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SUMMARY
First, a survey on optical scaling is carried out, both from the traditional point of view and from
that of today’s digital typography. Then the special case of large characters, such as braces or
integral signs, is considered. It is shown that such variable-sized symbols should be computed
at print time in order to approach the quality of metal typesetting. Finally, an implementation
of such dynamic fonts, still in progress in the Grif editor, is described.
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1 INTRODUCTION

The expression ‘optical scaling’ refers to a concept known by type designers for centuries,
even if this expression is relatively new and not very suitable:1 metal characters differ from
one body to another one not only in size, but in shape too. Figure 1 (bottom) shows various
Garamond ‘e’ at different point size but photographically magnified to the same size. It is
obvious that the ‘e’ is, relatively, fatter at 8 point size than at 36 point size. On the other
hand, the counter (the white inner part) is, relatively, larger at 8 point size than at 36 point
size. The main reasons are : with small characters, thinner strokes would be unreadable,
and smaller counters would result in inkspreading (the white part would be filled in with
ink and would get black); on the other hand, if the strokes of large characters were as
fat as small ones, characters would look bolder. This ‘optical scaling’ applies not only to
character shapes, but to their metrics: the smaller a character, the bigger its relative width.

With metal types, this was not difficult to achieve: each punch was cut separately.
Richard Southall says [2]: ‘In hand punchcutting, the character shape on the face of the
punch is made in its final size. An important consequence of working at final size, rather
than making large drawings and reducing them as happened in later techniques, is that the
punchcutter does not have to take into account the effect that reduction in size has on the
appearance of a shape.’

1 This expression enables one to believe in the ‘zooming’ process, i.e. in linear scaling which is the opposite of
optical scaling. Furthermore, the confusion with ‘optical correction’, sometimes called ‘optical compensation’
as well, should be avoided. These latter two expressions mean that character shapes are drawn in such a way
as to give the reader the perception that he sees what his mind expects to see (e.g. a letter O positioned on the
baseline) rather than what the character looks like (e.g. the baseline generally overhangs the bottom of a letter
O). See [1] for more examples.
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Figure 1. Top: Adobe Garamond characters, from 8 to 36 point size, magnified at the same size;
bottom: genuine Garamond characters, photographed, digitalized then magnified to the same size:

note the different shapes produced by optical scaling

This quality was lost when punchcutting became an automatic process thanks to the
pantographic punchcutting machine designed by Lynn Boyd Benton in 1885 (see [2]): only
one shape was used for a given character at any point size. Today, the process is the same
even if techniques have changed: it consists in describing the contour of a large character,
generally at 1000 point size, then using a scaling factor to reduce it to the requested size
(see [3], [4] and [5]). Obviously, this results in the same shape. Figure 1 (top) shows the
same Adobe Garamond2 ‘e’ at different point sizes but magnified to the same size: all these
‘e’ are identical.

Since 1991, various commercial products, such asMultiple Master Fonts by Adobe [7,8],
or MultiType [9,10], etc. have been proposed in order to retrieve the metal type qual-
ity by allowing optical scaling. Note that optical scaling has been offered since 1978 by
METAFONT, Knuth’s system for designing fonts [11].

After describing in more detail the way optical scaling is performed by a computer,
another way of adjusting character shape according to the point size will be proposed. Then
this paper shows how this technique can be applied to a special class of characters: the
large symbols such as braces, parentheses and various mathematical symbols.

2 OPTICAL SCALING AND DIGITAL FONTS

2.1 Linear scaling

First, let us recall how character contours are described and rendered [4].
A character (like the ‘e’ in Figure 2, left) is composed of a set of contours that are filled

(here with grey ink). These contours are paths defined as sets of segments and of splines,
generally Bézier curves. For example, the inner counter is defined as follows:

1. start from point number 10
2. proceed to point number 11 following the Bézier curve defined by the two extremity

points 10 and 11, and by the two control points (bullets at the ends of the tangents to
the curve)

2 This font has been compared to the genuine Garamond by Mark Agetsinger [6].
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Figure 2. Times ‘e’: left, the regular description using Bézier curves; right: the modification of
coordinates of points number 4, 5, 11 and 13 results in an enlarged counter

3. draw a straight line from point number 11 to point number 12
4. proceed to point number 13 following the Bézier curve defined by points number 12

and number 13 and the two corresponding control points

Generally the coordinates of these points are given in a coordinate system where characters
have 1000 point size. In a PostScript-like language, the ‘e’ can be programmed as follows:

Bezier curve from x=248 y=501 % point 10
to x=123 y=368 % point 11
with control points x=154 y=501 x=137 y=431

line from x=123 y=368 % point 11
to x=367 y=368 % point 12

Bezier curve from x=367 y=368 % point 12
to x=248 y=501 % point 13
with control points x=364 y=408 x=350 y=501

This resolution-independent definition is scaled according to the specific requested size.
The rendering algorithms include outline scan conversion and filling which are called and
generate a bitmap that is copied at the requested position of the page image.

Because coordinates such as x = 248,y = 501 have numerical values which are
independent of the actual body size, it is obvious that the shapes produced at various sizes
are identical (like all the Adobe Garamond ‘e’ of Figure 1, top).

2.2 Analytical description

Languages like PostScript or METAFONT do not only support numerical values for defining
outline control points. For example, it is possible to replace the numerical coordinates of
points 4, 5, 11 and 13 by expressions or functions whose value depends on the actual body
size. The above counter contour may then be written as follows:
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Bezier curve from x=248 y=501 % point 10
to x=f11x(bodysize) y=f11y(bodysize) % point 11
with control points x=154 y=501 x=137 y=431

line from x=f11x(bodysize) y=f11y(bodysize) % point 11
to x=f12x(bodysize) y=f12y(bodysize) % point 12

Bezier curve from x=f12x(bodysize) y=f12y(bodysize) % point 12
to x=248 y=501 % point 13
with control points x=364 y=408 x=350 y=501

Running this program twice with two different values ofbodysize gives the two different
shapes of Figure 2.

This shows the way all optical scaling systems work. Fonts enabling such size-dependent
variations are sometimes called ‘parametrized fonts’.

2.3 Which set of points?

Let us assume that the body size is the only factor that affects the shape of a character.3

Any point entering the definition of an outline has coordinates x and y such that

x = f (bodysize),y = f ′(bodysize).

The main problem of optical scaling is then to determine these functions f ,f ′.
Very few studies have been carried out and published about such functions. We may only

quote a thesis written by Bridget Lynn Johnson [12] and some measurements by Donald
Knuth ( [13, page vi] quoted and analysed by Haralambous [14]) on Monotype Modern.
Their results are confirmed by what seems to have been implemented in the commercial
products quoted above, even if these results are criticizable.4 On the other hand, while the
properties of human vision are highly important, it does not seem that definitive results can
be obtained from research into human vision and perception.

2.4 Expansion factor

The expansion factor of a given measure (e.g. the height of a given character, or its width,
or the abscissa of a given point), at a given size, is the ratio of this measure when optical
scaling is applied over the same measure without optical scaling. In Figure 2 for example,
assuming that the right ‘e’ is at 8 point size (bodysize = 8) and that f 12y(8) = 340, we get
for this ‘e’, the two following expansion factors F:

Fordinate of point 12 =
340 pt
368 pt

= 0.924

Fcounter height (y10−y12) =
501− 340
501− 368

= 1.211

3 Optical scaling is concerned not only with metric relations between parts of a given character but also with the
metrics of the character itself (e.g. its x-width) and even with metrics between parts of subsequent characters.

4 For example, Johnson measured printed material instead of smoke-proofs (They are proofs made from the face
of a punch by blackening it with the smoke from a candle flame and pressing it on to a piece of smooth card. This
gives a very sharp impression, so the punchcutter can see exactly how the shape of the character is developing.)
which would have given better results. Furthermore, some authors, like Southall [2], think that the contour of a
character is not the appropriate concept to be used.
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Figure 3. Coordinates of control points may be computed by linear interpolation between corre-
sponding points — see Figure 1

This last factor for the genuine Garamond compared to Adobe Garamond (Figure 1)
gives:

FGaramond counter height at 8 pt =
0.6 cm
0.57 cm

= 1.053

FGaramond counter height at 36 pt =
0.51 cm
0.57 cm

= 0.896

2.4.1 Linear interpolation of control points at regular sizes

In the usual range of body sizes (say from 6 points to 36 points), it seems that a good
approximation is to say that expansion factors F are linear functions of the body size:

Fbodysize = α× bodysize + β

Notably, the positions of control points follow a linear rule. For example, in Figure 3, having
the coordinates of point number 12 at 8 point size and at 36 point size, the coordinates of
this same point number 12 at c point size can be obtained by linear interpolation.

It is important to state that each linear rule is specific to a given measure. That is why
(Figure 3) the set of points for the right end of the counter (point number 12) is not parallel
to the set of points of the upper point of this counter (point number 3).

2.4.2 Small characters need quadratic functions

Both D. Knuth and B. Johnson agree that expansion factors are no longer a linear function
of the body size when this size is small. Quadratic interpolation is needed. Knuth uses
10 point size as the boundary: expansion factors are far larger when the body size becomes
smaller (see figure in [14, p. 156]).
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Figure 4. Metal founders offered large sets of variable-sized symbols, at various thicknesses, and for
each, at different sizes. Here, a plate of 6 point braces from the Fonderie Générale, around 1935

(courtesy: Musée de l’imprimerie, Lyon)

2.4.3 Non-identical sets of points

Actually, the main problem is that contours are described with splines, i.e. with sequences
of curves. This set of curves may differ from one character at a given point size to the same
character at another point size (typical examples are given in [14, figure 1]). Small char-
acters cannot support all topological attributes of large characters (e.g. serifs are simpler);
furthermore, at a larger point size, one character section given by a single large Bézier
curve is better represented by two smaller Bézier curves.

2.5 Large symbols

Opticál scaling studies and implementations deal with letters whose expansion factors are
roughly in the range [0.5,2]. For example, the ‘e’ Garamond width expansion factor at
100 point size is less than two times smaller than the same factor at 5 point size. This is not
true for ‘large symbols’ where the expansion factors may change in a ratio larger than 20.
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Figure 5. (a) ‘Text integral’ at 50 point size. (b) Correct ‘display integral’ with the same scaling factor
(50 point size). (c) Wrong display integral taken from a text integral magnified two times (stem too
fat). (d) Wrong display integral taken from a text integral scaled by a factor of 2 in y only (deformed

spurs)

A typical example concerns braces. Figure 4 shows the same brace from 1 to 27 douzes
which is the old French name for the multiple of twelve didot points (the real set goes up to
50 douzes). All of these braces have swellings with the same thickness. Here, this thickness
is called corps (bodysize) and has a value of 6 points (i.e. six-to-em). Other plates exhibit
other sets of braces, with a thickness from 2 to 10 points (3 point and 6 point braces are
most commonly available in such catalogues). Finally, each brace may be characterized by
two parameters, its height h and its thickness t, with h ∈ [1:50],t ∈ [2:10].

For a given thickness, say t = 6, there are 50 different heights. It can be said that the
expansion factor goes from 1 to 50, i.e. with a ratio equal to 50, which is far bigger than
for letters.

Font founders offered other such symbols, e.g. parentheses, rules, angular brackets,
etc. Another class of large symbols concerns mathematical variable-sized symbols such
as integral sign, summation sign, brackets, arrows, radical sign, etc. These symbols have
to follow optical scaling rules: if a 50 point size integral sign was magnified through
some affine transformation to 100 point size, this magnification would apply as well to its
thickness: the stem would be excessively bold (Figure 5).

2.5.1 Computerized mathematical fonts

Although there are thousands of fonts available on laser printers or phototypesetters, only a
few of them are concerned with mathematics or with large symbols. Today, the main ones
are (see [15, p. 340]):

• cmexnn (math extension) fonts created by METAFONT for TEX ([16, appendix F]);
• Symbol font, one of the four fonts that have always been installated on any PostScript

system; refer to [17, appendix E.11];
• The Lucida family that offers both a LucidaMath-Symbol almost equivalent to

Adobe’s Symbol and a LucidaMath-Extension where one can find symbols that belong
to TEX’s cmex [18];
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Figure 6. Variable-sized symbols are generally drawn as composite symbols. The spaces between
items are only present here to indicate the miscellaneous parts of symbols. (Symbol font)

\overbrace{x} = \overbrace{a+b+c+d} ⇒
︷︸︸︷

x =
︷ ︸︸ ︷
a + b + c + d

\widehat{x} = \widehat{a+b+c+d} ⇒ x̂ = ̂a + b + c + d

Figure 7. LATEX enables some horizontal symbols such as ‘over braces’ to be extended, but produces
unexpected results with non extensible symbols such as ‘wide hat’.

• Two new versions of Times (by Spivak and by Jungers) that offer TEX’s math exten-
sion as Lucida does.

2.5.2 Remaining problems

Today, fairly good quality formulae can be drawn with text formatters. However, some
problems remain.

• While mathematics-oriented hot metal fonts contained a large set of symbols at any
point size, computerized fonts replace variable-sized symbols by a discrete set of
composite symbols. For example, the ends of an integral sign are made of the upper
spur and of the lower spur while the stem is assembled with a set of spare bars
(Figure 6).

• Good mathematics requires slanted integral signs. Symbol does not offer such a
slanted integral while TEX’s cmex and Lucida offer only a limited set of (two or
three) sizes. This is true as well for other symbols such as the radical sign, big
parentheses, horizontal braces, etc.

• Extending horizontal or vertical strokes does not apply to characters that are not
made of single strokes. For example, mathematical fonts give the wide hat5 only a
limited set of sizes and no general extension at all. Unexpected (i.e. wrong) results
may occur, as shown in Figure 7.

• There is a gap between some character sizes. Symbol, see Figure 8, right, offers
one right parenthesis with a height6 equal to 0.864 ems and offers three symbols

5 It seems that this symbol is more used in France than in English-speaking countries.
6 We call the height of a character the difference ury− lly, where ury and lly are respectively the ordinates of the

upper right corner and of the lower left corner of its bounding box (see [17, 5.4]); it is given in terms of ems,
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Figure 8. Gaps in variable-sized symbols are more important in Symbol (left) than in Lucida (right).
The body size is indicated by the the ‘A’ height

to compose big right parentheses. The upper part ‘


’, the lower part ‘


’ and the
middle part ‘’. The upper part and the lower part have the same height: 1.220 ems.
Therefore, the minimum height7 for a big parenthesis is 2.440 ems. In this font the
caps height is 0.673 ems. While the parenthesis is approximately 30% higher than
the capitals, the minimum big parenthesis is about 330% higher than capitals. With
such metrics, it is not possible to get parentheses at the correct size for expressions
such as (ai). Formatters using Symbol put extra blanks above and under the ai; but

some formatters draw bad parentheses like ‘


’.

• Both cmex and Lucida fill this gap by offering intermediate medium-size parentheses
(Figure 8, right).

3 MATH-FLY, A FONT TO HANDLE VARIABLE-SIZED SYMBOLS

Variable-sized symbols have an interesting property: like rules, they are seldomly used at
a given size. So, instead of pre-computing all the possible sizes, we think it is preferable
to compute them only when they are needed, i.e. just before the character bitmap is
copied at the requested position of the page image. Indeed, page description languages
like PostScript are capable of producing what we called ‘dynamic fonts’ [19]. PostScript
has a cache mechanism that may be disabled: any instantiation of a character results in
re-computing the corresponding bitmap. This means that context can be taken into account
dynamically.8 In the case of variable-sized symbols, this context is the bounding box of
the expression ‘inside’ this symbol (in terms of embedded structured boxes, e.g. under
the upper bar of a radical sign, under a vector-arrow, on the right of an integral sign,
etc.).

Math-Fly is a font we are designing to handle mathematical symbols. It is a parametrized
font (see Section 2.2) and uses analytical values to describe control points. Furthermore
these values are context-dependent and computed at print time (see [23] for details).

Various classes of problems have to be solved.

i.e. relative to the current point size.
7 Actually, this height may be reduced by 20% by overlapping the straight parts of these items.
8 Such fonts have been used for example to design ‘lively outlines’ [20], or to compute the extension of arabic

characters to format texts [21]. More examples are given in [22,23].
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3.1 Obtaining outlines

In this first prototype, we are working with public domain fonts and, when needed, products
like Ikarus, Fontographer, etc. are used to digitize hand drawings. In any case, we get outline
descriptions with numerical values for each point. Examples shown here are inspired by
Symbol.

3.2 Analytical computation

Starting with outlines described with numerical coordinates, we have to decide which ones
have to be transformed into analytical variables and which values are to be assigned to
them.

3.2.1 Linear symbols

Most of the symbols are made of linear strokes, with outline points only at the ends
(junctions, serifs, etc.). Extending such symbols only requires that their ends be globally
translated. Horizontal symbol (such as⇐⇒ or 7−→) abscissae have to be incremented by δx
(this value has to be computed by the formatter according to the ‘content’ of this symbol).
Vertical symbol (such as [, | or ⇑) ordinates have to be incremented by δy. Some symbols,
such as

∑
,
∏

or
√

may support both translations δx and δy (Figure 9).

3.2.2 Non-linear symbols

The same rule could be applied as well to parentheses, braces, etc. when they are made
of linear segments (as in Figures 6 and 8). However, if they are curved, a perpendicular
deformation is needed as well (see Figure 10, right). The same occurs with linear symbols
that are not in one direction only, such as hats (Figure 10, left).

3.2.3 Optical scaling of large symbols

Outline descriptions of particular symbols, such as integral signs and braces, require Bézier
curves intensively. The goal of our font is to increase the size (e.g. the height of an integral
sign) without modifying the stem thickness, i.e. by following optical scaling rules.

We are studying9 the way large metal symbols are designed according to their size. The
method is to start from old mathematical symbol collections, such as the braces in Figure 4.
Different variable-sized braces are scanned and their bitmaps are vectorized (we used Agfa
PressView). Figure 11 shows three parts of braces from Figure 4, respectively at 20, 40
and 50 point size. These parts concern only the inner outlines describing the upper bowls.
(Hairlines at the end have been dropped because there was too much noise on them due to
the scanning process.) These three parts have been magnified in the x direction. This figure
shows both the outlines and their control points (in grey). It can seen (black lines) that all
the sets of corresponding Bézier points are positioned on straight lines. (Small variations
are probably caused by very small gouge defects at punch time.) Note that, as in Figure 3,
these lines are not parallel.

9 The first results, even if significant, should be confirmed with further important sets of measures on various
fonts, either from printed material, from punches or, better, from ‘smoke-proofs’ (see note 4).
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δx
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δy
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Figure 9. Abscissae of outline points are incremented by δx if they are in the corresponding box;
ordinates of outline points are incremented by δy if they are in the corresponding box. Both coordinates

are incremented if outline points belong to the two boxes

Other experiments confirm that linear interpolationmay be used to define control points.
In other words, the same rule applies for large symbols and for letters (see Section 2.4.1).
So, we propose the following method:

1. Draw a small symbol (e.g. a brace or an integral sign).
2. Draw the equivalent large symbol with the same weight as the small one.
3. Use linear interpolation between the corresponding control points. Note that these

lines may be parallel or not depending on the Bézier curves as in Figure 3 (in other
words, symbols in the whole do not follow linear scaling)
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a + x = 0
Ã

abcde + x = 0
Ã

abcdefghi + x = 0
Ã

abcdefghijklm + x = 0
Ã

abcdefghijklmnopq + x = 0
Ã

a
b
c
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( )
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Figure 10. Math-Fly transforms non-linear symbols such as hats or parentheses having a given
direction by performing a slight perpendicular directional change

20 40 50

Figure 11. Study of the optical scaling deformation of hot metal braces (from Figure 4): Bézier control
points are located on straight line segments

3.3 Metrics of Math-Fly

Math-Fly is a true ‘type 3’ PostScript font. However, it does not use the same metric
as conventional PostScript fonts. When painting a character, three parameters have to be
passed to the PostScript show instruction: the x,y coordinates of the current point and
the encoded value of the character to be drawn. Here we need two more parameters: the
expected x and y widths (or, what would be the same, the required extensionsδx,δy). Because
type 3 fonts are defined as read-only dictionaries, passing parameters (such as δx and δy),
use of variables (to keep intermediate results out of the stack) and use of local operators
require the use of a dictionary out of the font dictionary.

Furthermore, the standard font metric file has to be modified to give the formatters
information on the way symbols are extended. Indeed, a horizontal symbol (like a ⇒)
cannot be vertically extended while a vertical one (like⇓) cannot be horizontally extended.
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Figure 12. The same vector composed with Symbol (left) and with Math-Fly (right) parentheses

And, more difficult, other information has to be passed to the formatter for small variations
(such as the ones for the orientation of parentheses; see Figure 10).

Owing to the fact that font metrics have their own information, formatters using such a
font have to behave on a new basis. This is true as well for Adobe Multiple Masters which
requires the Font Metric to be recomputed after the set up. Note that even changing fonts
from 8 to 16 bits, as in Unicode, requires rewriting editors [24]. So, it is worthwhile to
formulate how an editor can use a font with dynamic metrics.

Let us take an example. Figure 12 shows the formula A = VX + VY where VX has been
drawn with Symbol parentheses and VY with Math-Fly ones. For the left VX parenthesis,
the formatter had to work as follows:

1. compute positions x and y of the bottom of the left parenthesis
2. compute its height H
3. compute (using the Symbol metric file) the number of vertical segments to compose

it
4. generate PostScript code such as:

find font Symbol
scale it at 12 points
moveto x y
show the bottom of the parenthesis
moveto x y+h
show a vertical bar
moveto x y+2h
show a vertical bar
...
moveto x y+H-h
show the top of the parenthesis
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5. use the Symbol metric file to compute the position of the inner part of the vector (i.e.
x+ parenthesis width)

For the left VY parenthesis, the formatter had to work as follows:

1. compute positions x and y of the bottom of the left parenthesis
2. compute its height H
3. compute, using the Math-Fly metric file, the expected δx variation
4. generate PostScript code such as:

find font Mathfly
scale it at 12 points
moveto x y
put H and delta x into the font sub-dictionary
show the left parenthesis

5. compute the position of the inner part of the vector (i.e. x + δx)

The next section will show how an editor, namely Grif, can do all these computations
by using font metric and structured formula.

4 USE OF MATH-FLY FROM GRIF

4.1 Grif overview

Grif is an interactive system for editing and formatting complex documents [25,26] where
documents are represented by their logical structure rather than by their visual aspect. In
this respect it is comparable to syntax-driven editors used for editing programs. It is based
on SGML Document Type Definitions (DTD), which specify the logical organization of
the document to be processed. More precisely, a DTD specifies the types of elements which
make up a document and the relationships linking these elements.

All editing commands are performed through a formatted picture of the document
displayed on the screen, as in WYSIWYG systems. When modifying the structure or the
content of a document, the user acts directly on this formatted picture and sees the results
of the commands immediately thereon.

As well as the logical structure, the visual aspect of documents (on the screen or on a
sheet of paper) is specified on a generic basis. When defining a new DTD, the user gives
presentation rules for each type of element defined in the generic logical structure, and Grif
uses these rules for building the picture of a document. Thus, the user who edits a document
has only to enter its logical structure as well as its content for the system to automatically
generate its document picture.

4.2 Abstract picture

A specific language, called P language, is used to describe presentation rules for each type
of element defined in the DTD. Interpretation of these presentation rules is based on the
concept of abstract pictures [27]. When Grif has a document to print or to display in a
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Formula

String
"m = "

Sum

Lower_exp

String
"k = min(1,i)"

Symbol
"∑"

Upper_exp

String "n"

Operand

String
"sin"

Superscript
"2"

String
"x"

Subscript
"k"

Figure 13. Abstract picture corresponding to formula (1)

window, it first builds an abstract picture which is a high-level description of that document
image. This description is device-independent and allows the editor to update the image
dynamically in a simple way. In a second step, it translates this abstract picture into the real
image which is displayed on the screen or printed on paper sheets. The abstract picture is
the interaction support between the application and the user.

An abstract picture is a hierarchy of abstract boxes, the concept of box being the

∑

m = 

n
Formula

Operand

Sum

k = min(1,i)

sin

2

x

k

Figure 14. Boxes corresponding to formula (1)
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rectangle which delimits a document element as defined in TEX [16]. In an abstract picture,
boxes are organized as a tree, where each node is a box which encloses all its children.
These boxes are termed abstract because all their attributes are defined in a relative way.
Let us examine a simple example like the following centred formula:

m =
n∑

k=min(1,i)

sin2 xk (1)

The abstract picture describing this formula (1) is shown in Figure 13 while boxes
represented by this abstract picture are shown in Figure 14

As opposed to PostScript [17], this kind of picture description does not locate document
elements in a virtual space, but relative to one another. The tree structure gives a first
approximation of relative positions which only gives the enclosures amongst boxes. Each
node is decorated with positionattributes and dimension attributes which express geometric
constraints between boxes. These attributes result from constraints expressed in P language.

Therefore each box is located relative to its enclosing box or to one of its sibling boxes,
with a fixed distance between two parallel edges or axes of the two boxes. In each direction
the position can be defined with reference to a different box. In our example, some position
attributes are:

Sum: HorizontalPosition:
Left = Previous String.Right;

VerticalPosition:
BaseLine = Previous String.BaseLine;

Symbol: HorizontalPosition:
HorizontalCenter = Lower_exp.HorizontalCenter;

VerticalPosition:
Bottom = Lower_exp.Top;

Upper_exp: HorizontalPosition:
HorizontalCenter = Lower_exp.HorizontalCenter;

VerticalPosition:
Bottom = Symbol.Top;

Operand: HorizontalPosition:
Left = Symbol.Right;

VerticalPosition:
BaseLine = Symbol.BaseLine;

....

Positions may use the four edges of a box (Top, Bottom, Left, Right), its centre and its
baseline. The baseline of a box may be defined relatively to the box itself or to any of its
children. In the example, baselines are defined by:

String: BaseLine = Default;
Sum: BaseLine = Symbol.BaseLine;
Symbol: BaseLine = Self VerticalCenter + 0.4;
Operand: BaseLine = Child String.BaseLine;

The result of the previous set of constraints is that:
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• String ‘m =’, Symbol ‘
∑

’ and String ‘sin’ are displayed on the same baseline,
Symbol base line being 0.4 below its middle;

• Upper exp is displayed centred above the Symbol ‘
∑

’;
• Symbol ‘

∑
’ is displayed centred above the Lower exp.

The dimension of a box can also be specified relatively to the dimension of its enclosing
box or one of its sibling boxes. The relation then specifies the difference between the dimen-
sions of the boxes, or a ratio between them. A dimension can also be fixed independently
of any other box. Examples of dimension attributes are:

Symbol: Width = Lower_exp.Width;
Height = Operand.Height * 1.2;

This set of constraints express that:

• Symbol width depends on the Lower exp width;
• the height of the Symbol ‘

∑
’ is equal to 1.2 times the height of the Operand.

The abstract picture permits an incremental display and so ensures high performance
for interactive applications such as editors which frequently modify some small parts of
pictures. This description enables the application to make the minimum change to the
abstract picture.

Tree structure and constraints between boxes offer a powerful mechanism for de-
scribing complex pictures such as those frequently found in mathematical formulae. The
logical organization of mathematical constructions is described using a DTD and their
graphical aspect is specified using the P language. After that, the user just has to manipu-
late mathematical formulae in logical terms; Grif is responsible for maintaining their real
images.

4.3 Output drawing

While the P language allows us to express how to calculate the correct size of mathematical
symbols (more precisely the size fo their enclosing box), it is also necessary to have a
correct rendering of these symbols. Only Math-Fly is able to exploit this optimal size
evaluation.

Grif computes the abstract picture and its geometrical constraints in order to obtain the
correct position and precise size of symbols to print on paper. In the example above, the
dimension of the box symbol is width=lower exp.width. Conventional formatters
fill this box with the nearest available symbol in the font, i.e. with too small a

∑
, and add

exaggerated blank side bearings, as in formula (1).
In conjunction with the Math-Fly font metric file, Grif computes the precise extensions

δx and δy to be made on the
∑

symbol, and passes these values to the font through a
dictionary. Formula 1, when handled by Grif, is rendered as shown in Figure 15.

Programming these modifications was possible thanks to two mechanisms: ECF (Ex-
ternal Call Facilitites) and API (Application Programming Interface) [28].
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∑

k=min(1,i)

n

sin2xkm = 

Figure 15. Formula 1 as seen by Math-Fly + Grif

4.4 Remaining problems

Math-Fly is still in progress. Here are some yet unsolved problems.

• Due to the fact that mathematicians have recently become used to seeing composite
symbols such as light parentheses (Figure 12, left), there is no guarantee that paren-
theses with the same boldness as radical signs (Figure 12, right) will be accepted.
Furthermore, is an extended summation sign (Figure 15) better or worse than one
with blank spaces (formula 1)? We do not have an obvious answer today.

• Our ‘type 3’ Math-Fly font does not support ‘type 1’ hints mechanism. And type 1
fonts do not allow parameters to be passed easily. Encapsulation concepts would be
welcomed in page description languages.

• Today’s bitmapped fonts used on displays do not allow dynamic evaluation of out-
lines. Straight line segment boundaries could be used to simulate such outlines.

5 CONCLUSION: FONT EVALUATION TECHNIQUES

Three different ways of making digital typefaces have been described in this paper. They
mainly differ as to the time when the character bitmaps are computed:

1. METAFONT enables arbitrary relations to be defined between parts of a character. By
changing parameters, Knuth defined, in a single code, all body-dependent variations
of the font named Computer Modern. However, METAFONT works in three steps:
(1) Before using any printer, screen, or typesetter, it produces bitmaps for a given
point size, e.g. Computer Modern Roman at 5 point size. (2) This bitmap is loaded
into the printer. If a text needs Computer Modern at n different point sizes, all of
these n corresponding bitmaps have to have been loaded (and so computed) before
printing starts. (3) When a character is needed, the bitmap is copied into the page.

2. Multiple Masters works in three steps: (1) The font is loaded into the printer as a
set of parametrized fonts. (2) During the initial ‘set up’, all the potential PostScript
fonts10 are built (e.g. Times at 6 point size, Times at 7 point size, etc.). (2) Each font
is used as a regular PostScript font: character bitmaps are computed only once (and
saved into a cache memory at the first occurrence of the character concerned) and
copied into the page.

3. Dynamic fonts work in two steps: (1) The font is loaded into the printer as a set of
parametrized fonts. (2) When a character is needed, its bitmap is computed according
to the actual parameters and copied into the page.

Table 1 exhibits the fact that bitmap evaluation behaves like passing parameters in
traditional programming languages.

10 Note that Multiple Master fonts enable other variations than optical scaling, e.g. variations on boldness, serifs,
shape, etc.
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Table 1. Comparison between passing parameters and computing bitmaps

Parameters : by value by reference by name
Evaluation : constant once at each occurrence
Bitmap : METAFONT Mutliple Masters Dynamic fonts

This concept of parameter by name (i.e. of a parameter that is a procedure) is not
obvious. This may be the reason why dynamic fonts are not very well understood either.

Another point of interest is to compare the different shapes of a letter at different body
sizes (as in Figure 1, bottom) with the different images of a cartoon: two extreme images are
given and and the intermediate shapes are automatically computed with no user interaction.
This operation is known as shape averaging, shape interpolation, metamorphosis and shape
blending. There, chaotic intermediate shapes can be avoided [29]. This is not yet the case
for fonts.
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