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SUMMARY

First,asurvey on optical scalingiscarried out, both from thetraditional point of view and from
that of today’s digital typography. Then the special case of large characters, such as bracesor
integral signs, is considered. It is shown that such variable-sized symbols should be computed
at print timein order to approach the quality of metal typesetting. Finally, an implementation
of such dynamic fonts, still in progressin the Grif editor, is described.
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1 INTRODUCTION

The expression ‘optica scaling’ refersto aconcept known by type designers for centuries,
even if thisexpressionisrelatively new and not very suitable:* metal characters differ from
one body to another one not only in size, but in shape too. Figure 1 (bottom) shows various
Garamond ‘€ at different point size but photographically magnified to the same size. It is
obviousthat the ‘€ is, rdatively, fatter at 8 point size than at 36 point size. On the other
hand, the counter (the whiteinner part) is, relatively, larger at 8 point size than at 36 point
size. The main reasons are : with small characters, thinner strokes would be unreadable,
and smaller counters would result in inkspreading (the white part would be filled in with
ink and would get black); on the other hand, if the strokes of large characters were as
fat as small ones, characters would look bolder. This ‘optical scaling’ applies not only to
character shapes, but to their metrics: the smaller a character, the bigger itsrelative width.

With metal types, this was not difficult to achieve: each punch was cut separately.
Richard Southall says [2]: ‘In hand punchcutting, the character shape on the face of the
punch is made in itsfina size. An important consequence of working at final size, rather
than making large drawings and reducing them as happened in later techniques, is that the
punchcutter does not have to take into account the effect that reduction in size has on the
appearance of a shape.’

1 This expression enables one to believe in the ‘zooming’ process, i.e. in linear scaling which is the opposite of
optical scaling. Furthermore, the confusionwith ‘optical correction’, sometimes called ‘ optical compensation’
as well, should be avoided. These latter two expressions mean that character shapes are drawn in such a way
asto give the reader the perception that he sees what his mind expectsto see (e.g. aletter O positioned on the
baseline) rather than what the character lookslike (e.g. the baseline generally overhangsthe bottom of a letter
0). See [1] for more examples.
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Figure 1. Top: Adobe Garamond characters, from 8 to 36 point size, magnified at the same size;

bottom: genuine Garamond characters, photographed, digitalized then magnified to the same size:
note the different shapes produced by optical scaling

This quality was lost when punchcutting became an automatic process thanks to the
pantographic punchcutting machine designed by Lynn Boyd Bentonin 1885 (see[2]): only
one shape was used for a given character at any point size. Today, the processis the same
even if techniques have changed: it consists in describing the contour of alarge character,
generaly at 1000 point size, then using a scaling factor to reduce it to the requested size
(see [3], [4] and [5]). Obviously, this results in the same shape. Figure 1 (top) shows the
same Adobe Garamond? ‘€ at different point sizes but magnified to the same size: all these
‘e areidentical.

Since1991, variouscommercia products, such asMultipleMaster Fontsby Adobe[7,8],
or MultiType [9,10], etc. have been proposed in order to retrieve the meta type qual-
ity by alowing optical scaling. Note that optical scaling has been offered since 1978 by
METAFONT, Knuth'ssystem for designing fonts[11].

After describing in more detail the way optica scaling is performed by a computer,
another way of adjusting character shape according to the point size will be proposed. Then
this paper shows how this technique can be applied to a specia class of characters: the
large symbols such as braces, parentheses and various mathematical symbols.

2 OPTICAL SCALING AND DIGITAL FONTS
2.1 Linear scaling

First, let usrecall how character contours are described and rendered [4].

A character (likethe'€ inFigure 2, left) iscomposed of aset of contoursthat arefilled
(here with grey ink). These contours are paths defined as sets of segments and of splines,
generally Bézier curves. For example, theinner counter is defined as follows:

1. start from point number 10

2. proceed to point number 11 following the Bézier curve defined by thetwo extremity
points 10 and 11, and by the two control points (bullets at the ends of the tangentsto
the curve)

2 This font has been compared to the genuine Garamond by Mark Agetsinger [6].
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Figure 2. Times ‘€’: left, the regular description using Bézier curves; right: the modification of
coordinates of points number 4, 5, 11 and 13 resultsin an enlarged counter

3. draw a straight linefrom point number 11 to point number 12
4. proceed to point number 13 following the Bézier curve defined by pointsnumber 12
and number 13 and the two corresponding control points

Generadlly the coordinates of these pointsare givenin acoordinate system where characters
have 1000 point size. In a PostScript-likelanguage, the ‘€ can be programmed as follows:

Bezi er curve from x=248 y=501 % poi nt 10
to x=123 y=368 % poi nt 11
with control points x=154 y=501 x=137 y=431

line from x=123 y=368 % poi nt 11
to x=367 y=368 % poi nt 12
Bezier curve from x=367 y=368 % poi nt 12
to x=248 y=501 % poi nt 13

with control points x=364 y=408 x=350 y=501

This resolution-independent definition is scaled according to the specific requested size.
The rendering algorithmsinclude outline scan conversion and filling which are called and
generate a bitmap that is copied at the requested position of the page image.

Because coordinates such as x = 248,y = 501 have numerical values which are
independent of the actual body size, it is obviousthat the shapes produced at various sizes
areidentica (likeall the Adobe Garamond ‘€' of Figure 1, top).

2.2 Analytical description

LanguageslikePostScript or METAFONT do not only support numerical valuesfor defining
outline control points. For example, it is possible to replace the numerical coordinates of
points4, 5, 11 and 13 by expressions or functionswhose val ue depends on the actual body
size. The above counter contour may then be written as follows:
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Bezi er curve from x=248 y=501 % poi nt 10
to x=f 11x(bodysi ze) y=f1lly(bodysi ze) % poi nt 11
with control points x=154 y=501 x=137 y=431

line from x=f1l1x(bodysize) y=flly(bodysize) % poi nt 11
to x=f12x(bodysize) y=f12y(bodysize) % poi nt 12

Bezi er curve from x=f12x(bodysi ze) y=f12y(bodysize) % point 12
to x=248 y=501 % poi nt 13
with control points x=364 y=408 x=350 y=501

Runningthisprogramtwicewith two different valuesof bodysi ze givesthetwo different
shapes of Figure 2.

Thisshowstheway al optica scaling systemswork. Fontsenabling such size-dependent
variations are sometimes called ‘ parametrized fonts'.

2.3 Which set of points?

Let us assume that the body size is the only factor that affects the shape of a character.
Any point entering the definition of an outline has coordinates x and y such that

x = f (bodysize),y = f'(bodysize).

The main problem of optical scaling isthen to determine these functionsf f’.

Very few studieshave been carried out and published about such functions. Wemay only
guote a thesis written by Bridget Lynn Johnson [12] and some measurements by Donald
Knuth ( [13, page vi] quoted and analysed by Haralambous [14]) on Monotype Modern.
Their results are confirmed by what seems to have been implemented in the commercia
products quoted above, even if these results are criticizable.* On the other hand, whilethe
properties of human vision are highly important, it does not seem that definitiveresultscan
be obtained from research into human vision and perception.

24 Expansion factor

The expansion factor of a given measure (e.g. the height of a given character, or itswidth,
or the abscissa of agiven point), at a given size, istheratio of this measure when optical
scaling is applied over the same measure without optical scaling. In Figure 2 for example,
assuming that theright ‘€ isat 8 point size (bodysize = 8) and that f 12y(8) = 340, we get
for this'€', the two following expansion factors F:

340 pt
Fordinate of point 12 = Wgt =0.924
501 — 340
Feounter height (yio—y12) — m =1211

3 Optical scaling is concerned nat only with metric relations between parts of a given character but also with the
metrics of the character itself (e.g. its x-width) and even with metrics between parts of subsequent characters.

4 For example, Johnson measured printed material instead of smoke-proofs(They are proofs made from the face
of apunch by blackeningit with the smokefrom acandleflame and pressing it onto a piece of smooth card. This
givesavery sharp impression, so the punchcutter can see exactly how the shape of the character is developing.)
which would have given better results. Furthermore, some authors, like Southall [2], think that the contour of a
character is not the appropriate concept to be used.
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Figure 3. Coordinates of control points may be computed by linear interpolation between corre-
sponding points —see Figure 1

This last factor for the genuine Garamond compared to Adobe Garamond (Figure 1)
gives:

0.6cm

FGaramond counter height at 8 pt = 057 cm = 1.053
0.51cm

FGaramond counter height at 36 pt = 057 cm = 0.896

24.1 Linear interpolation of control pointsat regular sizes

In the usua range of body sizes (say from 6 points to 36 points), it seems that a good
approximationisto say that expansion factors F are linear functions of the body size:

Fbodysize = a x bodysize + 3

Notably, the positionsof control pointsfollow alinear rule. For example, inFigure3, having
the coordinates of point number 12 at 8 point size and at 36 point size, the coordinates of
this same point number 12 at ¢ point size can be obtained by linear interpolation.

It isimportant to state that each linear ruleis specific to a given measure. That is why
(Figure 3) the set of pointsfor the right end of the counter (point number 12) isnot parall€l
to the set of points of the upper point of thiscounter (point number 3).

2.4.2 Small characters need quadratic functions

Both D. Knuth and B. Johnson agree that expansion factors are no longer alinear function
of the body size when this size is small. Quadratic interpolation is needed. Knuth uses
10 point size as the boundary: expansion factors are far larger when the body size becomes
smaller (seefigurein[14, p. 156]).



236 J. ANDRE AND I. VATTON

Accolades Corps Dix.

R

Figure4. Metal founder s offered large sets of variable-sized symbols, at various thicknesses, and for
each, at different sizes. Here, a plate of 6 point braces from the Fonderie Générale, around 1935
(courtesy: Muséedel’imprimerie, Lyon)

2.4.3 Non-identical sets of points

Actudly, the main problemisthat contours are described with splines, i.e. with sequences
of curves. Thisset of curves may differ from one character at agiven point size to the same
character at another point size (typical examples are given in [14, figure 1]). Small char-
acters cannot support all topological attributes of large characters (e.g. serifs are simpler);
furthermore, at a larger point size, one character section given by a single large Bézier
curveis better represented by two smaller Bézier curves.

25 Largesymbols

Optica scaling studies and implementations deal with letters whose expansion factors are
roughly in the range [0.5,2]. For example, the ‘€ Garamond width expansion factor at
100 point size islessthan two times smaller than the same factor at 5 point size. Thisisnot
truefor ‘large symbols where the expansion factors may change in aratio larger than 20.
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Figure5. (a) ‘ Textintegral’ at 50 point size. (b) Correct ' display integral’ with the samescaling factor

(50 point size). (c) Wrong display integral taken from a text integral magnified two times (stem too

fat). (d) Wrong display integral taken froma text integral scaled by a factor of 2 in'y only (deformed
spurs)

A typical example concerns braces. Figure 4 shows the same brace from 1 to 27 douzes
whichisthe old French name for the multipleof twelve didot points (the real set goesup to
50 douzes). All of these braces have swellingswith the same thickness. Here, thisthickness
iscalled corps (bodysize) and has a value of 6 points (i.e. six-to-em). Other plates exhibit
other sets of braces, with a thickness from 2 to 10 points (3 point and 6 point braces are
most commonly availablein such catalogues). Finally, each brace may be characterized by
two parameters, its height h and itsthicknesst, with h € [1:50],t € [2:10].

For a given thickness, say t = 6, there are 50 different heights. It can be said that the
expansion factor goes from 1 to 50, i.e. with aratio equal to 50, which is far bigger than
for letters.

Font founders offered other such symbols, e.g. parentheses, rules, angular brackets,
etc. Another class of large symbols concerns mathematical variable-sized symbols such
as integral sign, summation sign, brackets, arrows, radical sign, etc. These symbols have
to follow optical scaling rules: if a 50 point size integral sign was magnified through
some affine transformation to 100 point size, this magnification would apply aswell toits
thickness: the stem would be excessively bold (Figure5).

25.1 Computerized mathematical fonts

Althoughthere are thousands of fontsavailableon laser printersor phototypesetters, only a
few of them are concerned with mathematics or with large symbols. Today, the main ones
are (see[15, p. 340)):

e cmexnn (math extension) fonts created by METAFONT for TeX ([16, appendix F]);

e Symbol font, one of thefour fontsthat have aways been installated on any PostScript
system; refer to [17, appendix E.11];

e The Lucida family that offers both a LucidaMath-Symbol almost equivalent to
Adobe s Symbol and aLucidaMath-Extension where one can find symbolsthat bel ong
to TeX'scmex [18];
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Figure 6. Variable-sized symbols are generally drawn as composite symbols. The spaces between
items are only present here to indicate the miscellaneous parts of symbols. (Symbol font)

A —_———
\overbrace{x} = \overbrace{a+b+c+d} = “x =a+b+c+d

\wi dehat {x} = \wi dehat {a+b+c+d} = KX=a+b+c+d

Figure 7. IATEX enables some horizontal symbolssuch as ‘over braces' to be extended, but produces
unexpected results with non extensible symbols such as ‘wide hat'.

e Two new versions of Times (by Spivak and by Jungers) that offer TeX’smath exten-
sion as Lucida does.

2.5.2 Remaining problems

Today, fairly good quality formulae can be drawn with text formatters. However, some
problems remain.

e While mathematics-oriented hot metal fonts contained a large set of symbols at any
point size, computerized fonts replace variable-sized symbols by a discrete set of
composite symbols. For example, the ends of an integral sign are made of the upper
spur and of the lower spur while the stem is assembled with a set of spare bars
(Figure6).

e Good mathematics requires slanted integral signs. Symbol does not offer such a
danted integral while TeX's c¢cmex and Lucida offer only a limited set of (two or
three) sizes. This is true as well for other symbols such as the radica sign, big
parentheses, horizontal braces, etc.

e Extending horizontal or vertica strokes does not apply to characters that are not
made of single strokes. For example, mathematical fonts give the wide hat® only a
limited set of sizes and no genera extension at all. Unexpected (i.e. wrong) results
may occur, as shownin Figure7.

e There is a gap between some character sizes. Symbol, see Figure 8, right, offers
one right parenthesis with a height® equal to 0.864 ems and offers three symbols

5 |t seems that this symbol is more used in France than in English-speaking countries.
6 We call the height of a character the differenceury — Ily, whereury and lly are respectively the ordinates of the
upper right corner and of the lower left corner of its bounding box (see [17, 5.4]); it is given in terms of ems,
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Figure 8. Gapsin variable-sized symbols are moreimportant in Symbol (left) thanin Lucida(right).
The body sizeisindicated by the the ‘A" height

to compose big right parentheses. The upper part \ ', the lower part / " and the
middlepart ‘| *. The upper part and the lower part have the same height: 1.220 ems.
Therefore, the minimum height’ for a big parenthesis is 2.440 ems. In this font the
caps height is 0.673 ems. While the parenthesis is approximately 30% higher than
the capitals, the minimum big parenthesis is about 330% higher than capitas. With
such metrics, it is not possible to get parentheses at the correct size for expressions
such as (a&). Formatters using Symbol put extra blanks above and under the &; but

some formatters draw bad parentheses like /"
e Bothcmex and Lucidafill thisgap by offering i ntermedi ate medium-si ze parentheses
(Figure 8, right).

3 MATH-FLY, A FONT TO HANDLE VARIABLE-SIZED SYMBOLS

Variable-sized symbols have an interesting property: likerules, they are seldomly used at
agiven size. So, instead of pre-computing all the possible sizes, we think it is preferable
to compute them only when they are needed, i.e. just before the character bitmap is
copied at the requested position of the page image. Indeed, page description languages
like PostScript are capable of producing what we called ‘dynamic fonts' [19]. PostScript
has a cache mechanism that may be disabled: any instantiation of a character resultsin
re-computing the corresponding bitmap. This means that context can be taken into account
dynamically.8 In the case of variable-sized symbols, this context is the bounding box of
the expression ‘inside’ this symbol (in terms of embedded structured boxes, e.g. under
the upper bar of aradica sign, under a vector-arrow, on the right of an integral sign,
etc.).

Math-Flyisafont weare designingto handlemathematical symbols. Itisaparametrized
font (see Section 2.2) and uses analytical values to describe control points. Furthermore
these values are context-dependent and computed at print time (see [23] for details).

Various classes of problems have to be solved.

i.e. relative to the current point size.

7 Actually, this height may be reduced by 20% by overlapping the straight parts of these items.

8 Such fonts have been used for example to design ‘lively outlines’ [20], or to compute the extension of arabic
charactersto format texts [21]. More examplesare given in [22,23].
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3.1 Obtaining outlines

Inthisfirst prototype, we are workingwith publicdomain fontsand, when needed, products
likelkarus, Fontographer, etc. areused to digitizehand drawings. Inany case, weget outline
descriptions with numerical values for each point. Examples shown here are inspired by

Symbol.

3.2 Analytical computation

Starting with outlines described with numerical coordinates, we have to decide which ones
have to be transformed into analytical variables and which values are to be assigned to
them.

3.21 Linear symbols

Most of the symbols are made of linear strokes, with outline points only at the ends
(junctions, serifs, etc.). Extending such symbols only requires that their ends be globally
trand ated. Horizonta symbol (such as < or ——) abscissae have to beincremented by 6x
(thisvalue has to be computed by the formatter according to the ‘ content’ of this symboal).
Vertical symbol (such as|, | or 1) ordinates have to be incremented by §y. Some symbols,
suchas >, [] or «/ may support both trandlations 6x and 8y (Figure 9).

3.2.2 Non-linear symbols

The same rule could be applied as well to parentheses, braces, etc. when they are made
of linear segments (as in Figures 6 and 8). However, if they are curved, a perpendicular
deformation is needed as well (see Figure 10, right). The same occurs with linear symbols
that are not in one direction only, such as hats (Figure 10, | ft).

3.2.3 Optical scaling of large symbols

Outlinedescriptionsof particular symbols, such asintegral signsand braces, require Bézier
curvesintensively. The goa of our font isto increase the size (e.g. the height of anintegral
sign) without modifying the stem thickness, i.e. by following optical scaling rules.

We are studying® the way large metal symbolsare designed according to their size. The
method isto start from old mathematical symbol collections, such asthe bracesinFigure 4.
Different variable-sized braces are scanned and their bitmaps are vectorized (we used Agfa
PressView). Figure 11 shows three parts of braces from Figure 4, respectively at 20, 40
and 50 point size. These parts concern only the inner outlines describing the upper bowls.
(Hairlines at the end have been dropped because there was too much noise on them dueto
the scanning process.) These three parts have been magnified in thex direction. Thisfigure
shows both the outlinesand their control points (in grey). It can seen (black lines) that all
the sets of corresponding Bézier points are positioned on straight lines. (Small variations
are probably caused by very small gouge defects at punch time.) Note that, asin Figure 3,
theselines are not paraldl.

9 The first results, even if significant, should be confirmed with further important sets of measures on various
fonts, either from printed material, from punchesor, better, from ‘ smoke-proofs’ (see note 4).
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Figure 9. Abscissae of outline points are incremented by 6x if they are in the corresponding box;
ordinatesof outline pointsareincremented by éy if they arein the corresponding box. Both coordinates
areincremented if outline points belong to the two boxes

Other experimentsconfirm that linear interpol ationmay be used to define control points.
In other words, the same rule applies for large symbols and for |etters (see Section 2.4.1).
So, we propose the following method:

1. Draw asmall symbol (e.g. abrace or an integral sign).

2. Draw the equivaent large symbol with the same weight as the small one.

3. Use linear interpolation between the corresponding control points. Note that these
linesmay be parallel or not depending on the Bézier curves asin Figure 3 (in other
words, symbolsin the whole do not follow linear scaling)
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a+x=0

abcde+x=0

abcdefghi +x =0
abcdefghijkim +x =0
ébcdefghijklmnopq +x=0
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Figure 10. Math-Fly transforms non-linear symbols such as hats or parentheses having a given
direction by performing a slight perpendicular directional change

20 40 50

Figure11. Study of the optical scaling defor mation of hot metal braces(fromFigure4): Bézier control
points are located on straight line segments

3.3 Metrics of Math-Fly

Math-Fly is a true ‘type 3' PostScript font. However, it does not use the same metric
as conventional PostScript fonts. When painting a character, three parameters have to be
passed to the PostScript show instruction: the x,y coordinates of the current point and
the encoded value of the character to be drawn. Here we need two more parameters. the
expected x and y widths (or, what woul d bethe same, therequired extensionséy,éy). Because
type 3 fonts are defined as read-only dictionaries, passing parameters (such as 6x and 8y),
use of variables (to keep intermediate results out of the stack) and use of local operators
require the use of adictionary out of the font dictionary.

Furthermore, the standard font metric file has to be modified to give the formatters
information on the way symbols are extended. Indeed, a horizontal symbol (like a =)
cannot be vertically extended whileavertical one (likel}) cannot be horizontally extended.
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Figure 12. The same vector composed with Symbol (left) and with Math-Fly (right) parentheses

And, more difficult, other information hasto be passed to the formatter for small variations
(such as the ones for the orientation of parentheses; see Figure 10).

Owing to thefact that font metrics have their own information, formattersusing such a
font have to behave on anew basis. Thisistrueas well for Adobe Multiple Masters which
requires the Font Metric to be recomputed after the set up. Note that even changing fonts
from 8 to 16 bits, as in Unicode, requires rewriting editors [24]. So, it is worthwhile to
formulate how an editor can use afont with dynamic metrics.

Let ustake an example. Figure 12 showstheformulaA = Vx + Vy where Vx has been
drawn with Symbol parentheses and Vy with Math-Fly ones. For the left Vy parenthesis,
the formatter had to work as follows:

1. compute positionsx and y of the bottom of the | eft parenthesis
2. computeitsheight H
3. compute (using the Symbol metric file) the number of vertical segments to compose
it
4. generate PostScript code such as:
find font Synbol
scale it at 12 points
noveto x y
show the bottom of the parenthesis
noveto x y+h
show a vertical bar
noveto x y+2h
show a vertical bar

noveto x y+Hh
show the top of the parenthesis
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5. use the Symbol metric file to compute the position of theinner part of the vector (i.e.
x+ parenthesis width)

For the left iy parenthesis, the formatter had to work as follows:

compute positionsx and y of the bottom of the |eft parenthesis
computeitsheight H

compute, using the Math-Fly metric file, the expected 6 variation
generate PostScript code such as:

AWDNPE

find font Mathfly

scale it at 12 points

noveto x y

put Hand delta x into the font sub-dictionary
show the | eft parenthesis

5. compute the position of the inner part of the vector (i.e. X + 6x)

The next section will show how an editor, namely Grif, can do all these computations
by using font metric and structured formula.

4 USE OF MATH-FLY FROM GRIF

4.1 Grif overview

Grif isan interactive system for editing and formatting complex documents [25,26] where
documents are represented by their logica structure rather than by their visual aspect. In
thisrespect it is comparable to syntax-driven editors used for editing programs. It is based
on SGML Document Type Definitions (DTD), which specify the logical organization of
the document to be processed. Moreprecisely, aDTD specifiesthe types of e ementswhich
make up a document and the rel ationshipslinking these elements.

All editing commands are performed through a formatted picture of the document
displayed on the screen, asin WY SIWY G systems. When modifying the structure or the
content of a document, the user acts directly on thisformatted picture and sees the results
of the commands immediately thereon.

Aswdl asthelogica structure, the visual aspect of documents (on the screen or on a
sheet of paper) is specified on a generic basis. When defining a new DTD, the user gives
presentation rulesfor each type of element defined inthe genericlogical structure, and Grif
uses theserulesfor building the picture of adocument. Thus, the user who edits adocument
has only to enter itslogical structure as well asits content for the system to automatically
generate its document picture.

4.2 Abstract picture

A specific language, called P language, isused to describe presentation rules for each type
of element defined in the DTD. Interpretation of these presentation rules is based on the
concept of abstract pictures [27]. When Grif has a document to print or to display in a



DYNAMIC OPTICAL SCALING AND VARIABLE-SIZED CHARACTERS 245

Formula

Lower_exp Sygbol ‘Upper_exp‘ ‘Operand‘

String Superscript| String || Subscript
"sin" "2" X" k"

Figure 13. Abstract picture corresponding to formula (1)

window, it first buildsan abstract picturewhichisahigh-level description of that document
image. This description is device-independent and allows the editor to update the image
dynamicaly inasimpleway. In asecond step, it trand atesthisabstract pictureintothereal
image which is displayed on the screen or printed on paper sheets. The abstract pictureis
the interaction support between the application and the user.

An abstract picture is a hierarchy of abstract boxes, the concept of box being the

Formula

Sum

m = sin X

Operand

k = min(1,i)

Figure 14. Boxes corresponding to formula (1)
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rectangle which delimitsadocument element as defined in TeX [16]. In an abstract picture,
boxes are organized as a tree, where each node is a box which encloses all its children.
These boxes are termed abstract because dl their attributes are defined in a relative way.
Let us examine a simple example like the following centred formula:

n
m= Y sin’x (1)
k=min(1,i)
The abstract picture describing this formula (1) is shown in Figure 13 while boxes
represented by this abstract picture are shown in Figure 14
Asopposed to PostScript [17], thiskind of picturedescription does not locate document
elements in a virtua space, but relative to one another. The tree structure gives a first
approximation of relative positionswhich only gives the enclosures amongst boxes. Each
nodeisdecorated with positionattributesand dimension attributeswhi ch express geometric
constraintsbetween boxes. These attributesresult from constrai ntsexpressed in Planguage.
Therefore each box islocated relativeto itsenclosing box or to one of itssibling boxes,
with afixed distance between two parallel edges or axes of the two boxes. In each direction
the position can be defined with reference to adifferent box. In our example, some position
attributes are;

Sum Hori zont al Posi ti on:
Left = Previous String. R ght;
Vertical Position:
BaseLi ne = Previous String. Baseli ne;
Synbol : Hori zont al Posi ti on:
Hori zont al Center = Lower _exp. Hori zont al Center;
Vertical Position:
Bottom = Lower _exp. Top;
Upper _exp: Hori zont al Posi tion:
Hori zont al Center = Lower _exp. Hori zont al Center;
Vertical Position:
Bott om = Synbol . Top;
Qper and: Hori zont al Posi ti on:
Left = Synbol . Ri ght;
Vertical Position:
BaselLi ne = Synbol . BaselLi ne;

Positions may use the four edges of a box (Top, Bottom, Left, Right), its centre and its
basdline. The baseline of a box may be defined relatively to the box itself or to any of its
children. In the exampl e, baselines are defined by:

Def aul t;

Synbol . BaselLi ne;

Self Vertical Center + 0. 4;
Child String. BaselLi ne;

String: Baseline
Sum BaseLi ne
Synbol : BaselLi ne
Oper and: Baseli ne

The result of the previous set of constraintsis that:
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e String‘m=",Synbol ‘> andStri ng ‘sin’ aredisplayed on the same basdine,
Synbol baselinebeing 0.4 below itsmiddle;

e Upper exp isdisplayed centred above the Synbol ‘> ;

e Synbol ‘>’ isdisplayed centred above theLower exp.

The dimension of abox can also be specified relatively to the dimension of itsenclosing
box or oneof itssibling boxes. Therel ation then specifiesthe difference between the dimen-
sions of the boxes, or aratio between them. A dimension can also be fixed independently
of any other box. Examples of dimension attributes are:

Synbol : Wdth = Lower_exp. Wdt h;
Hei ght = Qperand. Hei ght * 1.2;

This set of constraints express that:

e Synbol width dependsonthe Lower _exp width;
o theheight of the Synbol ‘> isequal to 1.2 timesthe height of the Oper and.

The abstract picture permits an incremental display and so ensures high performance
for interactive applications such as editors which frequently modify some small parts of
pictures. This description enables the application to make the minimum change to the
abstract picture.

Tree structure and constraints between boxes offer a powerful mechanism for de-
scribing complex pictures such as those frequently found in mathematical formulae. The
logical organization of mathematical constructions is described using a DTD and their
graphical aspect is specified using the P language. After that, the user just has to manipu-
late mathematical formulaein logica terms; Grif isresponsible for maintaining their rea
images.

4.3 Output drawing

Whilethe P language all ows usto express how to cal cul ate the correct size of mathematical
symbols (more precisely the size fo their enclosing box), it is also necessary to have a
correct rendering of these symbols. Only Math-Fly is able to exploit this optimal size
evaluation.

Grif computes the abstract picture and its geometrical constraintsin order to obtain the
correct position and precise size of symbols to print on paper. In the example above, the
dimension of the box symbol iswi dt h=I ower _exp. wi dt h. Conventiona formatters
fill thisbox with the nearest available symbol inthe font, i.e. withtoo smdl a3, and add
exaggerated blank side bearings, asin formula(1).

In conjunctionwith the Math-Fly font metric file, Grif computes the precise extensions
6x and 6y to be made on the > symbol, and passes these values to the font through a
dictionary. Formula 1, when handled by Grif, isrendered as shown in Figure 15.

Programming these modifications was possible thanks to two mechanisms. ECF (Ex-
ternal Cdl Fecilitites) and API (Application Programming Interface) [28].
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n

— v
m= E SINXy

k=min(1,i)
Figure 15. Formula 1 as seen by Math-Fly + Grif

4.4 Remaining problems
Math-Flyisstill in progress. Here are some yet unsolved problems.

e Dueto the fact that mathematicians have recently become used to seeing composite
symbolssuch as light parentheses (Figure 12, |eft), thereis no guarantee that paren-
theses with the same boldness as radical signs (Figure 12, right) will be accepted.
Furthermore, is an extended summation sign (Figure 15) better or worse than one
with blank spaces (formula 1)? We do not have an obvious answer today.

e Our ‘type 3' Math-Fly font does not support ‘type 1' hints mechanism. And type 1
fontsdo not alow parameters to be passed easily. Encapsulation concepts would be
wel comed in page description languages.

e Today's hitmapped fonts used on displays do not allow dynamic evaluation of out-
lines. Straight line ssgment boundaries could be used to simulate such outlines.

5 CONCLUSION: FONT EVALUATION TECHNIQUES

Three different ways of making digital typefaces have been described in this paper. They
mainly differ as to the time when the character bitmaps are computed:

1. METAFONT enables arbitrary relationsto be defined between partsof acharacter. By
changing parameters, Knuth defined, in asingle code, all body-dependent variations
of the font named Computer Modern. However, METAFONT works in three steps:
(1) Before using any printer, screen, or typesetter, it produces bitmaps for a given
point size, e.g. Computer Modern Roman at 5 point size. (2) This bitmap is loaded
into the printer. If a text needs Computer Modern at n different point sizes, all of
these n corresponding bitmaps have to have been loaded (and so computed) before
printing starts. (3) When a character is needed, the bitmap is copied into the page.

2. Multiple Masters works in three steps. (1) The font is loaded into the printer as a
set of parametrized fonts. (2) During theinitial ‘set up’, dl the potential PostScript
fonts'® are built (e.g. Times at 6 point size, Times at 7 point size, etc.). (2) Each font
isused as aregular PostScript font: character bitmaps are computed only once (and
saved into a cache memory at the first occurrence of the character concerned) and
copied into the page.

3. Dynamic fonts work in two steps. (1) The font isloaded into the printer as a set of
parametrized fonts. (2) When acharacter isneeded, itsbitmap is computed according
to the actual parameters and copied into the page.

Table 1 exhibits the fact that bitmap evaluation behaves like passing parameters in
traditional programming languages.

10 Note that Multiple Master fonts enable other variations than optical scaling, e.g. variations on boldness, serifs,
shape, etc.
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Table 1. Comparison between passing parameters and computing bitmaps

Parameters : by value by reference by name
Evaluation : constant once at each occurrence
Bitmap : METAFONT | Mutliple Masters Dynamic fonts

This concept of parameter by name (i.e. of a parameter that is a procedure) is not
obvious. This may be the reason why dynamic fontsare not very well understood either.

Another point of interest isto compare the different shapes of aletter at different body
sizes(asin Figure 1, bottom) withthe different images of acartoon: two extremeimages are
given and and theintermedi ate shapes are automatically computed with no user interaction.
Thisoperation isknown as shape averaging, shape interpol ation, metamorphosis and shape
blending. There, chaotic intermediate shapes can be avoided [29]. Thisis not yet the case
for fonts.
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