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The importance of phase in the spectra
of digital type

GUOZHEN DUAN� AND ROBERT A. MORRIS��

University of Massachusetts at Boston
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MA 02125, USA

SUMMARY
The role of phase in the spectra of digital type is examined. Characters and text are found
to have more information in the phase than in the magnitude, just as for natural images. For
letterforms, this means that the position of features, not their size, has the greatest influence
on their discrimination. An iterative reconstruction of characters from their phase and from
a magnitude characteristic only of the font, not the individual characters, is examined.
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SPECTRAL INFORMATION IN DIGITAL TYPE

Digital type is a special case of a discrete image. As such, it is straightforward to
use techniques of digital image processing to understand and to manipulate type. For
example, one common usage is the production of grayscale fonts by the application of
digital low-pass filters to binary fonts. In this paper we report some investigations of the
spectral properties of type in the discrete frequency domain. These investigations suggest
explanations for some already well-known (to typographers) properties of type. Through
sampling theory, one can extend the results to analog type.

Introduction

We can consider type images as a (usually finite) sequence of intensity valuesx(n1; n2) at
each point (n1; n2) in the discrete plane. For black and white type, these values are 0 or 1,
but for digital grayscale type they come from a fixed collection of numbers representing
an intensity range between black and white.

The Fourier transformX(!1; !2) of a sequencex(n1; n2) is given by

X(!1; !2) =
X

(n1;n2)

x(n1; n2) exp(�j(!1n1 + !2n2)) (1)

Here j =
p�1. The pair of real numbers (!1; !2) is a two-dimensionalspatial

frequency. Roughly,!1 and!2 measure the rate with respect to distance at which the
image alternates between black and white in thex-direction and in they-direction,
respectively. Computationally, these are best approximated by the discrete Fourier
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transform (DFT) which we discuss in detail later, but for now do not distinguish from
the Fourier transform. Either of these transforms is called thespectrumof the image.

X is a complex valued function, so for each point (!1; !2) in the frequency domain
we can writeX(!1; !2) as jX(!1; !2)jej�(!1;!2) with jXj = jX(!1; !2)j the magnitudeand
�(X) = �(!1; !2) the phaseat (!1; !2). (Later, we will describe how images can be
reconstructed when one or the other of these functions is not completely known.)

When the sequencex consists of samples of a continuous image, that image can be
perfectly reconstructed provided that it isband limited.This means that its spectrum
has finite support, i.e., it is zero outside some fixed rectangle. Such a reconstruction
also requires that the image be sampled at a high enough rate, i.e., that its resolution
is high enough. However, animagewhich has finite support is never band limited, so
the reconstruction necessarily becomes an approximation, suffering fromaliasing, the
misrepresentation of high frequency components by lower ones. The treatment of this is
beyond the scope of this paper, but see[11,9,1] and especially[6] for some details.

There is some reason to believe that human vision is not subject to the kind of
aliasing mentioned above[17]. In any case, we are dealing with signals which are
already discrete—namely digital representations of type—and these can be completely
reproduced from their discrete spectra.

In many classical signal processing applications, the spectrum of a signal is known
incompletely. Often one, but not both of the phase or magnitude is accurately known,
and it is desired to reproduce the original signal from this incomplete or distorted
spectrum. Such reproduction from the deficient spectrum is referred to as “retrieval”
of the remaining information. A large literature exists on both phase and magnitude
retrieval [10,12,14,4,5,7]. In the following section we discuss, without formal argument,
how these kinds of results give insight into type images. We give more mathematical
detail in a subsequent section.

Experimental results

In this section we describe the experimental results we have obtained. However, first
we want to put them in the context of the situation described above. The collection
of phases in an image comprise largely position information. For example, shifting an
image adds a linear term to the phases and does nothing to the amplitudes. On the other
hand, amplitude is mostly a measure of the local contrast variation in an image. Thus,
rapid changes from black to white to black are manifested as high intensities at high
spatial frequencies in the amplitude spectrum. For example, the spectra in the figures
show amplitude above and phase below. Infigure 2 the first amplitude spectrum has
more energy at great distance from the center (higher spatial frequencies) because the
thinner strokes correspond to more rapid variation of the image intensity.

In the figures, we normalize the magnitude to DC, i.e., the (0; 0) term in the discrete
spectrum, and assign a gray level corresponding to the magnitude at each point in the
discrete frequency plane. (It can easily be shown that DC always has the largest magnitude
in a given spectrum.) Similarly, at each point we have assigned a gray level by quantizing
the phases�� � ! < � and assigning a gray level to each interval. Higher spatial
frequencies are further from the centers than are lower ones.

There are several things about letterforms which one might hope to quantify, or at least
explain, in image processing terms. One of the outstanding features of type is that we
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can recognize and distinguish characters despite a very wide range of manipulations of
the letterforms. These two tasks, recognition and discrimination, are visually somewhat
different. They also correspond roughly to two issues for image retrieval problems, those
of convergence and uniqueness of certain algorithms. (Note that we are not suggesting any
model in which human character recognition proceeds by the sort of iterative algorithms
described below.)

The central image processing result to which we will later appeal asserts that the
information which contributes most to discrimination between images lies in their phases.
In thefigure 1,magnitude and phase spectra of the characters ‘b’ and ‘p’ are shown. The
magnitude spectra are virtually indistinguishable from one another, but the phase spectra
are quite distinct.

The distinction of phases—which is in fact typical—may account for some of the ease
with which characters are distinguished, since it is known[16] that human vision is 5–10
times more sensitive to position than to magnitude differences. More precisely, humans
can resolve distinct lines which are only as little as 1 minute of visual angle apart, but
can detectdisplacementof about 12 seconds, or, with practice, 6 seconds. (This should
not be surprising, since the image processing literature[8] suggests that natural images
in the world have most information in their phase, not magnitude.) For the letterform
designer, the importance of phase vs. magnitude is that thepositionof character features
has more of an impact on character recognition and distinction than does the size of
those features, something which is intuitively clear and also corresponds to conventional
type design wisdom.

In figure 2, a sequence of characters derived from the Computer Modern Sans Serif
‘p’ is shown, together with their Fourier magnitude and phase spectra. The phase spectra
of those characters are remarkably similar, but the magnitude spectra are not.

Among the technical requirements of the theorems which make these remarks precise
is that the images should not have perfect horizontal and vertical symmetry around some
point, and, in fact, very few characters have such symmetry. (Among roman letters, only
the upper case ‘I’ will exhibit it. One might think that ‘o’ and ‘O’ also exhibit it, but
careful examination of the ‘O’ in most typefaces will reveal that typeface designers
themselves often eschew this bi-orthogonal symmetry and typically rotate the vertical
symmetry axis slightly. Among Chinese characters, which we have examined briefly, few
would be expected to have it. A real string of text as a whole will never be bi-orthogonally
symmetric.)

The role of symmetry in distinguishability may play yet another role in the digital
font domain. When grayscale “anti-aliased” fonts are produced by digitally filtering high
resolution binary fonts, the filters used are always symmetric. Presumably this is to
insure that left and right edges and top and bottom edges of characters are not smoothed
differently.1 Several filters are in common use for grayscale production[15], but no author

has claimed a clear superiority of one over another (although varying filterparameters,
such as support width, can have a dramatic effect). We propose that this is due to the
following reason: symmetric filters necessarily do not change the phases in an image; so
they all equally preserve the information which we claim really carries the letter shape.

1 However, vision researcher Gordon Legge suggested to one of us that this is not an obvious visual
requirement, since we mostly read in one direction, so that, say, readers of English, may need different
information at the left than at the right of characters.
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Astring: 

font: cmss10.1500pxl

sample: 128 x 128

Bstring: 

font: cmss10.1500pxl

sample: 128 x 128

Cstring: 

font: cmss10.1500pxl

sample: 128 x 128

Dstring: 

font: cmss10.1500pxl

sample: 128 x 128

Figure 1. Comparison of amplitude and phase spectra
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The reconstruction algorithm

Distinguishing images from one another corresponds to the “uniqueness” part of the
image reconstruction problem described below. The reconstruction algorithms we use
follow the models described in[13,5,14]. They use fixed point theorems to guarantee
their convergence, but more conditions are needed to insure that the limit images are
the desired ones. The conditions are not difficult to impose; they represent destruction of
conditions of extreme symmetry by adding at most one pixel to the image. Remembering
that bi-orthogonal symmetry is not typically found in type, the conditions seem to obtain
without further manipulation. In this section, we continue with informal discourse on
the conditions which make these algorithms converge. Mathematical details are in the
following section.

Reconstruction proceeds by imposing constraints at each point in either the spectral
or signal domain, and throwing out that portion of the data which does not meet the
constraints. These constraints are chosen from conditions known to be met by the desired
image. For us, the most important reconstruction is that from “phase only”, which we
describe next. We begin with the Fourier transform,X, of a character or text stringx.
In this spectrum, we initially replace the magnitude with a “virtual magnitude” which is
independent of the character. There are several natural choices for this, but the uniqueness
results described below imply that the choice does not matter.

Several authors experiment with various choices in the case of natural images. Hayes
et al. [5] use constant magnitude. Garcia and Calero[3] describe reconstructions with
the magnitude of low pass filters for the initial estimate. We have had success starting
with the magnitude of a four-point black square situated at the origin and also with
constant magnitude. With either of these as the initial spectral magnitude estimate, the
algorithms below converge (after thresholding) in as few as 10 iterations, as shown in the
lower reconstruction infigure 3.The first two images in this figure are the first iteration
with each of these virtual magnitudes. They suggest that algorithms based on combining
two amplitude estimates might be successful; we can see that reconstruction using the
constant magnitude estimate quickly gives the edges and the one using the four point
estimate emphasizes the interior of the character.

The algorithm begins by making a 2N � 2N DFT and replacing the magnitude
by the virtual magnitude described above. We back-transform this initial “estimate”
of the spectrum into the image domain and then impose additional constraints: the
resulting image is forced to zero outside its originalN � N region of support or
at any point at which it is negative or non-real. Next, we again take a 2N � 2N
forward transform. (The doubling is a technical requirement arising from the theorem’s
guaranteeing uniqueness from phase). Then we replace the phase in the resulting spectrum
by that of the original character. This guarantees that at every step of the algorithm,
the current image and the original image have the same phase. Finally, this spectrum
is back-transformed into a 2N � 2N image which is subject to the image domain
constraints described above. We continue in this fashion, enforcing the constraint of
original phase in the spectral domain, and real, non-negative and support constraints
in the signal domain. These constraints suffice to guarantee that this process converges
to something. Since the phase always coincides with that of our original image, the
convergence is to the original character, by the convergence and uniqueness results
detailed below.
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However, our characters are black and white and, as we will show, we can recover the
original character after finitely many steps if we apply a threshold operator. This means
we force all pixels that are darker than the threshold to black and all others to white. It is
not difficult to see that the choice of threshold level affects only the number of iterations
required to recover the character completely.

We do not have a good formulation for the number of iterations needed to recover the
character, but our experience with both Roman (figure 3) and Chinese characters (figure
4) suggests that it is as few as 10–20. This is in marked contrast to the reports in the
reconstruction literature of numbers of iterations ranging from dozens to several hundred.
We note, however, that the restriction to black and white images makes it easier to skip
the “last” of the iterations.

When we attempt to recover the character from magnitude only, adding enough
information to the image to guarantee uniqueness[2], we do not get rapid convergence.
This again confirms the view that there is more information in the phase than in the
magnitude.

Astring: 

font: song10.2250pxl

sample: 64 x 64

Figure 4. Reconstruction from phase only

CONVERGENCE AND UNIQUENESS

We now give the arguments as to why the algorithm described above converges to the
original images after finitely many iterations.

Discrete Fourier transforms and Z-transforms

Following Hayes[4] we adopt standard notation for multi-dimensional sequences over
the real and complex numbers. In what follows, we assume dimensionm = 2 if not
otherwise stated, but everything holds for greater dimensions. We will observe below
that there is a distinction to be made between one-dimensional and higher dimensional
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signals. A multi-indexn = (n1; n2; . . .; nm) will be denoted with bold face. The obvious
notation holds for variablesz = (z1; z2; . . .; zm) and their powers,zn = zn1

1 zn1
2 . . .znm

m .
A discrete image is then a real valued sequencex with support a regionR in the

integer plane. That is,x(i ; j) = 0 if (i ; j) is not in R. Generally it will be convenient to let
R be a rectangle in the positive quadrant, but the results are easily extended to arbitrary
finite support. We will say that the support ofx is N = (N1;N2) meaningN1 andN2 are
the upper bounds of the rectangle. IfN1 = N2 = N we write R(N) for this rectangle.
Henceforth, by “image” we will always mean a discrete image with finite support, unless
otherwise described. It is convenient to writex(n) whenn = (n1; n2; . . .; nm).

In this notation, the Fourier transformX(!!!!!!!) of a sequencex(n) is given by

X(!!!!!!!) =
X

n

x(n)e�jn�!! (2)

The z-transformX(z) is defined by

X(z) =
X

n

x(n)z�n (3)

Note that the Fourier transform is just thez-transform evaluated on the unit polydisk
z = exp(j!!!!!!!).

For images with finite supportN in the positive quadrant it is easy to see that the
z-transform is a polynomial inz�1 of degreeN (i.e., Ni in z�1

i ).
At each point (!1; !2) in the frequency domain, as before, we can writeX(!1; !2) as

jX(!1; !2)jej�(!1;!2). We define theM-point discrete Fourier transformXM by

XM(k1; k2) =
X
n�M

x(n)e�2�j(n1k1=M1+n2k2=M2) (4)

If M contains the support ofx, then this expression coincides with evaluation of the
continuous Fourier transform at roots of unity. More precisely,

XM(k1; k2) = X(!1; !2)j!1=2�k1=M1; !2=2�k2=M2
(5)

Indeed, where the context is clear (or irrelevant), we will not distinguish between these
notations, and will writeXM(k1; k2) or sometimes simplyX(!1; !2) for either of them.
Similarly, we will write �(x) = �M(x) for the phase, although clearly this depends onM,
which, in turn, determines the roots of unity in the above. We will disambiguate this by
writing �x(k)M for the phase thus represented.

For sequences whose support is contained in a rectangleR(M) (in the upper quadrant,
but this is without loss of generality), we can recover the sequence from itsinverse DFT
given by

x(n1; n2) =
1

M1M2

M1X
n1=0

M2X
n2=0

X(k1; k2) exp(2�j(n1k1=M1 + n2k2=M2)) (6)

See[1, p.64]. Just as band-limited signals can be recovered from samples of the signals,
finite-support signals can be recovered from samples of their Fourier transforms. For this
reason, the DFT is an appropriate object of study in the case of digital type images.
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If z = x � y is the discrete convolution of two sequences of finite support, and ifM
contains the support of both, then

ZM(k1; k2) = XM(k1; k2)YM(k1; k2) (7)

More generally,

(X � Y)(z) = X(z)Y(z) (8)

and hence

Z(!1; !2) = X(!1; !2)Y(!1; !2) (9)

It is then easy to see that

jZ(!1; !2)j = jX(!1; !2)jjY(!1; !2)j (10)

and

�(z) = �(x) + �(y) (11)

Determination by phase

The factorization of thez-transform as a polynomial inz�1 is a matter of interest to us
below. In one dimension, polynomials over the complex numbers are irreducible only
if they are of degree 1, that is every polynomialp(u) can be factored into a product
of the form�(u� a1)(u� a2) � � � (u� am) given by the rootsai of the polynomial. In
higher dimensions there are irreducible polynomials of every degree. We are interested
in certain kinds of factors of thez-transform, whether irreducible or not.

The z-transformX(z) is symmetricif there is a vectork of positive integers with

X(z) = �z�kX(z�1) (12)

For a finite sequencex(i ; j), this is equivalent to a symmetry condition on the sequence
of the form

x(i ; j) = x(k1 � i ; k2 � j) (13)

It is not difficult to show from equation (11) above that ifx has a symmetricz-
transform, then its phase�(x) is linear. Multiplying az-transformY(z) by a symmetric
factor thus adds a term of the form (k1!1; k2!2) to �(y); doing so simply corresponds to
a shift in the image by (k1; k2).

For notational convenience we consider square regions of support. IfN is a positive
integer,N = R(N) and we will write�N for �N. The following theorem of Hayes shows
that a sequence without a linear term in its phase is determined, up to scaling, by that
phase.

Theorem([4, Theorem 5.]), Letx andy be sequences with supportR(N) and suppose
M � 2N � 1. If X(z) has no symmetric factors and�x(k)M = �y(k)M then x = �y for
some� > 0.

Both the asymmetry and the support conditions are necessary for this result. The
support conditions can be relaxed if one considers continuous transforms and the phases
agree at all points, not just on a discrete lattice (see[4, Theorem 3.]). One reviewer, having
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replicated our use of the algorithm, suggested that convergence may be independent of
the support condition. In general, the Hayes result is needed not for convergence but
for uniqueness—that is, to guarantee that the original image returns. It is an interesting
question whether some other uninvestigated properties of type images guarantee this.
Since symmetry is so rare in type images, we have not investigated its rôle in detail.

Image reconstruction from phase information

The setI = I (N) of images supported onR(N) forms a complete metric space, with the
standard Euclidean distanced between two sequences given by:

d(x; y) =
� NX

i; j = 0

jx(i ; j)� y(i ; j)j2
�1=2

(14)

This is equivalent to describing anorm jj jj on I given by jjxjj = d(x; 0). Conversely,
given a normjj jj; d(x; y) = jjx � yjj defines a metric. Either of these can be used to
describe convergence of a sequencefxpg of images to an imagex in the obvious way.

Suppose a sequencefxpg can be formed by iterating a mappingC on the space of
images, and thatC is a contraction mapping, i.e., there is some�, 0 < � < 1; with
d(C(x);C(y)) < �d(x; y) wheneverx =/ y. Thenfxpg converges, and its limitx is the
unique fixed point ofC, i.e., C(x) = x. This so-calledcontraction mapping theorem
guarantees not only convergence of the iterative algorithm given byC, but determines its
solution. One way of constructing such a mapping is as a series of enforced constraints
on the images. That is, at each iteration one replaces the result with a related image
satisfying some condition known about the original image. In practice, the constraints
will not insure strict contraction, that is, the strict inequality above will be replaced with
�. In this case, convergence to a fixed point is still guaranteed, but the operatorC may
have several fixed points. In such anon-expansivecase, we will have to use Hayes’s
theorem above to guarantee uniqueness. The constraints described earlier (real, positive,
fixed support) do yield a non-expansive operator[4].

It will be convenient below to consider thesup norm jjxjj = supi;j jx(i ; j)j. It is
straightforward to show that this norm and its associated metric are equivalent to the
Euclidean ones, in the sense that convergence is the same in both metrics.

Before completing this section, we need an observation about applying binary
thresholding to images (i.e., forcing to 0 everything below the threshold value and to
1 everything at or above it). Thresholding is not a nonexpansive operator because any
non-expansive operator is continuous. Thresholding is far from continuous on the space of
images, since two images can be arbitrarily close together in the metric above, but quite
far apart after thresholding. To see this, simply take two constant images, one slightly
above and one slightly below the threshold; the original images can be arbitrarily close,
but the thresholded images will be quite distant.

Nevertheless, letT be the threshold operator and supposefxpg converges to an image
x which has no values equal to the threshold. Then,after a finite numberof steps,
T(xp) = T(x). This guarantees that iterative algorithms based on nonexpansive mappings
can be terminated after a finite number of steps if we are only interested in thresholding.
This will always be the case if our images are quantized, as in our case, where the final
image is black and white.
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The above remarks have the following formalization:
Proposition. Let t > 0 andT(x) be thresholding att, i.e.,

T(x)(i ; j) =

�
1 if x(i ; j) � t
0 otherwise

Let � > 0 and suppose thatjx(i ; j)� tj > � for all i ; j . If y is an image withjjx� yjj < �

thenT(x) = T(y).
Proof. As remarked above, we can use the sup norm. In particular, for each (i ; j) the

value y(i ; j) must lie in the interval of size� aroundx(i ; j). By hypothesis, this interval
must be properly contained in the interval of radiust. It follows that if x(i ; j) < t, then
y(i ; j) < t and if x(i ; j) > t, theny(i ; j) > t. This exactly meansT(x) = T(y).

Corollary. Let fxpg converge tox and supposex(i ; j) =/ t > 0 for all i ; j . Then there
is a p0 such that wheneverp > p0, we haveT(xp) = T(x).

Proof. Choose� > supjx(i ; j) � tj = jjx � tjj. By convergence, we can find ap0 such
that jjxp � xjj < � for all p > p0, and the Proposition applies.

GRAYSCALE CHARACTERS

In this section we briefly describe the application of our results to grayscale fonts, and
in particular to explain a phenomenon which is often observed by workers in the field,
but for which no explanation has yet been offered.

Grayscale fonts represent an attempt to substitute intensity resolution for spatial
resolution. To the visual system, these seem to be visually equivalent. Quantization error,
which manifests itself as jagged staircase effects in curves and lines, is compensated
for by applying low pass filters to high resolution binary characters to produce low
resolution grayscale characters[15]. In effect, this blurring of the edges is perceived as
smoothing the staircase. It represents an extremely cost effective way to improve the
apparent resolution of video displays: memory requirements to support ann-bit/pixel
display of a given size are the same as for a binary display with 2n=2 times as much
resolution in each direction. The sweep frequencies of the latter, however, are also 2n=2

times higher, which generally contributes to higher manufacturing cost.
All the filters in common use have perfect symmetry in the sense ofequations (12)

and(13). Any perfectly symmetric filter has zero phase, so when applied will not change
the phase. (Output phase is the sum of input and filter phase.) Because text is determined
by phase, this kind of filtering has little effect.

Finally, note that phase determines grayscale characters just as it does binary ones,
provided, at least, that they are produced from binary type by application of filters of
finite support. For example, suppose that for two binary charactersx and y the filtered
characters are equal. That is, ifL is the filter which produces the grayscale characters,
supposeL � x = L � y. SinceL, x andy all have finite support and theirz-transforms are
all polynomials inz�1, we have

�(L) + �(x) = �(L � x) = �(L � y) = �(L) + �(y) (15)

The desired result follows from this applied tox andy after subtracting the filter phase
�(L) (which, as remarked above, is typically zero in any case).



THE IMPORTANCE OF PHASE IN THE SPECTRA OF DIGITAL TYPE 59

REFERENCES

1. Dan E. Dudgeon and Russell M. Mersereau,Multi-Dimensional Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ, 1984.

2. M.A. Fiddy, B.J. Brames, J.C. Dainty, and Mark A. Richards, ‘Enforcing irreducibility for
phase retrieval in two dimensions’,Optics Letters, 8, 96–98 (1983).

3. Narciso Garcia and Alberto Calero, ‘Faster phase only image reconstruction’. InIEEE
International Conference on ASSP, pp. 12A.3.1–12A.3.4, 1984.

4. Monson H. Hayes, ‘Reconstruction of a multidimensional sequence from the phase or
magnitude of its Fourier transform’,IEEE Transactions on ASSP, 39(2), 140–154 (1982).

5. Monson H. Hayes, Jae S. Lim, and Alan V. Oppenheim, ‘Signal reconstruction from phase or
magnitude’,IEEE Transactions on ASSP, 28(6), 672–680 (1980).

6. J. Kajiya and M. Ullner, ‘Filtering high quality text for display on raster scan devices’,
Computer Graphics, 15(3), 7–15 (1981), Proc. SIGGRAPH 81.

7. Russell M. Merserou, Monson H. Hayes, and Ronald W. Schafer, ‘A survey of methods for
iterative signal reconstruction’, InIEEE International Conference on ASSP, pp. 128–132, 1982.

8. Alan V. Oppenheim and Jae S. Lim, ‘The importance of phase in signals’,Proceedings of the
IEEE, 69(5), 529–541 (1981).

9. Alan V. Oppenheim and Ronald W. Schafer,Digital Signal Processing. Prentice-Hall,
Englewood Cliffs, NJ, 1975.

10. A.V. Oppenheim, J.S. Lim, and S.R. Curtis, ‘Signal synthesis and reconstruction from partial
Fourier-domain information’,Journal of the Optical Society of America, 73(11), 1413–1420
(1983).

11. William Pratt,Digital Image Processing. Wiley Interscience, New York, 1978.
12. Jorge L.C. Sanz and Thomas S. Huang, ‘Unique reconstruction of a band-limited multi-

dimensional signal from its phase or magnitude’,Journal of the Optical Society of America,
73(11), 1446–1450 (1983).

13. Ronald W. Schafer, Russell M. Mersereau, and Mark A. Richards, ‘Constrained iterative
restoration algorithms’,Proceedings of the IEEE, 69, 432–450 (1981).

14. Victor T. Tom, Thomas F. Quatieri, Monson H. Hayes, and James H. McClellan, ‘Convergence
of iterative nonexpansive signal reconstruction algorithms’,IEEE Transactions on ASSP, 29(5),
1052–1058 (1981).

15. J.E. Warnock, ‘The display of characters using gray level sample arrays’,Computer Graphics,
14(3), 302–307 (1980), Proc. SIGGRAPH 81.

16. Gerald Westheimer, ‘The spatial sense of the eye’,Investigative Ophthalmology and Visual
Science, 18, 893–912 (1979).

17. John I. Yellott Jr., ‘Spectral analysis of spatial sampling by photoreceptors: topological disorder
prevents aliasing’,Vision Research, 22, 1205–1210 (1982).


	SUMMARY
	SPECTRAL INFORMATION IN DIGITAL TYPE
	Introduction
	Experimental results
	The reconstruction algorithm
	CONVERGENCE AND UNIQUENESS
	Discrete Fourier transforms and Z-transforms
	Determination by phase
	Image reconstruction from phase information
	GRAYSCALE CHARACTERS
	REFERENCES

