ELECTRONIC PUBLISHING, VOL . 1(1), 45-53 (APRIL 1988)

Linking and sear ching within hypertext

P. J. BROWN

Computing Laboratory
The University
Canterbury

Kent, CT2 7NF

SUMMARY

The Find command is a familiar mechanism for travelling round linear documents. In
hypertext documents, on the other hand, the primary method of travel is by means of built-in
links. The paper considers how a Find command can be integrated into a hypertext system.
There aretwo main issues:

° What doesit mean to search a hypertext document?
. Can the two methods of travel be integrated in such a way that the user does not
become disoriented?

KEY WORDS Hypertext Find Command Searchingin Hypertext Guide

Hypertext represents an attractive and new way of storing information in a computer.
Like any new approach, this leads to the challenge of integrating the new practices with
the old ones, and our aim here is to investigate one instance of this. Before going into
details, however, we shall give a brief introduction to the nature of hypertext as an aid to
readers who are unfamiliar with the concept.

THE NATURE OF HYPERTEXT

Although hypertext is new in the sense that only recently have systems become widely
available, the original idea dates from 1945 (see Bush[1l]). Most of the existing
techniques were pioneered in the sixties and seventies, particularly by Engelbart[2] and
Nelson[3].

The essential aim of hypertext is to store documents in the computer in such a manner
that a reader at a termina can explore a document in any way he wishes. This is
achieved by alowing the author to place links in documents, which give the reader an
easy way to get from one point to another.

There are essentialy two types of link. Thefirstisa hierarchical link, and this can be
used to present material at successively greater levels of detail. For example the author
may initially present a document in the form of an overview. The reader then indicates
the part(s) for which he requires more detail, and the computer then displays the required
detail. (Thisisachieved by following a hierarchical link set by the author, with the more
detailed material at the destination of the link.) It is important that the reader has a
simple way of interacting with a document, and this is frequently done by having
‘buttons’ on the screen—perhaps embedded within the document. A button might, for

0894-3982/88/010045-09$05.00 Received 1 Novermber 1987
[] 1988 by John Wiley & Sons, Ltd. Revised 5 December 1987

© 1998 by University of Nottingham.

46 P.J BROWN

instance, be labelled ‘More’ or ‘Example’, and such buttons are usually activated using
amouse. The reader gradually refines the level of detail, sometimes perhaps ‘undoing’
an action if the level of detail getstoo great, until the displayed material is tailored to his
needs.

The second type of link is used for cross-referencing. One point in a document can
contain an electronic cross-reference to a second point, either in the same document or
another one. Thus where a book may say ‘ See page 123’ a hypertext document has an
electronic link that will actually take the interested reader to the appropriate place. Links
of this sort have awide utility, covering footnotes, citations, indexes, annotation, etc.

The essence of hypertext, therefore, is that it is not a linear text, but a directed graph
connecting together material, hopefully in a well-structured way. Hypertext documents
may represent a large corpus of knowledge about a particular topic. Indeed Trigg and
Weiser[4], following Nelson[5], look forward to all the world's scientific papers being
linked together in one massive hypertext structure.

A hypertext document may contain media other than text. In particular it will usually
involve an integrated mixture of text and graphics; more ambitious systems, such as the
Intermedia[6] project at Brown University, cater for sound, video, etc. (Strictly speaking
the term hypermedia should be used to describe such systems but in practice the word
‘hypertext’ isusually used to encompass hypermedia.)

THE FIND COMMAND

Before the advent of hypertext, a major method for users to travel round a document was
the Find command. In its simplest form, this searches the current document for a given
string or pattern and stops when it reaches the first match. Subsequently the user can, if
he wishes, re-use the same Find command to find subsequent matches of the same string.

The Find command continues to flourish, even in hypertext environments, and almost
al software for creating or viewing documents supportsiit.

The Find command provides an entirely different kind of link to the hypertext link.
The hypertext link is an explicit link pre-set by the author (though most hypertext
systems allow ordinary readers to become authors and to create their own links). The
Find command represents an implicit link that is computed dynamically according to
some criterion chosen by the reader (i.e. the string he chooses to search for).

The most important characteristic of the Find command is that it is a totaly
unstructured linking mechanism since it can go from any point in a document to any
other point. We shall cal these unstructured links, since they are totally unlike the
structural links normally present in hypertext.

(As we have presented it above, the Find command is a ‘find next occurrence
command. If, however, itisa‘find al occurrences command it has a further difference
from a hypertext link in that it is a one-to-many link rather than a one-to-one link. We
are not concerned, in this paper, with this extralevel of complication.)

COMBINING STRUCTURAL AND UNSTRUCTURED LINKS

The purpose of this paper is to explore how a hypertext system can provide coherent
support for both structural and unstructured links. Conklin[7], in his survey of hypertext,

LINKING AND SEARCHING WITHIN HY PERTEXT 47

characterizes the two types of link and suggests it may be possible to ‘allow design of a
hypertext interface which is consistent across all link-tracing-like activities'.

Brewer[8], when discussing retrieval software, with specia reference to data on CD-
ROM, expresses similar views. He compares browsing through a database, which is
done in a structured way, and searching, with its unstructured links. He characterises
browsing as going from where to what (—you know where you are in the database and
you want to know what is there) and searching as going from what to where (—you
believe that you know what you want and wish to find where in the database it is). A
good user interface, Brewer says, should combine both: ‘As CD-ROM matures, many
users are finding that a combination of searching and browsing works best. Both
approaches have their place. In fact, they can be intermixed well’.

Brewer’'s comment, however, is made with regard to databases and these may not
reflect all the facilities of general hypertext. Nevertheless the user’s aspirations will be
similar.

The disadvantages of combined linking

Even if users want both structural and unstructured links, it is worth pausing to consider
if itisrealy sensible to provide them.

A paralel can be drawn between hypertext links, whether structural or unstructured,
and ‘gotos’ in programming languages. Using this parallel, an unstructured link is a
particularly bad kind of goto: it leaps around a document, brushing aside any structural
boundaries defined by the author. Users of programming languages thought they wanted
both structured control (e.g. awhile statement) and gotos. However they were eventually
persuaded that the superficial freedom given by the goto had a disastrous cost in the
longer term, since program maintenance dwarfs all other costs. The cost comes, of
course, when people try to read a program and get hopelessly lost. Gotos have therefore
been restricted (e.g. to break and return statements) or abolished.

As with programs, the cost of maintenance of a hypertext document will doubtless
dwarf the original design cost. Indeed the problem of authors getting lost is aready
emerging as the biggest problem in hypertext systems, and this problem is particularly
acute for authors who maintain documents written by others long in the past. Isit fair to
draw the parallel between gotos and hypertext links? Even if it is, the unstructured links
generated by a Find command do at least have the advantage that they are transient: they
may indeed cause the perpetrator of the Find command to get lost in the structuring, but
they do not get preserved as part of the document; thus other users will not be affected.
Paradoxically, the dangers are much greater with the ‘structura’ links that form a
permanent part of the document. If the ‘structure’ defined by these links is like spaghetti,
then the cost to al who try to read or maintain the document isindeed high.

A second danger with unstructured links is their inaccuracy. If the user asks for X to
be found and istold it is not present in the document, he cannot be sure that the document
does not effectively contain references to X using synonyms or aternative spellings.
More generally, the saying ‘one can only extract something from a database if one knows
what is there’ contains much wisdom. It is much better, it can be argued, to force the
users to explore the document in a structured way, following links set by a skilful and
knowledgeable author, than to provide an easy-to-walk but unstructured path (e.g. aFind
command) that in fact leads to a minefield. This argument has merit, but its weakness is

48 P.J BROWN

that it assumes the author will be able to provide a linkage structure to suit all readers.
This is not realistic even for highly competent authors. From experience with paper
documents, very few authors are highly competent, and this holds a fortiori for hypertext
documents, since they are more complex than linear paper documents. It is thus
unreglistic to expect all readers to be satisfied by the links that the author has built into a
document.

Generally, therefore, the arguments against allowing searching because of its
undesirable unstructured links have been overridden by the needs of the real world and
by the characteristics of human nature. The issue is not whether to allow searching, but
how to minimize its dangers.

UNITSOF HYPERTEXT

Before proceeding to more details, it is necessary to consider the units into which
hypertext is broken. We shall concentrate on units as the user sees them, i.e. what comes
up in windows on his screen. Most hypertext systems support (at least) two levels of
unit: micro-units and macro-units. A micro-unit is the content of a node of the directed
graph that represents the hypertext; by definition, a micro-unit involves no sub-structure.
Micro-units are combined into macro-units which represent a coherent body of
information. Macro-units have different names in different systems, e.g. ‘file’, ‘stack’,
“document’. In this paper we will use the familiar term ‘document’ to stand for the
somewhat ugly term ‘macro-unit’.

The hypertext user ‘loads one or more documents and then explores the micro-units
within them. In many systems, documents can themselves contain links to other
documents (or can be linked to other documents by a separate mechanism that rides on
top of them all). However when the user moves to another document by following such a
link he is normally made aware that he is entering a new context, i.e. that a new
document has been loaded, either in addition to or in place of the current one.

In most hypertext systems a micro-unit is a windowful of information, and is called a
‘frame’, ‘pag€ or ‘card’. This applies, for example, to ZOG[9], NoteCards[10], and
HyperCard[11]. In Guide[12], on the other hand, a window contains a document.
Normally Guide’s window is not large enough to display the whole document so there is
a focussing mechanism (actually a scroll-bar) to alow the user to display the part he
wants to view.

This difference of approach has some small effects on the searching mechanisms, but
the main point isthat in all systems the user will have loaded one or more documents and
will have actually viewed a sub-set of the micro-units within that document.

THE TWO STAGES
A Find command essentially works in two stages:

(1) Searching for the destination. A search is made to find the first (or next) occurrence
of the target string or pattern.

(2) Effecting the goto. Assuming the destination has been found and also assuming it is
not within the part of the document that is currently in view, the document must be
re-focussed so that the destinationisin view.

LINKING AND SEARCHING WITHIN HY PERTEXT 49

Finally, of course, the destination needs to be highlighted in some way, so that the reader
can immediately pick it out, but such matters are not a concern of the current paper.

With relation to the theme of this paper, the integration of the Find command with
hypertext linking, the two stages are very different. In thefirst, theissueisthat searching
needs to be adapted to fit a new non-linear world. In the second, the task is clear-cut, but
the problem is to accomplish it without disorienting the user.

STAGE 1. SEARCHING

Since this paper is concerned with hypertext rather than with matching mechanisms, we
shall not worry whether the Find command performs a full-text search or a keyword
search, nor whether it involves intermediate dialogues with the user (e.g. ‘Define the
pattern to be found’, ..., ‘' This matches 1,000 items, do you want to proceed?). All we
require is that the Find command identifies a point in the hypertext document that should
be gone to. Our main concern is what it means to search a hypertext document, and this
is the topic of the current Section of the paper. The objective is not to present a ‘best’
approach. Instead it isto survey the possible options, all of which are valuable in certain
applications. The following are issues that arise;

(1) Scope of search
The search may cover any of the following:

e the micro-units that have already been viewed, i.e. the world as the user has seen it.
Thisisan unlikely choice as the very purpose of a search isto find new territory.
the documents currently loaded.
the documents currently loaded, together with all documents to which these
documents link. In the extreme, following Trigg and Weiser's vision, it covers the
whole of the world’s literature!

e some subset of the above. Clearly if a document has a strong tree structure it is
possible to confine the search to a sub-tree.

(2) Dynamic creation

Some hypertext systems alow the material at the destination of a link to be created
dynamically. More generally, when the user selects alink, a program may be run which,
inter alia, generates some text (and/or pictures) that appears as the destination of the link.
As a specific instance of this, a hypertext tutorial on file systems may include a link that
leads to alisting of all the current user’ sfiles. Thislisting may be generated by executing
aprogram (e.g. IsinaUNIX environment). A search of such a document might take any
one of the following approaches:

ignore dynamically generated material.

only cover material that has already been dynamically generated.

follow al links and thus cause material to be dynamically generated. (This might
be tragic, in our example above, if some of the links illustrated file deletion by
actually deleting some files and then generating a new listing!)

50 P.J BROWN

(3) Multiple-media

In a hypermedia system, it is possible to have a different searching mechanism for each
medium. Such searches must confine their scope to the designated medium. A textual
search must not, for example, come up with a chance match which in fact is a bit-pattern
in the middle of a picture. Side-effects should be avoided: for example if the search
passes over some sounds it should not make the sounds.

(4) Sructural boundaries

It may be that the user can load two different micro-units so that they come one after the
other on the screen. Assuming the first ends with the word X and the next begins with
theword Y, will asearch for XY identify thispair? A suggested answer is‘no’, since the
structural boundary presumably indicates alogical separation.

(5) Searching the structure

In a hypertext system it may be required to search the link structure itself, rather than the
text at the destination of links. For example, links may have associated names, e.g.
‘More’ or ‘Critique of X by Y’, and may have properties, e.g. one property might be a
program that defines how to generate the material that appears as the destination of the
link. The search should, on option, cover such material. Equally desirable, but difficult
to implement —especialy in a friendly manner —are ‘structural’ searches such as ‘Find
al micro-units with more than four outward links' or ‘Find all inward links to a given
region of a document’. Halasz[13] gives an excellent discussion of such matters. (In
structural searches, incidentally, the objective may be to view the hypertext structure
rather than to go to a particular piece of text. Hence the ‘Stage 2', as we describe it
below, might be absent or curtailed.)

(6) Ordering

We have emphasised that the user must know what is being searched, and (1) to (5)
above have raised some potentialy tricky issues. There isa subsidiary issue of ordering.
A user might issue commands such as ‘Find the first X, find the next X, then find the first
Y in the rest of the document’. The meaning of such commands is obvious in a linear
document, but in a hypertext document the search order may be largely arbitrary —it
certainly may not be obvious to the user. (In acute cases, such as where a hypertext
document is a cyclic directed graph, the ordering will not be obvious to anyone; indeed it
may be a challenging implementation problem!)

(7) Taking advantage of extra knowledge

Finally, there is an especialy positive aspect of searching in hypertext: the links
represent extra knowledge about the material, and this can be exploited in a search. For
instance, within a hierarchical structure, a match at a high level may be ‘better’ than one
at a deep level. In a non-hierarchica structure a match within a micro-unit that is the
object of many inward links may be ‘better’ than one in a micro-unit with only one such
link.

LINKING AND SEARCHING WITHIN HY PERTEXT 51

Summary of thefirst stage

To summarise, searching a hypertext document involves a large array of choices. A
challenge to implementorsiis, on the one hand, to provide as much choice as possible but,
on the other, to avoid burdening the user with a mass of options.

Default options should be chosen to reflect the aim that the searching mechanism
should be integrated with normal hypertext links. For instance, if a hypertext system is
such that users regard a document as a ‘world’, and regard a link to another document as
a change to a separate world, then the natural scope for a search would be the current
document; however, by means of a pop-up menu or the like, the user should be given the
opportunity to extend the search into any or all of the worlds that are linked with the
current world.

STAGE 2: EFFECTING THE GOTO

We now come to the second stage of the linking process. If the hypertext system allows
the search to range outside the currently loaded documents, the first task may be to load
the document in which the destination lies; this loading should be a straightforward
matter, and, to the user, the loading process should appear to be identical, irrespective of
whether it was caused by a search or by following a hypertext link to another document.

Having done this loading, if necessary, the next task is to focus the document on the
destination. If the destination is in view, there is, of course, nothing to do. Otherwise
re-focussing turns out to be a problem that merits considerable attention. To explore this,
we shall effect a complete change of narrative style and consider the travels of a
hypothetical motorist in Hyperland.

THE HYPERLAND MOTORIST

Hyperland is a fine place for travelling. The roads are good, and there are no speed
limits. Signposting is excellent: whenever a motorist comes to a junction there are clear
directions on were the different roads lead. Moreover the Hyperland motorist has several
advantages over ordinary motorists. Firstly he has a backtracking facility: if he decides
he previously took a wrong turning he can ask to be whisked back to any junction he
previoudly visited. Secondly the road system has some remarkable link roads: these
connect together places hundreds of miles apart, yet the link roads are trivial in length.

In spite of all these existing advantages, the Hyperland motorist is to be supplied a
further facility. He can issue a command such as ‘Find me a church’, and a supersonic
eagle will immediately swoop down, pluck up the motorist and his car, and then drop
them down (gently) beside a church. The motorist can subseguently instruct the eagle to
‘Find the next church’ and the process will be repeated. Alternatively the motorist can
ask for another target, such as a Post Office.

Before their import into Hyperland, the eagles had been operating in other lands,
where they provided almost the only means of travel. In such lands they blindfolded the
motorist during the flights, since the motorist had no interest in the route. However
motorists in Hyperland, with its excellent road system, want to know what road they are
on when they are dropped by the eagle. There have been harrowing experiences of

52 P.J BROWN

motorists hopelessly lost because they were dumped on roads that they were unable to
connect with the territory that they knew.

One possible solution to this problem is to provide the motorist with a road-map. The
eagle, when he drops the motorist, can then point out the current position on the map.
However cartographers in Hyperland have found it difficult to produce road-maps that
the average motorist can understand. The link-roads are what cause the problems.

Other aids have been tried, such as giving the motorists a list of the roads that lead to
and from the place they are dropped. These certainly help, but motorists continue to get
lost, because they cannot cope with the sudden changes of environment.

The solution finally adopted has been to take care to relate each new environment to a
point previously visited by the motorist. The eagle has therefore been instructed to do the
following:

(1) first take the motorist to the point that has already been visited and is as close as
possible to the new destination.

(2) plan a good path along the roads to get from the point chosen in (1) to the
destination. This is easiest when there is some hierarchical structure to the road
system, since it is then more obvious what a‘good’ pathis.

(3) pick up the motorist and take him along these roads. At each junction the motorist
is put down and shown the road that the eagle is going to take him along.

(4) finally drop the motorist in the normal way at his destination.

This approach has the disadvantage that travel is slower, but the motorist does have the
opportunity to follow the eagle's path and relate his destination to known territory. Of
course, if the path to the destination involves a lot of junctions the motorist may forget
some of them. However even thisis not too big a problem since the Hyperland motorist
can take advantage of its backtracking facilities. (If a path consists of a realy huge
number of junctions, fifty say, then this approach certainly does break down. However
the fault then arguably lies with the designer who produced such a immensely complex
road system.)

The next improvement will be to allow the motorist to control the speed of the eagle,
and the amount of time that he stops at each junction. Impatient motorists can get to their
destination quickly, without worrying too much about the route, whereas more thoughtful
motorists can follow their course precisely.

IMPLEMENTATION IN GUIDE

The device that prevents Hyperland motorists getting lost can be applied to any hypertext
system, though it works best in systems that encourage a strong hierarchical backbone to
a document. The goto caused by a Find command can be converted to the equivalent
user actions to follow hypertext links to get to the same destination. These user actions
can then be played back to the user so that he can follow the path.

This has been implemented in the UNIX version of Guide. In Guide all hypertext links
are embedded as ‘buttons inside a document. When the user employs the Find
command he is shown an animated sequence of button selections to reach the destination.
(This sequence in fact only consists of selections of Guide replace-buttons, which define
the hierarchical backbone of a Guide document.) During this sequence the normal feed-
back is shown, e.g. a button is highlighted when it is selected. In Guide's case the

LINKING AND SEARCHING WITHIN HY PERTEXT 53

animated sequence can also involve scrolling as well as button-selection, since Guide is
based on alinear scroll rather than a‘page’ or ‘card’. In particular this happens when the
destination is at the end of a long replacement, covering several screenfuls of
information. The overal effect is that the destination is related to previously visited
material. Perhaps more important, an unstructured link is automatically converted to a
sequence of structural links, and shown to the user in these terms. Thus the user is
presented with a uniform linking mechanism.

CONCLUSION

Integrating a Find command into a hypertext system is a worthwhile aim, in spite of its
risks. It involves two problems: firstly, extending the scope and nature of the searching
mechanism to cover hypertext structures; secondly, trying to prevent the reader from
getting disoriented through apparently random structural leaps. This paper has elaborated
the design decisions involved in tackling the first problem, and has presented an approach
to solving the second.

ACKNOWLEDGEMENTS

My colleagues at the University of Kent and at Office Workstations Ltd. provided
valuable comments for this paper; especial thanks are due to Karen Mahony.

REFERENCES

1. V. Bush, ‘Aswe may think’, Atlantic Monthly, 176, 101-108 (1945).
2. D. C. Engelbart and W K English, ‘A research center for augmenting human intellect’,
Proceedings of the 1968 FIJCC, Montvale, N. J. 395410 (1968).
3. T. H. Nelson, ‘Getting it out of our system’, Information retrieval: a critical review,
Washington, DC. (1967).
4. R. H. Trigg and M. Weiser, ‘TEXTNET: a network-based approach to text handling’, ACM
Transactions on Office Systems, 4 (1), 1-23 (1986).
5. T. H. Néson, Literary machines, T. H. Nelson, Swarthmore, Pa., 1981.
6. N. Yankelovich, N. Meyrowitz, and A. van Dam, ‘Reading and writing the electronic book’,
|EEE Computer, 18 (10), 15-30 (1985).
7. J. Conklin, ‘ Hypertext: introduction and survey’, |EEE Computer, 20 (9), 1741 (1987).
8. B. Brewer, ‘The look and feel ... and sound of the user interface’, CD-ROM Review, 2 (3),
26-30 (1987).
9. G. Robertson, D. McCracken, and A. Newell, ‘The ZOG approach to man/machine
communication’, International Journal of Man-Machine Sudies, 14, 461-488 (1981).
10. F. G. Halasz, T. P. Moran, and R. H. Trigg, ‘NoteCards in a Nutshell’, CHI+GI 1987
Conference Proceedings (specid edition of SSIGCHI Bulletin) 45-52 (1987).
11. Apple Computer Inc., Macintosh HyperCard user’sguide. 1987.
12. P. J. Brown, ‘Interactive documentation’, Software—Practice and Experience, 16 (3), 291-299
(1986).
13. F. G. Halasz, ‘Reflections on NoteCards: seven issues for the next generation of hypermedia
systems', Proceedings of Hypertext 87 Conference, Chapel Hill, N.C. (1987).

	SUMMARY
	THE NATURE OF HYPERTEXT
	THE FIND COMMAND
	COMBINING STRUCTURAL AND UNSTRUCTURED LINKS
	The disadvantages of combined linking

	UNITS OF HYPERTEXT
	THE TWO STAGES
	STAGE 1: SEARCHING
	Summary of the first stage

	STAGE 2: EFFECTING THE GOTO
	THE HYPERLAND MOTORIST
	IMPLEMENTATION IN GUIDE
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

