed onto the stack, the tree-box, type information, height,
address of contour information, and contour information are stored in the next free
registers of the appropriate type, and the four address counters are updated accordingly.

When a new tree is formed from the topmost sub-trees on the stack, the tree-box,
type information, height, and address of contour information of the new tree are stored
in the registers formerly used by the bottommost sub-tree that has occurred in the
construction step, and the four address registers are updated accordingly. This means
that this information for the sub-trees is no longer accessible. The contour information of
the new sub-tree is stored in the same registers as the contour information of the larger
sub-tree used in the construction, apart from the left and right offset of the root to the
left and right child, which are stored in the following dimension registers. This means
that gaps can occur between the contour information of sub-trees in the stack, namely
when the right sub-tree, which is in a higher position in the stack, is higher than the
left one. To avoid these gaps, the user can specify an optionnlefttop when entering a
binary node, which makes the topmost tree in the stack the left sub-tree of the node.
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Dimension registers
lmoff(1) rmoff(1) lboff(1) rboff(1) ltop(1) rtop(1)
loff(h1) roff(h1) . . . loff(1) roff(1)
. . .
lmoff(n) rmoff(n) lboff(n) rboff(n) ltop(n) rtop(n)
loff(hn) roff(hn) . . . loff(1) roff(1)

Counter registers
lasttreebox lasttreeheight lasttreeinfo lasttreetype
treeheight(1) diminfo(1) . . . treeheight(n) diminfo(n)

Box registers
treebox(1) . . . treebox(n)

Token registers
type(1) . . . type(n)

Figure 8. lasttreebox, lasttreeheight, lasttreeinfo, lasttreetype contain pointers to treebox(n)
treeheight(n), lmoff(n), type(n), diminfo(i) contains a pointer to lmoff(i). Unused dimension
registers are allowed between the dimension registers of subsequent trees. The counter registers

lasttreebox,. . ., diminfo(n) serve as a directory mechanism to access the TEXtrees on the stack

This stack concept also has consequences for the design of the user interface that is
discussed inSection 9.

8 SPACE COST ANALYSIS

Suppose we want to draw a unary–binary treeT of heighth havingN nodes.2 According
to our internal representation, for each sub-tree in the stack we need:

1. one box register to store the box of the TEXtree;
2. one token register to store the type of the root of the sub-tree;
3. 2h0+6 dimension registers to store the additional information, whereh0 is the height

of the sub-tree; and
4. three counter registers to store the register numbers of the box register, the token

register, and the first dimension register above.

Lemma 8.1

Let T be a unary–binary tree of height h and size N; then:

1. at any time, there are at most h+ 1 sub-trees of T on the stack; and
2. for each setT of sub-trees of T that are on the stack simultaneously we have

X

T02 T

(ht(T0) + 1)� N

2 The heighth and the number of nodesN refer to the drawing of the tree.N is the number of circles,
squares, etc., actually drawn, andh is the number of levels in the drawing minus 1.



112 A. BRÜGGEMANN-KLEIN AND D. WOOD

The lemma implies that our implementation uses at most 9h+2N registers. To compare
this with the 10N registers used in the straightforward implementation, an estimation of
the average height of a tree withN nodes is needed. Several results, depending on the
type of trees and of the randomization model, are cited inFigure 9, which compares the
number of registers used in a straightforward implementation with the average number
of registers used in our implementation. This table shows clearly the advantage of our
implementation.

average registers

registers unary–binary binary
nodes (straight- binary trees search trees

N forward) (2
p
�N) [6] (

p
3�N) [6] (4:311logN) [5]

10 100 120.89 107.37 109.34

20 200 182.68 163.56 156.23

30 300 234.75 211.33 191.96

40 400 281.78 254.75 223.12

50 500 325.60 295.37 251.78

60 600 367.13 334.02 278.86

70 700 406.93 371.17 304.84

80 800 445.36 407.13 330.02

90 900 482.67 442.12 354.59

100 1000 519.04 476.30 378.68

Figure 9. The numbers of registers used by a straightforward implementation (second column) and
by our modified implementation (third to fifth column) of the RT algorithm are given for different
types of trees and randomization models. The formulas in parentheses indicate the average height of

the respective classes of trees

9 THE USER INTERFACE

The user interface of TreeTEX has been designed in the spirit of the thorough separation
of the logical description of document components and their layout; see[10,11]. This
concept ensures both uniformity and flexibility of document layout and frees authors
from layout problems that have nothing to do with the substance of their work. For some
powerful implementations and projects see[8,12–15].

The description of a tree consists of a description of its nodes in post-order. Each
description of a node, in turn, has to specify the out-degree, the geometric shape and the
labels of the node. Defaults are provided for all specifications, thereby allowing the user
to omit many definitions if the defaults match what he or she wants.

A separate style command defines layout parameters for tree drawings that are valid
for all trees of a document. Layout parameters include the font to be used for labels, the
diameter of circle nodes, the vertical distance between two subsequent levels of the tree,
and the minimal horizontal distance between nodes.

Standard versions of TEX provide only a limited number of font and circle sizes. Hence,
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the user of the style command must make sure that the specified sizes can be realized. This
is especially cumbersome when everything has to be magnified for later reproduction with
reduction. But the style variables can be made parametric for installations that provide
scalable fonts and replace LATEX’s circle- and line-drawing commands with routines that
provide arbitrary diameters and slopes.

Three examples of tree descriptions are given inFigures 10–12. A more detailed
description of the user interface is given in[16].
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\begin{Tree}
\node{\external\bnth{first}\cntr{1}\lft{Beeton}}
\node{\external\cntr{3}\rght{Kellermann}}
\node{\cntr{2}\lft{Carnes}}
\node{\external\cntr{6}\lft{Plass}}
\node{\external\bnth{last}\cntr{8}\rght{Tobin}}
\node{\cntr{7}\rght{Spivak}}
\node{\leftonly\cntr{5}\rght{Lamport}}
\node{\cntr{4}\rght{Knuth}}
\end{Tree}

\hspace{\leftdist}\usebox{\TeXTree}\hspace{\rightdist}

Figure 10. This is an example of a tree that includes labels

10 CONCLUSIONS

We hope that, by now, we have convinced the reader of the main advantages of TreeTEX:
It integrates graphics and text; it is portable to all sites running TEX; and it is easy
to use for the author, because it derives the drawing of a tree from a purely structural
description. But our decision to implement TreeTEX as a TEX macro package has also
some drawbacks, both for the programmer and for the user of the system.

From the programmer’s point of view, TEX’s macro language is a low level
programming language. Hence, maintaining and extending the package is a more tedious
task than it would be if we had used a higher level language with better support for
modularization.

From the author’s point of view, TreeTEX’s limitations lie in speed, size of trees, and
graphical primitives. Typesetting all the trees in this article takes about two minutes on a
VAX 750, and typesetting a complete binary tree with 63 internal and 64 external nodes
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\begin{Tree}
\node{\external\type{frame}\bnth{first}\cntr{Beeton}}
\node{\external\type{frame}\cntr{Kellermann}}
\node{\type{frame}\cntr{Carnes}}
\node{\external\type{frame}\cntr{Plass}}
\node{\external\type{frame}\bnth{last}\cntr{Tobin}}
\node{\type{frame}\cntr{Spivak}}
\node{\leftonly\type{frame}\cntr{Lamport}}
\node{\type{frame}\cntr{Knuth}}
\end{Tree}

\hspace{\leftdist}\usebox{\TeXTree}\hspace{\rightdist}

Figure 11. This is an example of a tree with framed centre labels
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Figure 12. This tree was produced from the same logical description as inFigure 10, but with
different style parameters

takes about one minute on the same machine. The size of the trees is limited by three
factors, namely, the number of registers, the complexity of the nested boxes that contain
the drawing of a tree, and the limited number of slopes that are available for the edges,
the latter being the most severe problem at present. Hence, the main area of application
for TreeTEX is modest use such as in textbooks; displaying large amounts of statistical
data, for example, is out of the question.

Currently edges and circular nodes are drawn from LATEX’s set of predefined graphical
characters. Hence, TreeTEX cannot draw arbitrarily wide trees or large circular nodes.
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We consider this restriction, however, to be a temporary one, since a committee inside
the TEX Users Group is working on standard graphic extensions to TEX that will remove
these limitations.

As to further developments of TreeTEX, it would be desirable to draw larger classes
of trees, for example multiway trees, and to allow labels not only for nodes, but also for
edges and whole sub-trees.
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