
h

ELECTRONIC PUBLISHING, VOL . 1(2), 97–104 (SEPTEMBER 1988)

Parallel processing and document layout

HEATHER BROWN

Computing Laboratory
The University
Canterbury
Kent CT2 7NF
UK

SUMMARY

Interactive editing and layout of high quality multi-media documents is a demanding
application that is limited by the processing power available from current workstations. This
short paper takes a preliminary look at the opportunities for exploiting parallelism within the
document layout process, and suggests that radically new ways of thinking may be needed to
take advantage of the enormous parallel processing capabilities offered by a new generation
of workstations based on configurable networks of Transputers.

KEY WORDS Structured documents ODA (Office Document Architecture) Document layout Parallel
layout algorithms Occam Transputers

THE CHALLENGE

The current state of interactive document processing and, indeed, the whole so-called
‘Desk-top Publishing Revolution’ has been made possible by the simultaneous
emergence of cheap but powerful workstations and laser printers. But with software
systems already limited by the processing power available on the current ranges of
workstations, it is time to look ahead at the opportunities — and problems — provided by
parallel processing techniques and the major leap in workstation performance they can
provide. Transputer-based workstations capable of delivering processing power of the
order of hundreds of MIPs are already available in research and development
environments. The challenge is to develop the software techniques needed to use them
effectively.

As a first step in taking up the challenge, this paper attempts to identify areas where
parallelism may be exploited within the document layout process. It begins by showing
how the layout process fits into the overall document processing model and how it may
be divided into high level layout and low level layout. It then concentrates on areas of
the model that offer parallel processing potential, and finally suggests that some parts of
the layout process might be tackled in a very different manner in a parallel environment.

STRUCTURED DOCUMENTS

The idea that documents conform to an underlying structure has been reflected in
document preparation systems for many years. Much recent work has been based on the
original ideas of Alan Shaw[1], and has lead to the development of structured systems
like GRIF[2]. and Interleaf[3]. and to the proposed international standard for an Office

0894–3982/88/020097–08$05.00 Received 6 November 1987
 1988 by John Wiley & Sons, Ltd. Revised 3 February 1988

© 1998 by University of Nottingham.

h

98 H. BROWN

Document Architecture (ODA)[4]. Although there is no real agreement on the form such
document structures should take, a number of general trends can be identified. Most
document structures are hierarchical and object-oriented, they provide a framework for
multimedia documents, and they frequently provide a mechanism for defining document
‘styles’ or generic document definitions. Another important feature is a means of
keeping low-level layout details separate from the document structure and content. This
allows different ‘views’ of the document to be produced relatively easily.

As the document model defined by ODA conforms to these general trends, it will be
introduced very briefly and used to provide the framework of the discussion on
parallelism. Readers interested in further details are referred to Part 2 of the ODA
standard itself or to Brown[5] for a fuller informal description.

ODA DOCUMENT ARCHITECTURE

The ODA model of a document is tree-like. The content of the document is stored
entirely in the leaf nodes, while the structure of the document is given by the shape of the
tree. This separation of content and structure is crucial for multimedia documents as it
allows different types of content to co-exist within the same document.

An ODA document is described by two structures: a logical structure and a layout
structure. The logical structure divides and subdivides the document into objects that
mean something to the human author or reader. Chapters, sections, titles, diagrams,
paragraphs and references are typical examples of logical objects. Only the lowest level
objects, such as titles or paragraphs, have content associated with them. The layout
structure on the other hand is concerned with a visible representation of the document. It
divides and subdivides the content into page sets, pages, and rectangular areas within
pages. If these rectangular areas have nested areas defined within them they are known
as frames. The lowest level areas are known as blocks. A frame might be used to
represent a column of text, for example, with nested blocks representing individual
paragraphs. By definition, only blocks have content associated with them.

The creation of the structures for a particular document is guided and controlled by
two sets of object type definitions (one set for logical objects and one for layout objects).
These specify the types and combinations of objects allowed and thus provide generic
structures for a particular class or ‘style’ of document. In ODA terminology the
definitions constitute the generic logical and generic layout structures for a document
class, while a document belonging to the class is described by its own specific logical and
specific layout structures.

In addition to these four structures, ODA uses content architectures to define content
and the rules used to process it. There are currently three content architectures:
character, raster graphics, and geometric graphics. For character content, the content
architecture defines details of the positioning and orientation of characters, positioning of
lines and words, indentation, tabulation, and the use of different character fonts. (Full
details of the content architectures can be found in parts 6, 7, and 8 of the standard.)

The layout process decides exactly where each item of the document is to be placed.
It uses the specific logical structure, the generic structures, and the content architectures
to create the specific layout structure. The process divides cleanly into two. The low
level (or content) layout process takes content portions and lays them out into blocks.

h

PARALLEL PROCESSING AND DOCUMENT LAYOUT 99

The high level (or document) layout process takes the resulting blocks and places them in
frames or pages. The content architectures are only used in the low level layout.

An example of high level layout

The high level layout process is influenced by a number of attributes defined in the
generic structures. This section introduces the relevant attributes and gives a simplified
example of high level layout.

The definition for each (non-leaf) object has an attribute called generator for
subordinates which describes how the object can be made up from subordinate objects.
These attributes effectively define a simple grammar for the document class. They
indicate that subordinate objects may be optional (OPT), required (REQ), or repeated
(REP), and that groups of subordinates may occur in a given sequence order (SEQ) or as
a choice (CHO) where only one of a group occurs.

Figure 1 shows a simple generic logical structure that might be used for a section of a
technical document. It indicates that a section consists of a compulsory title, followed by
an optional author’s name, followed by one or more subsections. Each subsection starts
with a subtitle. The ‘REP CHO’ construct indicates that the subtitle is followed by a
series of paragraphs or lists occurring in any order. Lists consist of one or more items.

Section ‘Section page set’

Title

‘Head’

Author

‘Head’

Subsection

SEQ

OPT REP

Subtitle

‘Body’

SEQ

REP
CHO

Paragraph

‘Body’

List

Item

‘Body’

REP

Figure 1. Generic logical structure

h

100 H. BROWN

A corresponding generic layout structure might define two different page styles — a
special ‘Title page’ for the first page of the section, and a ‘Continuation page’ for all
subsequent pages. Figure 2 shows the top level of a possible generic layout structure.
The title frame represents an area set aside on the first page for the title of the section,
and for the author’s name if present. The body frame and continuation body frame
represent areas for all the rest of the section.

Section
page set

Title
page

Continuation
page

SEQ

OPT
REP

Title
frame

‘Head’

Body
frame

‘Body’

SEQ

Continuation
body frame

‘Body’

Figure 2. Generic layout structure

A crucial aspect of the high level layout is to decide what layout objects may be used
for a given logical object. This is dictated by three attributes (whose values are shown in
italics in Figure 1 and 2) called ‘layout object class’, ‘layout category’, and ‘permitted
categories’.

‘Layout object class’ is used to indicate that an entire logical object must be placed in
a single instance of a particular type of layout object. No other part of the document may
share that layout object. The attribute normally refers to a page set or page and is used to
direct major logical divisions of the document into separate sets of pages. Within one of
these major divisions, ‘layout category’ and ‘permitted categories’ are used to direct
logical objects into certain frames. ‘Layout category’ associates a single name with a
leaf logical object, and ‘permitted categories’ associates one or more names with a frame.
If an object is given a layout category, it can only be placed in a frame that has been
given the same name as one of its permitted categories. An appropriate use of this
category mechanism can help with complex layout where different content needs to be
directed to different areas.

In our simple example we use only one layout object class and two categories. The
logical section of Figure 1 has its layout object class defined as ‘Section page set’, and
each section is thus laid out in a separate instance of the page set shown in Figure 2.
When the layout process comes to the section title, it looks for a frame with ‘Head’ as

h

PARALLEL PROCESSING AND DOCUMENT LAYOUT 101

one of its permitted categories, and thus directs the title (and the author’s name if
present) to the title frame on the title page. All the other leaf items in the section have
‘Body’ as their layout category, so the layout process directs the first subtitle to the body
frame on the title page. Subsequent items are sent to that frame until it is full, and they
are then sent to continuation body frames on continuation pages. The positioning of
blocks within the frames is controlled by further attributes that are not described here.

Figure 3 shows a specific page set that might be created. The frames are labelled with
their permitted category names. Note that the continuation body frame on the third page
is not necessarily full.

Title page Continuation page Continuation page

‘Head’

‘Body’

‘Body’ ‘Body’

Figure 3. Specific page set

PARALLELISM WITHIN THE ODA MODEL

Two areas within the model provide scope for exploiting parallelism. The first of these is
in the low level layout where the processing of individual blocks is essentially
independent. The second comes from the one-to-one correspondence between page sets
and major divisions of the document as defined by the layout object class.

Putting these two together makes it attractive to think in terms of the low level layout
consisting entirely of a large number of independent parallel processes, each working on
its own individual block, and the high level layout consisting of a smaller number of
mutually independent parallel processes each using the information from the lower level
to work on its own page set.

The framework described above makes no assumptions about the standard of layout,
but the interface between the high and low level must make suitable provisions for high
quality. In particular, if we assume the layout process uses some form of the TEX
boxes-and-glue-and-penalties model[6], then some information on the penalties for
splitting a block across frames must be passed from the low level to the high level. In
most cases it would be sufficient for the low level layout to provide:

g the dimensions of the block;
g a list of places where the block may be split, together with an associated penalty.

In the majority of cases only blocks with character content would be splittable. The

h

102 H. BROWN

positions for splitting would, of course, correspond to the divisions between lines of text,
and the associated penalty would take account of widows, orphans, and hyphenation.

This information would normally be sufficient to allow the high level to cope with
awkward layout problems. However, in case the high level could still not easily avoid
widows and orphans, or place graphics blocks of awkward size, it might be appropriate to
allow a reprocessing mechanism where the high level could ask the low level to process a
block again with a target size specified. This mechanism might enable the low level to
provide a paragraph one line longer or shorter, or to return a scaled graphics block.

The independence of the different parts of the layout process in the basic framework
described here has a number of attractions for interactive editing as well as parallel
layout. In many cases the effects of editing a logical object are confined to the low level
layout of the object itself and the high level layout of its containing page set. Where an
edit causes changes to such things as page or section numbers the effects are spread
further — which is why some interactive systems keep automatic numbering facilities to
a minimum. A reprocessing mechanism, as described in the previous paragraph, widens
the effects of edits and is therefore one of the elements of quality that is all too frequently
discarded. A parallel workstation should cope easily with the processing overheads of
this improvement.

RETHINKING FOR A PARALLEL ENVIRONMENT

It is possible to find a number of promising extensions to the basic framework outlined in
the previous section. In particular we could seek to exploit the use of layout categories
so that independent parallel processes could cope with different categories. However,
this kind of thinking is really only tinkering with the problem. Radical new environments
need radical new ideas. It is important to recognise that the ground rules have changed
and the basic principles of system design may need to be changed with them.

Occam[7] provides the most flexible environment for exploiting Transputer networks.
Programs consist naturally of many small concurrent processes communicating along
point-to-point synchronised channels, and the overheads associated with creating and
scheduling processes are very small — comparable to the overheads of procedure calls in
sequential languages. Designing large software systems in occam is, in some respects,
more like hardware design with processes taking the place of simple hardware
components and complex systems being built up from large numbers of simple replicated
components. Used sensibly, this ‘occam engineering’ approach provides a powerful tool
to help us reason about parallel systems[8]. Systems supporting 100,000 concurrent
processes are perfectly feasible and manageable. The Transputers themselves provide
immense power and speed. One board containing four T800 floating-point Transputers
can deliver 40 MIPs, and each of the Transputers has a usable DMA input/output
capacity of 1.8 Mbytes/second (in each direction) over four links.

A great deal remains to be learned about the effective use of Transputer networks,
particularly about mechanisms for distributing large bodies of data and for balancing
processing loads. Three general points are described briefly below.

(i) Multiple copies of data may be preferable to partitioned data. In 3-dimensional
graphics systems, for example, it may be profitable to duplicate the data model of
a scene in each Transputer, but to arrange that each Transputer performs ray
tracing and rendering for its own section of the required view.

h

PARALLEL PROCESSING AND DOCUMENT LAYOUT 103

(ii) Pipelines of processes, with the data moving through the processes, may be more
effective than processes that range over the data. If the data can pass through the
pipeline as fast as they can be accessed, then long pipelines of extremely simple
processes may outperform complex methods ‘proved’ to be more efficient for
sequential computers. (A simple example of this comes from sorting. A pipeline
of trivially simple processes — each comparing two numbers and passing the
larger one on to the next — can implement a form of bubble sort that is as fast as
reading and storing the numbers ready to perform a ‘more efficient’ sort.)

(iii) Processes may replace data structures. Complex links between pieces of data
may be replaced by the channels between occam processes. An element of this
showed up in the layout framework introduced in the previous section, where the
levels of the layout process formed a tree-like pattern similar to the specific
layout structure.

TOWARDS PARALLEL PARAGRAPH LAYOUT

This section attempts to apply some of these ideas to a TEX-like paragraph layout
algorithm.

At the top level we might think in terms of the pipeline approach. As the paragraph
content is accessed it passes through the following pipeline of four major processes.

g Hyphenation
This contains all the data required for the hyphenation algorithm. It identifies
possible hyphenation points and inserts information about them into the data
stream.

g Font information
This contains all font information. It keeps track of the current font and inserts
any necessary information (character widths, space sizes, ligatures, kerning, and
so on) into the data stream.

g Boxes-and-glue-and-penalties
This stage turns the data stream into the boxes and glue form needed for the final
line breaking process. Some penalties can be dealt with at this stage.

g Line breaking
This is the main layout process which uses the penalty system to decide on the
optimum layout. As it does not know about page breaks, it can only place
advisory penalties on possible page breaks at each line.

Each of these four main processes would certainly be broken down further. Within the
hyphenation process, for example, it might be appropriate to investigate the possibility of
replacing TEX’s complex trie structure by processes. (Different words would then be
passed through a different pipeline of processes.) Within the final line breaking process,
on the other hand, it might be more appropriate to think in terms of spawning separate
pipelines of processes to evaluate the different possibilities.

CONCLUSION

Transputer-based systems are already being used for driving high quality laser printers
and thus for the imaging of documents. The ideas presented in this short paper are

h

104 H. BROWN

intended to show that there is also an enormous potential for the use of Transputers in the
area of interactive document editing and layout, and to stimulate discussion and argument
on the ways in which this potential can be realised.

ACKNOWLEDGEMENTS

Many of the ideas on parallelism expressed in this paper come from discussions with
Peter Welch. I am grateful to him for infecting me with his enthusiasm for occam and
Transputers. I would also like to thank Ian Utting and colleagues from the Alvey Fortune
project for many illuminating discussions on parallel layout. Finally, I would like to
thank the SERC for their support of several research projects on document processing.

REFERENCES

1. A. C. Shaw, ‘A model for document preparation systems’, Technical Report 80–04–02,
University of Washington, 1980.

2. V. Quint and I. Vatton, ‘Grif: An Interactive System for Structured Document Manipulation’, in
Text Processing and Document Manipulation, J. C. van Vliet ed., pp 200–213, Cambridge
University Press, 1986.

3. R. A. Morris, ‘The Interleaf User Interface’, in PROTEXT III: Proceedings of the Third
International Conference on Text Processing Systems, J. J. H. Miller ed., pp 20–29, Boole
Press, 1987.

4. ISO/DIS 8613 Information Processing — Text and Office Systems — Office Document
Architecture (ODA), Parts 1,2,4–8, 1987.

5. H. Brown, ‘Document Structures for Integrated Text and Graphics’, Techniques for Computer
Graphics, D. F. Rogers and R. A. Earnshaw ed., pp 469–483, Springer-Verlag, 1987.

6. D. E. Knuth and M. F. Plass, ‘Breaking Paragraphs into Lines’, in Software — Practice and
Experience, 11, 1119–1184, (1981).

7. D. May and R. Shepherd, ‘Occam and the Transputer’, in Concurrent Languages in Distributed
Systems, North-Holland, 1985.

8. P. H. Welch, ‘Emulating Digital Logic Using Transputer Networks (Very High Parallelism =
Simplicity = Performance)’, in Proceedings of the ‘Parallel Architectures and Languages
Europe’ International Conference, pp 357–373, Springer-Verlag Lecture Notes in Computer
Science 258, 1987.

	SUMMARY
	THE CHALLENGE
	STRUCTURED DOCUMENTS
	ODA DOCUMENT ARCHITECTURE
	An example of high level layout

	PARALLELISM WITHIN THE ODA MODEL
	RETHINKING FOR A PARALLEL ENVIRONMENT
	TOWARDS PARALLEL PARAGRAPH LAYOUT
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

