ELECTRONIC PUBLISHING, VOL . 2(1), 2546 (APRIL 1989)

Parallel processing in document for matting:
an experiment using PIC

DAVID F. BRAILSFORD AND DAVID R. EVANS

Department of Computer Science
University of Nottingham
NOTTINGHAM NG7 2RD

UK

SUMMARY

The manipulation of text and graphics within a computer provides opportunities for the
exploitation of parallel processing. It is straightforward to identify blocks of material such as
complete diagrams or paragraphs of text which can be processed in parallel and which have
modest requirements for synchronization and communication between the blocks. The
features of a problem which lead to an elegant and efficient application of parallelism are
identified, including good locality of reference, a small ‘state vector’ of shared global
variables and a clear relationship between the material on the page and the ‘cost’ of
processing it. Thislast-named attribute enables a problem to be partitioned among multiple
processors by a static compile-time analysis rather than relying on costly run-time allocation
strategies. The PIC program for line diagrams has been modified to allow for such a static
allocation and to permit synchronization and rendezvous between multiple invocations of the
program. The aim of thiswas to investigate whether worthwhile gainsin performance would
result from subdividing a diagram drawn with PIC and then processing the various portions
in parallel. A series of benchmark timings is presented which show the degree of overlap
obtainable in processing separate parts of a diagram together with the inherent limits to
parallelism imposed by the ‘atomic’ entities in PIC and the inevitable communication
overheads between the parallel processes. The design features of the PIC language are
identified which made it suitable for these researches and we are able to draw certain general
conclusions about desirable properties of text and graphic entities which are to be processed
in parallel. This in turn enables us to identify design features of the underlying software
which will facilitate parallel processing.

KEY WORDS Document processing Parallel processing PIC Benchmarking

INTRODUCTION

It is a widely recognised but sparsely chronicled fact that Parkinson’s First Law applies
just as surely in computer science as it does in economics. whatever the speed and
memory capacity of one’s computer it is virtually certain that the number and complexity
of the programs running on it will rise so as to match its capabilities and then to outstrip
them. Indeed, there have always been application areas in computing whose demand for
hardware resources seems insatiable, but it is hard for inexperienced users to believe that
document processing could be one of them. However, when it comes to slowing down a
multi-user machine, users of UNIX systems will testify that few things can compete with
the deadening impact of several dozen simultaneous invocations of the troff [1] text

0894-3982/89/010025-22$11.00 Received 11 October 1988
[J 1989 by John Wiley & Sons, Ltd. Revised 24 January 1989

© 1998 by University of Nottingham.

26 D. F. BRAILSFORD AND D. R. EVANS

formatter. The reasons for this soon become clear: not only is there considerable
input/output activity when running text formatting software but also the apparently
straightforward tasks of justifying text, laying out tables, placing subscripts and so on
impose a sizeable computational load because of the sheer number of calculations that
have to be performed.

For these reasons text and document formatting will always be a field where extra
computer power iswelcome. Over the years a steady fall in memory and processor costs
has enabled al computer users to run larger and more computationally intensive
programs simply by purchasing more powerful versions of the traditional, von Neumann,
computer architecture. Like other classics of good design, this architecture seems to defy
al predictions of its impending obsolescence and early demise. Instead, it remains
stubbornly competitive by means of various enhancements and clever tricks, ranging
from memory caches and pipeline registers to the off-loading of input/output activity
onto avariety of peripheral processors.

In the long run, though, the performance of any single processor, whatever its
architecture, will be limited by factors such as the physical properties and dimensions of
the materials used within the chips themselves. So what should our strategy be for
achieving further increases in speed, once the limits of fabrication technology have been
reached? The attraction in choosing parallel processing as a solution is that, whatever the
fabrication technology of a processor and whatever its performance limits, there is
aways the prospect of devising a suitable partitioning of a computer program among n
such processors, with the hope of achieving an n-fold speed increase. Further gains in
performance can then be realised, so the argument goes, by simply increasing the value
of n. Of course, nothing is ever this straightforward: the interconnection topology
between the processors, and its suitability for the problem in hand, isjust one of the many
factors which determine whether communication between the processors can be handled
fast enough to prevent overall performance being degraded.

The early sections of this paper give a brief introduction to parallel processing, for
those unfamiliar with the issues involved, and we point out some of the difficulties in
achieving the n-fold speed increases referred to. In later sections we relate the general
requirements for parallel systems to the specifics of text processing, illustrating various
points with the aid of experimental results from a modified version of PIC [2] (which
pre-processes line diagrams for the troff text formatter). Given that much of the existing
literature makes great play of the need for new languages to exploit paralelism fully, it
might seem eccentric to choose an existing piece of software to highlight the points we
want to make. However, it is a testimony to the economy of PIC's design and
implementation that, despite being a ‘conventional’ language with no obvious
concessions to parallelism, we needed to make only a handful of small modifications to
adapt the program for our investigations. In the course of describing why PIC is so
suitable for our purposes we shall be able to identify some of the features that future text
processing software should possess if it isto be adaptable for parallel processing.

In a paper of this sort it is not possible to review the multitude of existing software
and hardware systems for parallel processing. Many novel architectures for exploiting
parallelism have been proposed and built over the past twenty years, ranging from array
and vector processors through to more recent dataflow, graph-reduction and connection
machines. Those interested in further details will find a useful survey in [3] and some
more recent introductory articlesin [4].

PARALLEL PROCESSING IN DOCUMENT FORMATTING 27

PARALLELISM —RECOGNITION AND IMPLEMENTATION

For any problem to be readily amenable to parallel processing there are certain
requirements which bear on the nature of the problem itself, the algorithms and data
structures used for implementing it and the characteristics of the implementation
language. Topics such as image processing and matrix manipulation possess a high
degree of replication in the operations to be performed which, in turn, facilitates a
partitioning of the problem into a multitude of independent, and almost identical, sub-
tasks. Such problems can be mapped onto specialised array processor or systolic array
computers, leading to speed increases of a thousandfold or more. On the other hand
there are problems which are amost completely serial, both at a macroscopic and a
microscopic level, with each stage of the problem being required to take place in a
strictly pre-determined segquence. Between these two extremes lie most of the problems
encountered in computer science applications (including the investigations presented in
this paper). In these cases, parts of the program are capable of being executed in parallel
but there are various intervening serial ‘bottlenecks' where a rendezvous of preceding
parallel sections has to take place.

Granularity of parallelism

In deciding how to map a problem on to some set of available processors, one of the key
factors isthe ‘granularity’ of parallelism that is to be sought. We can illustrate thisin the
familiar context of conventional programs by examining various choices for the
indivisible unit of parallel programming. If this unit is the whole program itself, then we
are talking about a system which can run several programs concurrently or pseudo-
concurrently —which is exactly what modern multi-user operating systems can do very
effectively. The reason for their success is that the degree of interaction and
communication between the programs is usualy quite small and so any synchronization
requirements between the programs can be handled by the kernel of the operating system.

At afiner level of subdivision it often proves useful, inside a given program, to allow
multiple invocations of procedures (or groups of procedures) to be initiated as separate
concurrent tasks. Such a facility is sometimes called multi-threading and it mimics, on a
smaller scale, some of the features of a multi-process operating system. This particular
form of multi-tasking is supported by several operating systems and finds widespread use
in arange of real-time software applications. The only extra complication of subdividing
a program in this way is the potential problem when the various processes attempt to
write to some shared area of memory at the same time. Variables which are loca to
procedures cause no difficulties— their various instances are kept separate on some form
of multiple stack mechanism provided by the multi-tasking environment— but
unconstrained access to global variables could lead to these variables being over-written
by the various tasks in arbitrary ways at arbitrary times. A system of controlled access to
al global entities has to be devised, and the classic paper by Dijkstra [5] introduced the
concept of semaphores for just this purpose.

At a yet more microscopic level we might ask if it would be worthwhile, inside a
procedure, to perform all its assignment statements, conditional clauses and so on in
paralel? Might we go even further and suggest that operands in expressions could be
fetched and evaluated in parallel? In proposing this, we begin to recognise that operand

28 D. F. BRAILSFORD AND D. R. EVANS

values represent the ultimate atomic components of conventional programs and that we
are coming very close to the maximal theoretical parallelism attainable from that sort of
system.

At such astage it is evident that once there are enough processing elements to satisfy
the multitude of individual calculationsin a maximally parallel system there is absolutely
no point in adding any more processing power. What tends to happen, anyway, long
before maximal parallelism is reached, is that the communication overheads between the
various small parallel sub-tasks start to outweigh any gain in efficiency due to the
notional extra parallelism achieved. Beyond this optimum point performance will not
just level off as the number of processors is increased, it may actualy start to decline, as
the communication overheads begin to swamp the computation. The problems arising
from unconstrained fine-grain parallelism—very often at just this level of arithmetic
sub-expressions— are well illustrated in some dataflow machines [6], where a huge pool
of partly executed sub-expressions can accumulate, giving rise to serious problems both
in storage and in dynamically routing them to the available processors for execution.

To relate these factors to text processing, we see at once that there is awide variety of
logical and physical entities (sentences, paragraphs, chapters, diagrams and so on) which
would be good candidates for the atomic blocks of any parallel system. The existence of
abstract entities in the Office Document Architecture (ODA) model which make it
suitable for the application of paralelism has been pointed out in a recent paper by
Brown [7]. On the other hand, if we go to extreme levels of granularity, for example by
placing individual text characters on the page using one process per character, we would
be likely to encounter all the communication overheads already described.

L anguage issues

When using parallel processing systems we seek to express a problem at a level of
granularity which affords an alocation among n processors, so as to minimise the
communication overhead and to maximise the amount of computation that can truly
proceed in paralel. We also need an implementation language which limits, or
abolishes, the side-effects which arise when one or more processes have access to some
common global variable without taking care to synchronize that access. In other words
we need a formulation which minimises the ‘state vector’ of global entities and the
communication overheads between processes, while still providing some form of inter-
process synchronization, possibly in the form of semaphores.

Conventional languages are notorious for allowing users to have almost unrestricted
access to global variables, and if this access is abused it can lead to a host of unlooked-
for side-effects and bugs [8] For this reason such languages seem at first to be totally
unsuitable for paralel execution; this has led many workers to pursue parallel
programming systems within the context of functional or logic languages, where it is
claimed that complete freedom from side-effects can be obtained because destructive
assignment to global variables is not a part of the language semantics. Approaches of
this sort have led to the development of graph reduction machines for functional and
logic languages, exemplified by hardware such as ALICE [9] but, here again, the
problem of communication overheads can till arise because of the fine-grain packet-
based nature of the system.

Fortunately, it is not essential to embrace functional programming in order to enjoy

PARALLEL PROCESSING IN DOCUMENT FORMATTING 29

the benefits of paralelism. Progress is possible with conventional languages provided
that the state vector of global variables can be kept small and that all changes to these
variables can easily be detected. Synchronization is needed whenever the global
variables are altered, but, if these aterations can be identified as the code is being
compiled, then the appropriate inter-communication and synchronization can be arranged
as part of the static alocation of the problem among the processors.

Once the issue of access to global variables has been sorted out we then require that
communication overheads be minimised. In this respect it helps greatly if the separate
portions of the problem have good locality; which is to say that the proportion of intra-
process to inter-process activity is as high as possible [10].

Static vs dynamic allocation of parallel tasks

At first sight the most efficient usage of a paralel system would occur if one had a
dynamic allocation of tasks to processors. However, experience with such systems
shows that careful design is needed if the overheads of dynamic scheduling and
alocation are not to counteract any gains from the elimination of idle time among the
processors. These communication penalties can become very serious when a dynamic
alocation agorithm, striving for maximal parallelism, attempts to send small packets of
information to a highly distributed system.

Things become simpler if it is possible to allocate work to the available processors
during the compilation or pre-processing of the program text, so that all of them will be
kept busy during the total time taken to process the problem. The ease with which such a
static allocation can be achieved depends not only on the nature of the task, but also on
the kind of programming system that is employed to solve it. For al the freedom from
side-effects enjoyed by functional languages, or by suitably constrained versions of logic
languages, it is often difficult to express a problem in the particular style required and
even more difficult to predict, however approximately, what the run-time behaviour will
actually be. In this regard the various components of document processing score well;
the languages used to process documents are usually of conventional design and it is
broadly the case that the amount of processing power needed for a block of text, say, will
be proportional to the length of that block. It is also easy to detect more complex
material, e.g. equations and tables, which will lead to a heavier processing load. In the
case of line diagrams, which are the focus of our studies here, it is straightforward to
estimate the computational overhead for processing elements such as boxes, lines,
circles, splines etc. and to make a sensible compile-time guess as to the amount of work
to be allocated to each processor.

PARALLEL PROCESSING WITH PIC

If a document contains several line diagrams then the size, coordinate system and so on
for each of them will usually be independent of al the others, except perhaps for
constraints during the final pagination process which might require two related diagrams
to appear on the same page. There are clear-cut advantages, therefore, in striving for
inter-diagram parallelism, where each diagram is processed separately but in parallel
with all other diagrams. All of these remarks apply with equal force to suitably-sized
units of plain text. It seems reasonable, for example, that paragraphs could be processed

30 D. F. BRAILSFORD AND D. R. EVANS

in parallel but the gains in doing this are clearer to see in a system such as troff, where
paragraphs are almost totally independent of one another, than it would be in TEX [11],
where the more sophisticated vertical justification agorithms might lead to heavy
communication traffic before paragraphs could be placed correctly.

In the present paper we wish to delve even deeper and to ask whether further
worthwhile gains in processing speed could be achieved from afiner-grained parallelism.
For line diagrams do we gain anything by subdividing each diagram into portions, then
processing all these portions in parallel, and then arranging a suitable synchronization
and rendezvous once all the segments of the picture are complete? Would there be
enough innate parallelism within the average paragraph or the average picture to justify
this extra effort?

To answer these questions we looked for some existing piece of software which could
be modified, with little effort, to allow for a simulation of a parallel system. Aswe have
seen, one of the major requirements is that the set of global variables allowed by the
software should be manageable in number and it was for this reason that we chose the
PIC compiler for line diagrams as our model system.

In order to carry out our experiments it was necessary to modify PIC a little to allow
processing to take place on a smulated parallel system. Before giving details of these
modifications, and the parallel algorithm used, it is necessary to explain, for those
unfamiliar with PIC, that it is a piece of software where one describes the picture to be
drawn using a set of graphic primitivessuch asl i ne, ci r cl e and so on, together with
positioning information and details of any text to be inserted in or around the graphic
elements.

For example the PIC source code:

arrow <- |left "13" above

circle "12"

arrow <- "11" above

box "10"

line dotted <-> fromlast box .n up boxht left boxwd
box "14" with .s at end of last |ine

produces the picture

14

10 11 13

A few points can be noted at once from this example. Firstly, the description is
amost self-explanatory — particularly after comparing the source text with the final
picture—and global variables such as boxht , and boxw d appear from time to time.

PARALLEL PROCESSING IN DOCUMENT FORMATTING 31

Above all, the descriptive style encourages use of relative positioning information in the
neighbourhood of objects (‘above’, ‘at end of |ast |ine’,andsoon,or by the
use of . ¢ to signify the centre, and . n, . s, etc., to denote the various compass points
around the periphery of an object).

The PIC compiler builds up a data structure in the form of a linked list, as the PIC
source code is parsed, with each item on this list representing one of the objects (box,
I'ine,circle, etc) in the description. The coordinates of each object are centred at
some reasonabl e place on the object (e.g. the position coordinates for acircle are those of
its centre) and, as the picture is built up, the coordinates of each object are calculated on
arelative basis, by aform of ‘dead reckoning’, given that the first object described in the
PIC source is placed by default at the origin. It has to be decided exactly where this local
origin will be placed on the page so that the picture will fit, bearing in mind that parts of
the picture will lie above, below, to the left and so on of this arbitrary starting point;
moreover any request to draw huge objects may lead to the whole picture needing to be
shrunk in size. To keep track of all thisinformation PIC updates its notion of the overal
‘bounding box’ for the diagram as each new element is encountered. Once the picture is
complete, the linked-list is traversed and the output phase is entered; every element on
the linked list is mapped into one or more drawing commands for later processing by the
troff package but the relative coordinates now undergo a linear transformation, guided by
PIC's knowledge of the bounding box, so that the drawing commands passed to troff
incorporate correct absolute coordinates.

In our parallel scheme using PIC we allocate the source code onto a set of streams[12]
Each of these streams is a process running a modified PIC compiler and the whole system
runs pseudo-concurrently, almost as classic coroutines. It is necessary to extend the PIC
language dlightly by adding synchronization primitives between the streams called send
and r ecv. These operations are inserted into the source coding by a pre-processor and
they behave like a combined semaphore and message-passing mechanism, with the
appropriate source or destination stream being one of the arguments to the send or
recv cal. Synchronization between the streams ensures that the various portions of the
diagram join up correctly and that the overall bounding box of the picture is correct.
Note that we do not attempt to subdivide the PIC program itself into routines running in
paralel, nor do we address the possibilities for fine-grained parallelism in the process of
imaging lines and points on raster devices. Indeed the atomic objects within PIC such as
I'i ne, circl eandbox continue to be treated as indivisible within our scheme; there is
no attempt, for example, to further subdivide boxes into line segments or lines into
points.

Parallel simulation implementation

The paralel simulation (see figure 1) works by first pre-processing the picture
description, to assess the amount of work to be done, using a ‘weighted object’ algorithm
to be described later. All the PIC statements are passed on, unchanged, to one or other of
the streams which are running the parallel version of PIC. From time to time the pre-
processor inserts into its output various send and recv primitives, to effect the
necessary inter-stream communication, and these primitives are recognised and acted
upon by the modified version of PIC running on al the streams.

The message passed via the send and r ecv primitives is a set of coordinates,

32 D. F. BRAILSFORD AND D. R. EVANS

N Stream 0
modified
PIC code
Stream 1
PIC Pre- / \ Stream TROFF
—_— e
. FOCESSOr |.. ~ ioeeveeeees - Merger
input code P & L7 9 commands
Stream N

Figure 1. Smulation implementation

denoting either a synchronization point (which will enable two distinct portions of the
diagram to join up correctly) or the corners of the bounding box for some particular
stream. These primitives are implemented in our simulation by sending the message to a
file (whose name is generated from the parameters passed to send), and then receiving
the message, on another stream, from the same file. The format of calls to send and
recvis

send(sl, pl, s2, p2, position, type)
recv(sl, pl, s2, p2, type)

where:
s1 = source stream number (coordinates are being sent from this stream)

pl = unique place number in source stream
s2 = destination stream number (this stream receives the coordinate information)
p2 = unique place number in destination stream

posi ti on = coordinates to be sent (or O if none)

type = 0for synchronization, 1 for bounding box.
(N.B. the place numbers are used to create unique file names for
message passing.)

Both the sends and the r ecvs are queued internally if the message to be sent or
received is not yet available. This means that the r ecv primitive will not block unless
there is no other work to be done on the receiving stream, and the message has still not
arrived when the internal queue of pending synchronization requests comes to be
processed.

A final synchronization isrequired, once all the streams have parsed their PIC code, so
that they may agree where the origin is and the size of the global bounding box. (During
“paralléel processing” each stream has its own local coordinate system, hence the need for
synchronization.) Just before the final synchronization and rendezvous there may be idle
time on some of the streams, either because of unbalanced workloads or because a
particular stream is now blocked on ar ecv and is waiting for a send to be executed
elsewhere.

PARALLEL PROCESSING IN DOCUMENT FORMATTING 33

In addition to participating as a normal PIC stream, stream O is nominated to take the
governing réle for the rendezvous, and broadcasts the final bounding box to all streams.
Each stream then has to adjust its coordinates so that they become relative to the finally
agreed origin. The output phases on al streams can then run completely in parallel with
al output being collected by the ‘stream merger’, which passes a single stream to the
usual troff pipeline. The ‘stream merger’ also preserves the correct ordering of output by
collecting output from st ream 0 to st ream N in that order, so that any position-
dependent commands embedded in the PIC source-code should still work as expected.

The streams themselves are simulated by having the parser fork separate UNIX
processes (as described in [13]), each running the parallel PIC implementation. These
separate invocations of PIC compete for processing time, and the total CPU time in each
process is monitored using the gpr of performance profiling software available under
UNIX.

To illustrate the method let us take a rather more elaborate version of our previous
diagram and see how we might allocate PIC source code to four paralel streams, as
indicated by the bold headings. Note that the only syntactic additions to the PIC language
are the send and r ecv primitives which effect the requisite synchronization between
sending and receiving streams.

Stream 0

reset

box "1"

arrow "2" above
circle "3"

arrow "4" above
ellipse "5"

arc -> cw
send(0, 0, 1, 6, Here, 0)
recv(1, 27,0, 28,1)
send(0, 29, 1, 30,0, 1)
recv(2,31,0,32,1)
send(0, 33, 2, 34,0, 1)
recv(3, 35,0, 36,1)
send(0, 37, 3, 38,0, 1)

Stream 1

down

recv(0,0,1,6,0)

box "6"

arrow <-> "7 " rjust
box "14"

nmove to |last box .w
arrow <- left "13" above
circle "12"
send(1, 0, 2, 14, Here, 0)
send(1, 27,0, 28,0, 1)
recv(0, 29,1, 30,1)

34 D. F. BRAILSFORD AND D. R. EVANS

Stream 2

| eft

recv(1l,0,2,14,0)

arrow <- "11" above

box " 10"

line dotted <-> fromlast box .n up boxht * 2 |eft boxw d
nmove down boxht * 5/ 2 then right boxwid / 2
| eft

arrow <- "9" above

box "8"

send(2, 0, 3, 22, Here, 0)

send(2, 31,0, 32,0, 1)

recv(0, 33, 2,34,1)

Stream 3

| eft

recv(2,0,3,22,0)

nove right boxwid * 5/ 2 + linewid * 3 + circlerad * 2
then down boxht / 2

spline -> fromHere then down .2 then left .5 down .5
box wid boxwid * 3/ 2 "15"

send(3, 35, 0, 36,0, 1)

recv(0, 37, 3,38,1)

Figure 2 shows the picture generated by this source text when it is executed on our
simulated parallel system. To make clear what is going on we have added the extra
embellishments of the bold labels 'Sy’ ..., 'S;’ (to show where the streams begin), and
the black bullets ,e, to show the synchronization points between adjacent streams. In
what follows we shall refer to this picture as the ‘ simple diagram’.

S
1 2345 s
A A4
: -
S, 7
s, ¢ 8 |9 10 |11 13 14
/ >

Figure 2. Smple diagram, with bullets showing synchronization points

More details of the algorithm for allocating source code to streams are given in the
next section.

PARALLEL PROCESSING IN DOCUMENT FORMATTING 35

STREAM LAYOUT ALGORITHM

When dlocating PIC commands to streams there are two requirements that the layout
algorithm must fulfill in order to achieve a good overlap of processing:

(i) It must endeavour to partition the total amount of work evenly amongst the streams,
and give enough work to each, so that the communication overhead does not
overwhelm the benefits gained by exploiting any parallelism. If the workloads on
each stream are similar then the majority of processing should occur in parallel.
Also, any necessary synchronization at the end of this processing should then occur
at about the same time, so that no stream will be idle for very long.

(if) The second requirement is that the work assigned to any particular stream be as
independent as possible of any other stream. This will minimise the inter-stream
communication and so reduce the communication overheads.

A rough and ready algorithm for allocating the PIC input code would be to assign each
stream the same number of objects. In practice this simple algorithm is unlikely to
produce streams with well-balanced work loads, since different PIC entities require quite
different amounts of processing. For example, each separate object has its own bounding
box, which has to be calculated in order that the stream may eventualy calculate a
bounding box for its own portion of the total picture. If the object isaline or circle this
computation istrivial, but for an arc or spline there may be many expensive floating point
calculations to be made.

A better algorithm involves taking into account the varying amounts of work involved
in processing different objects. We have adopted this ‘weighted object’ algorithm in our
modified PIC parser, each object being assigned a weight corresponding to the amount of
processing that it requires. Each stream is then allocated objects with about the same
total weight, so as to achieve a balance of work between the streams and to minimise the
‘idle’ time before the final synchronization (when the global bounding box is computed).

The weights for the objects are shown in table 1. Their choice involves some measure
of guesswork (and, with hindsight, it would have been better to increase the weighting
given to arcs) but the exact values are not too important given that the algorithm only
tries to bring the stream workloads into approximate balance.

Table 1. Object weights

Spline 8 Arc 1
Box 4 Line 1
Arrow* 3 Move 1
Circle 1 Text 1
Ellipse 1

*An arrow’ sweight varies depending on how many
lines are used to draw its head (the default is two).

The assignment of PIC objects to streams is now straightforward. The source code is
allocated to streams more or less as it is encountered, but with the proviso that boxes,
lines and so on are logical entities and so should remain intact. Conditional statements,

Yinrpc, objects are the basic picture units such as boxes, circles, lines, splines and text strings but thereis aso
ahigher level object called ablock, which is essentially a collection of objectsin an independent sub-picture.

36 D. F. BRAILSFORD AND D. R. EVANS

macros and loops should also be kept as single units, otherwise there will be a need for
more inter-stream communication, and thisisto be avoided where possible. Some careis
needed not to take a new stream immediately before a phrase such as ‘circl e at
end of last |ine whichwould at that stage refer back to some unknown object
on aprevious stream.

Another problem is to keep track of the ‘global state’ between streams and, in
particular, the default sizes for the various objects. For instance, if stream O were to
change the default size for acircle, then it would need to inform al the streams that came
after it of what the new default should be. Mercifully, the globa state in PIC is fairly
small, with only eighteen global variables, and it is entirely feasible to look out for
changes to any of these without slowing down the stream allocation agorithm too much.

Although PIC has a macro facility it has only a limited notion of local variables and
restricted scopes. This can lead to problems, in our parallel version, when users declare
their own variables. All such variables have global scope but, fortunately, aterations to
them can usually be detected at compile time and the appropriate information may then
be passed on to other streams. However, if these variables are declared inside macros,
which might not even be called, it is not known before run time what the value will be.
An obvious way round this problem would be to communicate the value of the variable at
run time, using the send and r ecv mechanism just described. For the moment, though,
we note that the pre-processor has not been programmed to detect assignment statements
involving variables within macros, and any such alterations to the values of variables in
these circumstances islikely to cause total havoc.

BENCHMARK RESULTS

It would be unfortunate if the constraints just described demanded an awkward style of
PIC programming before the advantages of parallelism could be realised. In case it might
be thought that our examples in this section have been doctored to steer clear of any
problems, we can reveal that some of our results use an unmodified test set of some 35
pictures, which have been gathered together from various sources by Kernighan.

The results we shall present were obtained by running both the paralel and the
ordinary implementations of PIC, under UNIX, on a Sun 3/160 fileserver. Although the
results are reasonably representative of what one might expect to achieve on a true
multi-processor parallel machine, we shall see that the synchronization process, and the
consequent passing of information, are subject to the overheads inherent in the UNIX
system supporting the simulation.

A small test example

Figure 3 shows a graph of the total time taken to draw the simple diagram (figure 2), first
of all with conventional ‘single stream’ PIC and then by allocating the source code to four
streams in the manner just described. It is apparent in figure 3 that a good overlap of
activity has been achieved between the four streams and also that the various overheads
of synchronization, idle time and so on are far from negligible.

In the four-stream case we see the overheads which can arise in parallel processing
schemes of any sort. The time periods labelled ‘" are the idle times, which occur when a
stream is waiting for information from one or more of the other streams. The

PARALLEL PROCESSING IN DOCUMENT FORMATTING 37

Single Stream p |)
Stream 3 p \ i \ s \ a \ 0 \
Steam2| p [i | s | a | 0 | p = parse
i =idle
Key: s=send/recv

_ a = adjust
Steam1| p [i | s | a | o | o = output
Stream 0 p \ i \ s \ a \ 0 \

\ \ \ \ \ \
0 100 200 300 400 500 600

Time (milliseconds)

Figure 3. Overlap of processing for the simple diagramin figure 2

1200 —
1000 —

800 — BEEREREREE ’

Run time
(milliseconds) 600 —

400 —

200 —

rr 1T 11 1 17T 1T T 1T T T T T/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of streams

Figure4. Variation of run time for the simple diagram as
number of streams increases

38 D. F. BRAILSFORD AND D. R. EVANS

implementation of send and r ecv, and their use at synchronization points, does not
contribute strongly to this idle time because, as already explained, it has been arranged
that the processes executing these primitives will very seldom become blocked. Theidle
time, then, arises largely from the various processes waiting to participate in the fina
rendezvous for establishing the global bounding box. The portion of time marked ‘s’ is
the overhead involved in the send/ r ecv mechanism, which isin turn dominated by the
system call overheads of UNIX. (These system calls are for opening, reading, writing and
scanning the files where the messages are passed.) The adjust time, ‘a’, isthe time taken
for each stream to submit the coordinates of its own bounding box to stream 0 and for
that stream to calculate the global bounding box and to broadcast it. The output time, ‘0’
is the time taken to traverse the linked list on the given stream, after the global bounding
box is known, and to output the appropriate troff drawing primitives for that portion of
the diagram.

The execution time of the four-stream case is essentialy that of its longest running
stream (Stream 2) and the ratio of this time to that achieved by unmodified PIC gives a
rather disappointing speed-up factor of 1.4. Even if the various overheads shown in
figure 3 were to be ignored it would not speed up execution by more than a factor of 3 so
the obvious inference is that we might be close to the performance limit (i.e. there is not
enough material in the picture to make extra processors worthwhile). Fortunately it
proved easy to verify this hunch by simply observing the variation of the speed-up factor
as the same PIC code was allocated to an increasing number of streams. To do this the
modified compiler was parameterised with an integer, n, which stipulated the number of
streams to be used for code alocation. For the simple diagram it was then possible to
plot the total execution time as afunction of the number of streams used (see figure 4). It
will be seen that the resulting curve is not smooth; this arises because the amount of PIC
code on each stream decreases as the number of streams increases and the processing
time per object becomes comparable with the total processing time per stream. What we
then observe is a ‘ quantum effect’, where large variations in a stream’s processing time
can occur depending on whether the indivisible processing time for a given object is
allocated to this particular stream rather than to either of its neighbours.

However, even alowing for the unevenness of the curve, it is clear that performance
levels off after about 8 streams with the run time having been reduced by a factor of 2
compared to the single stream case. This seems to be the limit of parallelism for this
particular diagram.

A larger example

The results obtained with the small diagram in the previous section prompt us to try a
larger diagram, to verify that more encouraging performance gains would be obtained
when more material is available for processing in parallel. Our tests used the diagram
shown in figure 5, with the PIC code being allocated to 10 streams. Once again the bold
labels 'Sy, ..., 'Sy’ show where the streams begin, as allocated by the weighted objects
agorithm, and the bullets indicate the synchronization points between adjacent streams.
We shall refer to this picture from now on as the ‘ complex diagram’.

Although there is not the space here to reproduce the source code for this diagram,

PARALLEL PROCESSING IN DOCUMENT FORMATTING

39

O OO O]

HO—O
O—O—]
FO—O
OO OO
g8 HO—O
O—O—]
-O0—O
OO
-O—O{ OO
O—O—]
C-O—O
Sre-m
OO

OO OO+
(OO
OO
(OO
O—O—1]
(T~ 10O
OO
(0O
OO
OO
OO0 3,00
OO
OO
(OO
OO
(OO HO-O
OO
(OO
OO

OO
O—O0—]
OO
O—-O{ OO0
-O-O
OO
RO-O
OO
OO HO-O
OO0
OO
O]
(-O0—O
O—Ogb OO
OO
OO
OO
OO
(-O0—~O{1+HO-O
O]

-0-O
OO
OO
OO -O—0-{]
(0O
OO
-0-O
€ O]
F-O-O-L 0O
OO0
OO
OO0

S H-O-O1T OO 1HO-O

Figure 5. Complex diagram, with bullets showing synchronization points

D. F. BRAILSFORD AND D. R. EVANS

Single Stream p | 0 \
Stream 9 p [i[s]a] o \ 4360 11600
Stream8[p [i[s [a] 0
Stream 7{ p [i[s[d] 0 \ 0 = parse
Stream 6| p Ji[s][a] 0 \ i =idle
Stream 5[p [i[s]a] 0 \ Key: s=send/recv
Stream 4| p [i[s]q] o \ a = adjust
Stream 3| p [i[s]a] o 0 = output
Stream 2| p [i[s[q] 0 \

Stream 1| p [i[s]a] o \
StreamO[p [i [s [a] o \
: : o
0 10‘00 20‘00 11(‘)00 11‘500
Time (milliseconds)
Figure 6. Overlap of processing for the complex diagram
12000 —
11000 —|
10000
9000 —|
8000
_ 7000
(mﬁl?snezgeds) 6000
5000 —
4000 |
3000
2000 —|
1000 —|
0]

Number of streams

variation of processing time for complex diagram in figure 5.
variation of processing time for complex diagram,
ignoring communication overheads.

Figure 7. Variation of run time with number of streams for the complex diagram

PARALLEL PROCESSING IN DOCUMENT FORMATTING 41

figure 6 shows the overlap of activity during processing. It can be seen that the tota
processing time on each stream is about the same, showing that the code allocation
agorithm has done a reasonable job in apportioning work between the streams.

The speed-up factor is now about 5 but we notice, once again, that system cals
contribute in large measure to the communications overheads. Fortunately the time spent
in system calls can be determined from the gpr of output and can be subtracted from the
times for each corresponding stream. When this has been done we find no change in the
relative magnitudes of the various run times. Stream O still takes the longest time to
complete but its overal run-time is reduced to 1500 ms, giving a speed-up factor of 7.7,
which is near to the ten-fold effect that might be expected from the number of streamsin
use. Obvioudly, on a truly parallel machine the speed-up factor would lie somewhere
between these two numbers, depending largely on the extent to which communications
overheads can be minimised and the workloads on the streams kept in balance. But
whether one takes 5 or 7.7 as being the performance index does not matter too much; the
more interesting question is how near we are to the performance limit, as determined by
the nature of the atomic objects in PIC and the number of these objects that are available
for parallel processing.

Figure 7 shows how the overall processing time for this complex picture varies with
number of streams that are brought into use. Two plots are shown— one with system
call overheads included, and the other where they have been subtracted out. Although the
overall shape of these two curvesisfairly similar it isinteresting to note that, with system
cals included, the performance actualy deteriorates from about 6 streams onwards
whereas, when this overhead is ignored, the curve merely flattens out. What we are
witnessing is the classic behaviour of parallel systems whenever communications
overheads reach the same order of magnitude as the computational load on the individual
processors. The flattening out of the dotted curve (i.e. after due allowance has been made
for system calls) can be ascribed to at least two factors: firstly, it is not possible to
balance the workloads so perfectly that idle times are totally eliminated and furthermore,
for every new stream introduced, more information needs to be communicated to and
from stream O during adjust time.

Resultsfrom the PIC test set

Having established the magnitude of the performance improvements obtainable, with the
simple diagram and the complex one, it seemed a useful next step to investigate the
average behaviour over a set of diagrams. The PIC test set has already been mentioned;
the diagrams in it range from straightforward demonstrations of the basic capabilities of
line, circle and so on, through to more complex examples, which have been
included on the grounds of aesthetic appeal or because they exercise some more
advanced feature of PIC. The test set as a whole was benchmarked in much the same
way as the two individual examples aready considered, with the source code being
dlocated to a steadily increasing number of streams and the total run-time being
measured in each case. We cannot disguise our satisfaction (though tinged perhaps with
just a little surprise) in reporting that none of the diagrams caused difficulties for the
stream allocation algorithm. Furthermore, the collected and merged output from the
streams always succeeded in drawing the correct pictures, regardless of the number of
streams in use. It would appear that PIC programmers (or, at any rate, those whose

42 D. F. BRAILSFORD AND D. R. EVANS

1200 —
1000 —
800 —
Run time
(milliseconds) 800 —
400 —
200 —
. ___picoverhead -
0\\\\\\\\\\\\\\\
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of streams
Key: mean run time per diagram for the PIC test set.

——— run-timewithout system call overheads.

Figure 8. Variation of average run time per diagram for the PIC
test set as the number of streamsincreases

diagrams appear in the test set) write their code in a straightforward fashion, with the
lexical ordering of the program being indicative of the actual execution path, and with
little or no recourse to obscure side-effects on global variables.

From the performance viewpoint, figure 8 shows the variation of the mean processing
time per picture, for the PIC test set, as the number of streamsisincreased. The average
run-timeisin the region of afew hundred milliseconds and a speed increase of about 2 is
obtained by the time 5 streams are in use, with little improvement thereafter. Since these
figures are quite close to those obtained when processing the simple diagram, we
conclude that the average picture complexity is closer to the simple diagram than to the
complex one. The reassuring point here is that the model system seems to be well-
conditioned in giving reproducible and plausible results for a wide variety of diagrams
provided they have roughly the same number of atomic PIC objects.

As afinal point of interest we should note that the ultimate performance limit, in our
scheme, is determined not so much by running out of material for processing in parallel
as by the initialisation overhead for setting up the PIC parser, on al the streams, before
any processing begins. This overhead is the same on al streams, of course, and it
amounts to some 120 ms on the computer used for this simulation. We show this
initialisation time as a horizontal line on figure 8, though we could equally well have
included it on all our earlier performance graphs. The reason for waiting until this late

PARALLEL PROCESSING IN DOCUMENT FORMATTING 43

stage before drawing attention to it is that this particular overhead is fixed in magnitude
and is consequently of greatest importance for precisely the ‘typical’ simple diagrams we
have just been discussing, where the run-time for the picture is small. We note that this
factor aone limits the maximum possible speed-up for a typical diagram to a factor of
about 8.

CONCLUSIONS

It has been fascinating to see how our streams model for PIC shows al the familiar
characteristics of larger parallel systems, but the figures we have obtained for gains in
performance yield no major surprises.

It was aways apparent that massive paralelism does not exist within line
diagrams— or at any rate not at the level of abstraction at which PIC is processing them.
(Indeed, for the case where a document contains many diagrams, it could be argued that
processing time could be reduced far more effectively by ignoring parallel processing
atogether and by developing some tool similar to the UNIX make which processes only
those diagrams which have altered since some previous run.)

Judging from the results obtained with the simple diagram, and from the mean
processing time per diagram in the PIC test set, it seems that our exploitation of intra-
diagram paralelism leads to a halving of processing time for the sort of diagrams that
users actually put into their documents. The flattening out of the performance curves
beyond a certain number of streams tends to show that we are running out of parallelism
(at the granularity level of the atomic objects in PIC) rather than being hampered by any
lack of parallel processing resources. We could justifiably conclude that extracting this
intra-diagram parallelism is not worth the effort, and certainly not in cases where
diagrams constitute only a small part of the document.

This judgement would be balanced rather differently if a document contained a large
number of diagrams such as the one in figure 5. If such diagrams were to be generated
descriptively, perhaps with the use of macros, then our methods could process them very
effectively and a ten-fold speed-up in processing time would certainly seem to be worth
pursuing. However, it might seem far more appealing to produce such complex pictures
with interactive software, even though the final output code could still be PIC, to alow it
to be easily transported from document to document. It turns out that analysis of the PIC
code we have been using, as opposed to that which might be generated by an interactive
system, throws more light on the future prospects for parallelism in document processing
than can be gained merely from our figures of performance gains. These matters we shall
now examine in alittle more detail .

Absolute and relative coordinates

There are many interactive software systems for workstations which enable diagrams to
be drawn by choosing from a palette of object shapes, followed by placement and sizing
of these shapes. The connections between these objects can be made with lines, arcs and
so on. The output from such programs may take on a variety of forms, but some of them
do indeed generate PIC as their output. One of the earliest of these, and typical of the
genre, is Sally Browning's CIP [14].

The nub of the problem with any interactive scheme isthat it is extraordinarily hard to

44 D. F. BRAILSFORD AND D. R. EVANS

generate the same kind of PIC code that would be produced by a human actualy
describing the picture. The ability, in interactive usage, for placing objects with arbitrary
spatial relationships to one another, leads to a heavy reliance on absolute rather than
relative coordinates. A few moments reflection should convince us that paralel
processing with our streams model would be straightforward if all the PIC code used
correct absolute coordinates. It would still be advisable for the streams to rendezvous, in
order to establish that the bounding box would fit on the physical page, but there would
be no need for any inter-stream synchronization, because each object could be
independently and correctly placed with code such as:

line from (0.0, 0.0) to (1.0, 0.0)
box width 1i with .c at (1.5, 0.0)

The PIC compiler can map objects having absolute coordinates into suitable output
codes very easily indeed, without any need to take the coordinates of other objects into
account, and this means that the streams can run truly independently and at full speed (a
luxury which is normally only achieved in the output phase for the examples we have
presented). However, the penalty we pay for tying any system to absolute coordinates at
an early stage is that it becomes inflexible when one wishes to modify the diagram.
Moreover, the logical connection between the various portions of the diagram (‘this line
touches the next box at its west point’) is completely lost, which makes any scaling or
adjustment of composite objects extremely difficult. In the end one reaches the weary
conclusion that it is too much effort to adjust, by hand, any PIC source which is littered
with absolute coordinates. Instead one has to go back to the interactive system that
generated the PIC before any modifications can be made.

By contrast, al of our examples have used relative coordinates almost exclusively,
and this is the way that programmers would naturally generate a PIC diagram. Most
objects are logically and physicaly linked to some other and our lines and boxes can now
be seen to join up explicitly, provided we describe things in relative language such as:

line right 1i
box width 1i with .wat last |ine.end

The small penaty we pay for this, in our streams model, is the communication traffic
incurred when the distinct portions of the diagram link up at the synchronization points.
What we gain is the ability to edit the PIC and to alter the relationship of one object to
another without compromising the ability to process in parallel. Interestingly, the worst
of al worlds occurs when the PIC code has some arbitrary mixture of absolute and
relative positioning commands, for then the communications traffic for adjusting local
coordinate schemes at synchronization points, and for agreeing absol ute bounding boxes,
reaches major proportions.

The division between absolute and relative systems is not confined to the domain of
Cartesian coordinates, nor to the drawing of diagrams. It affects al areas of document
processing and al areas of computing. In the end al systems have to become ‘ absolute’,
if only because the hardware works that way at its lowest level, but the lesson learned
from many years of computer development is that it pays to delay any absolute bindings
for as long as possible. For example, it is perfectly feasible to run multi-process
operating systems where every program is bound to absolute addresses in memory. The

PARALLEL PROCESSING IN DOCUMENT FORMATTING 45

illusion of paralelism is certainly maintained, but the system is incredibly unwieldy if it
is desired to add more memory or if a process has to be moved for any reason. However,
if one is prepared to pay the small penalty incurred with memory management hardware,
where addresses are kept in relative form until the last possible moment, then one still
retains the ability to do parallel processing but now with a greatly enhanced facility for
moving processes around and for creating new ones. Or again, in text processing, any
WYSIWYG system which takes the physical objects of line and page as its unit of
processing may well be adaptable to some sort of parallel processing, but it will usually
be much less flexible than systems which place words, sentences and paragraphs in a
relative way, leaving details of line breaks and pagination until the last possible moment.

L anguage consider ations

Although we were able to say that our choice of PIC diagrams was not constrained by the
fact that they were to be processed in paralel, we certainly cannot make the same
assertion about the choice of PIC itself for our model system. Having made some unkind
remarks about functional languages in the earlier sections we must now come clean and
admit that the reason for our success with PIC lies in the fact that it is designed on
‘functional’ lines. The vast majority of PIC source code uses combinations of atomic
objectssuch as| i ne, ci rcl e, and box in adeclarative style. These objects interface
with one another at a logical and physical level by the use of attributes such as above,
. ¢ and so on. For convenience aone there is a small set of global quantities and users
are allowed to define their own variables? but the style of PIC is not dominated by these
factors.

It is now easy to understand why we chose diagram processing as our starting point;
the very nature of PIC made it easy to use and adapt. If we had chosen to delve into text
processing at the same level of detail we would have to face the fact that the widely
available tools, such as troff and TEX have a much larger state-vector of global variables
than PIC does. Even worse, their design and operation at the basic level depends on
making detailed and obscure changes to that vector in order to effect changes to point
size, font, line length, character slant and so on. To be fair, both of these systems are
capable of being used in a more abstract manner by means of macro packages but it is
still the case that a host of side-effects can be caused, outside of the macros, which have
adramatic effect on the document and which would be hard to administer in any parallel
scheme.

Further work

Our researches continue on the more general theme of processing blocks of text in
parallel. We remain convinced that a small number of global entities (point size, font,
leading, line length and so on) needs to be maintained but the style of the underlying
language also needs to be more ‘functional’ to alow for processing in paralé.
Questions arise also as to the scale of the optimum granularity. Should this be at the
sentence, paragraph or subsection level? We hope to report our resultsin a future paper.

2 Though it is an intriguing observation that much of the usage of this facility is to attach names to user-defined
constants rather than for recomputation and re-assignment of new variable values.

46

D. F. BRAILSFORD AND D. R. EVANS

ACKNOWLEDGEMENTS

Thanks are due to Brian Kernighan for supplying us with the PIC test set. Our referees
suggested numerous improvements both to the overall style of the paper and also to the
detailed exposition of the streams mechanism.

REFERENCES

1

2.

10.

11.

12.

13.

J. F. Ossanna, ‘NROFF/TROFF User's Manual’, Bell Laboratories: Computing Science
Technical Report No. 54 (April 1977).

Brian W. Kernighan, ‘PIC— A Graphics language for Typesetting. Revised User Manua’, Bell
Laboratories; Computing Science Technical Report No. 116, (December 1984).

Philip C. Treleaven, David R. Brownbridge, and Richard P. Hopkins, ‘Data-Driven and
Demand-Driven Computer Architecture’, ACM Computing Surveys, 14 (1), (1982).

Scientific American, Trendsin Computing, 1, (October 1988).

E. W. Dijkstra, ‘Co-operating Sequential Processes’, in Programming Languages, ed. F.
Genuys, Academic Press, New Y ork, pp. 43-112, (1968).

J. R. Gurd, C. C. Kirkham, and I. Watson, ‘The Manchester Prototype Dataflow Computer’,
Communications of the ACM, 28 (1), pp. 34-52 (1985).

H. Brown, ‘Parallel Processing and Document Layout’, Electronic Publishing—Origination,
Dissemination and Design, 1 (2), pp. 97-104 (1988).

W. Wulf and Mary Shaw, ‘Global Variable Considered Harmful’, SSGPLAN Notices pp. 28-34
(February 1973).

J. Darlington and M. J. Reeve, ‘ALICE: A Multiprocessor Reduction Machine for Applicative
Languages’, Proc. ACM/MIT Conference on Functional Languages and Computer
Architecture (1981).

M. Tokoro, J. R. Jagganathan, and H. Sunahara, ‘On the Working Set concept for Dataflow
machines’, Proc 10th Annual Symposium on Computer Architecture pp. 90-97 (1983).

D. E. Knuth, TEX and METAFONT: New Directions in Typesetting, Digital Press and the
American Mathematical Society, Bedford Mass. and Providence R.I., 1979.

D. F. Brailsford and R. J. Duckworth, ‘The MUSE Machine—an Architecture for Structured
Data Flow Computation’, New Generation Computing, 3 (2), pp. 181-195 (1985).

Brian W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice-Hall, 1984.
Saly A. Browning, ‘CIP User's Manud’, AT&T Bell Laboratories Interna
Memorandum (March 1982).

	SUMMARY
	INTRODUCTION
	PARALLELISM --- RECOGNITION AND IMPLEMENTATION
	Granularity of parallelism
	Language issues
	Static vs dynamic allocation of parallel tasks

	PARALLEL PROCESSING WITH PIC
	Parallel simulation implementation

	STREAM LAYOUT ALGORITHM
	BENCHMARK RESULTS
	A small test example
	A larger example
	Results from the PIC test set

	CONCLUSIONS
	Absolute and relative coordinates
	Language considerations
	Further work

	ACKNOWLEDGEMENTS
	REFERENCES

