
ELECTRONIC PUBLISHING, VOL. 7(3), 163–178 (SEPTEMBER 1994)

Why use HyTime?
L. A. CARR, D. W. BARRON, H. C. DAVIS AND W. HALL

Department of Electronics & Computer Science
University of Southampton
Southampton SO9 5NH
UK

SUMMARY
The Hypermedia/Time-based Structuring Language (HyTime) is a recently adopted Interna-
tional Standard (ISO/IEC 10744:1992). The paper presents the need and potential for HyTime,
provides a brief explanation of its various facilities and shows how it may be applied to good
effect in various situations, with particular reference to hypertext interchange from Microcosm
(an open hypertext system). It then goes on to explore several alternatives to HyTime and
compare their relative strengths and weaknesses.

1 INTRODUCTION

The aim of the Hypermedia/Time-based Structuring Language, or HyTime [1,2] is to
preserve information about the scheduling and interconnection of related components of
a hypermedia document (e.g. audio, music score and libretto in a CD-ROM version of an
opera) that would otherwise be embedded inside application-specific ‘scripts’. It grew out
of the work of the ANSI X3V1.8M committee on a Standard Music Description Language,
and became a separate standards activity in 1989, achieving draft status in 1991 and final
International Standard status in April 1992. HyTime is a standard for expressing document
architectures in SGML and so to understand HyTime it is necessary to understand the
particular importance of generic markup as embodied in SGML.

2 MARKUP

Traditionally, markup was the process of marking a manuscript with instructions to the
compositor for rendering the manuscript in print. More recently the manuscript has become
a computer file and the compositor a computer program; markup now comprises the codes
inserted into the text to control the composition program. These codes may be explicitly
inserted by the author (in the case of typesetting systems like LATEXor troff) or added
‘behind the scenes’ as a consequence of the author choosing a particular style from a menu
(in word processor systems like Microsoft Word or WordPerfect). These codes control
printed (physical) attributes of the document, such as the fonts and spaces used to render
the text (Figure 1), and mimic the pre-existing technology used by printers, so the models
which both the above kinds of programs manipulate is that of a book, magazine, memo, or
letter—i.e. any printed item.

Because of the tedious and repetitive nature of this ‘physically oriented’ low-level typo-
graphic manipulation, markup languages adopt procedural abstractions (macros) (Figure 2)
which mirror higher-level physical document constructs like display paragraphs, hanging
indents, bulleted lists and headings, and reflect a document’s logical or abstract composi-
tion, such as its construction from chapters, sections and subsections, figures and tables.

CCC 0894–3982/94/030163–16 Received 20 June 1993
1994 by John Wiley & Sons, Ltd. Revised 21 January 1994

© 1998 by University of Nottingham.



164 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

.ce 1

.ft B
A title, a title, my kingdom for a title
.ft R
.sp 0.5i
In this chapter we look at the possible

Figure 1. Nroff physical markup for a section heading

.H 1 "A title, a title, my kingdom for a title
In this chapter we look at the possible

Figure 2. Nroff mm logical markup for a section heading

Emphasized text is no longer marked up with prescriptive physical commands to “change
the font to italic”, but with an abstract declaration that “the following text is emphasized”.
It is now the responsibility of the composition program to know how to suitably render
emphasized text—in other words its role has expanded from dealing with page-imaging
semantics to dealing with document semantics. The advantage of this style of markup is
that the author can concentrate on expressing ideas within an appropriate logical framework
without worrying about issues of presentation that the compositor should deal with. Markup
systems which adhere to this philosophy (troff+mm, LATEX, GML) emphasize the logical
nature of their markup, especially the facilities for expressing the document’s overall hier-
archical structure. However, a closer inspection reveals that such markup is still implicitly
tied to describing the physical layout of a printed document. In fact mm and LATEX markup
for a ‘section’ or ‘chapter’ is defined in terms of lower-level primitives for changing fonts
and leaving vertical space, and so is still a physically oriented markup, rather than a truly
logical one. Document structures like ‘sections’ are catered for in name only; in fact one is
really marking up the section heading alone. Another apparently separate component of the
logical document structure, the footnote, only has any meaning in a paginated environment
and may need to be re-interpreted as a marginal paragraph or an endnote in an on-line text
presentation system. Logical markup has been taken to its (logical) extreme by SGML,
the Standard Generalized Markup Language [3,4], which defines a regime for document
markup without any predefined processing operations or any built-in document structure
semantics. This lack of built-in semantics is both SGML’s greatest strength and greatest
weakness. The strength is that SGML forces abstraction from the eventual document de-
livery medium and allows a content-based approach, imposing a cognitive discipline that
brings benefits beyond the immediate publishing requirements. The weakness is that the
immediate requirement is usually for printing! SGML specifies each document architec-
ture with a DTD (Document Type Definition) defining the hierarchy of structures which
may compose the document. This architecture may be used by an interactive document
editor to check the structure of the document being created, or by a document formatter to
process the entire document. There is a strict syntax associated with the architecture which
may be understood and verified by any SGML-compliant application, but each application
is responsible for interpreting the ‘meaning’ of the document structure, according to its
requirements.



WHY USE HYTIME? 165

<entry>
<biographand><name>John Smith</></>
<dob><day>12<month>June<year>1934</dob>
<dod><day>1<month>Feb<year>1987</dob>
John was born in <birthplace><place>Edinburgh</birthplace> and
studied <subject>English</> at <education><place>Southampton</>
University</>, graduating in
<graduation><date><yr>1956</graduation>. He married
<spouse><name>Emma Jones</name></spouse> in 1962 and became
<profession>MP</> for Southampton in 1975 until his death.
</entry>

Figure 3. SGML markup for an entry in a biographical dictionary

For example, a biographical dictionary may be marked up as in Figure 3. To produce
a printed document it may only be necessary to specially highlight the start of the entry,
the name and dates of birth and death of the individual. The other tags may be completely
ignored during formatting, with the text set as if they were not there. However, when
forming a biographical database from the same document it may be deemed important to
identify all the information marked above so that the database can be used to determine
everyone who was educated at a particular university. Furthermore, in an on-line hypertext
version, any of the names that appear in the body of an entry may require a button to
appear over them if that person is further described in their own entry. Without the extra
markup it would be impossible to pick out these details that make the data useful for many
purposes apart from printing. This is especially pertinent since many published works (par-
ticularly encyclopaedias and dictionaries) are becoming available in printed and electronic
versions. (See [5] for a description of the construction of an SGML DTD for coding literary
texts.)

In a modern hypermedia document environment, the models manipulated by the com-
puter programs are no longer those of traditional printing technology, with common inter-
faces and operational semantics. A document may consist of a collection of video sequences,
audio clips and computer animations as well as text. Abstract but physically based markup
can no longer be used to define ‘how to’ present each piece of information because there
is as yet no standard practice to follow for presenting non-textual information. In any case
instructions such as “leave 2 seconds of space and then show this video clip in the top-left
corner of the screen with that text next to it” leave little room for true hypermedia which
necessitates user-directed interaction.

Although physically oriented markup has a limited role in a truly multimedia environ-
ment, it has a crucial role to play in describing each different component of the document,
describing its representation and its purpose (especially for non-textual information). The
markup can therefore be used in two ways

1. To encode or represent the various document objects themselves.
2. To describe meta-information about the objects or their intended use.



166 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

Figure 4. A multimedia document

2.1 Using markup to express document objects

For example, Figure 4 demonstrates a document which consists of some text, a diagram and
a video sequence. Figure 5 shows how it might be coded according to an SGML DTD, with
the document structure used as a container to hold the various encodings of the document
media (text, picture and video). The contents of the text objects are also coded according to
the DTD, although the diagram object is coded according to some external scheme and the
video object as a mixture of SGML markup and external scheme. All the document objects
(text, diagram and video) are coded using SGML markup and also have special tags which
give information about the objects.

2.2 Expressing inter-object relationships

Having established that we can use a markup environment based on an SGML DTD to
code the basic objects and embedded data structures that make up a multimedia document,
we turn our attention to the interaction between the various objects within a document, and
to the interaction of a reader with those objects. Multimedia information comes in many
guises: movies can be embedded in a word-processed office memo, maintenance manuals
can use video sequences to demonstrate exactly how to replace a faulty component, and a
music CD-ROM could contain the orchestral score and libretto for a musical as well as the
choreography and lighting instructions. The first example can be easily accomplished on



WHY USE HYTIME? 167

<mmdoc>
<element type=text>Welcome to the Department of

Electronics and Computer Science. <p>Click on the map
below.</>

<element type=diag size=7x8 rendering=winmetafile>
AA145367382A5</>

<element type=text>The Department was formed in 1990 as
a merger between the Departments of Electronics
(Faculty of Engineering) and Computer Science
(Maths). This has resulted in a successful
partnership of hardware and software expertise.</>

<element type=video size=3x3 rendering=frames>
<frame num=1 timecode=002701>AA145367382A5...
<frame num=2 timecode=002702>AA145367382A5...
<frame num=3 timecode=002703>AA145367382A5...
</>

</mmdoc>

Figure 5. Representing the document with SGML

a multimedia PC and is often seen in product advertisements but has dubious utility. The
second example requires more resources to create and a good deal of information design,
but is well within the technical grasp of a publisher to produce on CD-ROM. The third
example is much more problematic: a number of different media sources are related to
each other in time. The connections between the objects in the first example is minimal (a
video can have a rectangular bounding box for placement within the document, but will
usually only be activated when the reader invokes some ‘play’ command). There is more
complexity of relationship between the objects in the second example, but this can probably
be represented as a tree of objects with explicit relationships between any text object and
the other text and video objects to which it refers. The third example, however, is composed
not of independent information units but of continuous streams of information which are
closely tied at all points in each information source. HyTime was particularly designed
for expressing these relationships between different information objects. Although SGML
or any similar encoding scheme may provide rudimentary cross-referencing facilities for
implementing the connections in the first two examples, it is the complex situations which
the third example demonstrates where HyTime comes into its own.

3 MISCONCEPTIONS ABOUT HYTIME

3.1 HyTime is not an application program

HyTime is a methodology for describing document features and the relationships between
different parts of documents, but it does not prescribe the meaning of these features or
relationships. It uses terms like ‘hyperlinking’ without defining what happens when a link
is followed, or even how a link is activated. HyTime is not a system that can be executed to
display multimedia documents and jump between document objects using hyperlinks. An



168 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

application would need HyTime added-value to interpret a HyTime-compliant document
and render it for display. It is in fact anticipated that the main use of HyTime will be for
encoding documents for interchange between various proprietary systems, and although
the HyTime standard provides various facilities to speed up native rendering of a HyTime
document, HyTime is not necessarily the most suitable format for coding multimedia
material.

3.2 HyTime is not a document architecture

Although HyTime is used to mark up hypermedia documents in conjunction with SGML it is
not a single document architecture (i.e. it is not a DTD). Early versions of the draft standard
did in fact define a HyTime DTD, but this was abandoned as being too restrictive. Instead
HyTime is often referred to as a meta-DTD since it provides a set of standard components
(or architectural forms) which can be used to construct document architectures. As such,
HyTime defines a (very large) family of document architectures, and rules for constructing
their DTDs.

4 HYTIME DEFINED

HyTime is neither an application that implements hypertext or multimedia facilities nor a
single document architecture that requires document objects to be expressed in a particular
fashion. Instead it provides a set of standard abstract facilities that can be built into any
document architecture that is expressed in SGML. HyTime is both abstract and specific:
it provides abstractions of facilities that are useful in building document architectures, but
is very specific about how these abstract facilities must be coded. All HyTime facilities
are expressed in SGML and use SGML as a starting point for document representation;
in fact the HyTime standard includes many miscellaneous features such as ‘glossaries’
which are intended to make SGML authoring easier. HyTime constructs are expressed as
combinations of SGML elements and attributes which have to be interpreted by a HyTime
engine subsequent to their parsing as SGML elements. Although such a HyTime engine
may appear to play the role of a postprocessor for SGML files, a more cooperative role
is needed, since the SGML parser may be required to provide access to any objects in
external entities which the HyTime engine needs to interpret. In fact, both HyTime and
SGML processing engines may be components of a larger document environment.

4.1 HyTime extends SGML

HyTime is primarily concerned with documenting the relationships between different parts
of documents. SGML already has facilities for making references between elements of a
document: elements may be labelled with an id attribute and then referred to by that label
in another element’s idref attribute. This facility can be used to implement cross-references,
hypertext jumps, object class systems, style sheets or many other constructs; however, it is
quite restrictive for a number of reasons. Firstly, only whole elements may be addressed, and
so document objects are rigidly defined with quite a coarse granularity—it is not possible
to quote a reference to a relevant fragment of a paragraph. Secondly, every element which
is to be addressed must be explicitly labelled (conversely, only elements which the author
has bothered to label may be addressed). This is not a worrying restriction to the originator



WHY USE HYTIME? 169

of a document, who is free to make whatever labelling additions may be desired, but an
author who is trying to ‘link in’ to an existing work (a standard reference resource such
as a dictionary, or a seminal academic paper) may have great problems expressing an
arbitrary link using just an idref. The third problem with SGML idrefs is that they may only
refer to labels within the same document. This makes linking to external reference works
impossible without including them in their entirety through an entity reference. Thus in
order to allow flexible linking of documents, one of HyTime’s major functions is to extend
SGML’s object addressing model.

4.2 What HyTime provides

HyTime enhances SGML with extra capabilities with regard to the representation and
addressing of objects, so that they do not have to correspond one-to-one with labelled
elements. Object addresses may be constructed from a combination of sub-addressing
techniques, starting from a well-known object, such as an SGML named external entity or
a previously labelled SGML element (or HyTime object). From such a starting place it is
possible to repeatedly narrow down the address by taking a linear offset from one of the
ends of the object, or by specifying a hierarchical position within a tree-structured object.
Object addresses (or a part of an object’s address) may also be specified as the result of a
query on the document (its structure or data content). This flexible addressing mechanism
may be used, for example, to allow a literature student to refer to a specific word or phrase
buried inside a paragraph of a read-only document that is not even marked up in SGML.
HyTime also provides some facilities for describing hypertext links. These are nothing that
plain SGML could not do, given the extra addressing capabilities of HyTime, but it is very
useful to have an agreed standard for representing marked up links. One of HyTime’s most-
publicized enhancements is the ability to represent complex temporal-based information,
and a major part of it is to control the sequencing and coordination of the rendition of the
various objects.

5 A BRIEF TOUR OF HYTIME

HyTime is a modular standard, with the document designer free to choose only those
facilities which will be needed. The base module is always required and provides facilities
using SGML constructs for object representation and addressing, as well as miscellaneous
facilities for other HyTime modules. The measurement module defines the concept of
addressing document objects according to a measurement along some abstract dimension
(e.g. words 3 to 27 could be a measurement within a paragraph). Various standard units are
defined for familiar temporal and spatial measurements. The location address module allows
reference to be made to document objects which cannot be addressed with the normal SGML
facilities of the base module: these objects can be referenced by name, position or query.
A location ladder can be built up of gradually more and more specific location addresses
(e.g. the draft chapter’s fourth heading’s third word’s second letter). The hyperlinks module
provides methods for representing link objects (based on the various object addressing
and representation methods provided above) and the semantics associated with traversing
the link. The scheduling module provides events which are objects positioned within a
multidimensional coordinate space. The rendition module provides ways for describing the
modifications that can be made to an object within an event and the ways that events can
be projected from one coordinate system into another.



170 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

6 THE MANY FACES OF HYTIME

HyTime’s facilities are all to do with locating and linking information. The location module
enables arbitrary information to be addressed, the hyperlinks module allows this information
to be associated with other information, the scheduling module allows different information
objects to be coordinated in some way. Only the renditionmodule provides any rudimentary
facilities for altering objects. Because of the very general nature of these facilities, HyTime
has application in many different situations: here are some examples of its use in the fields
of text processing, presentations and hypertext interchange.

6.1 Text processing

Text processing is mostly concerned with the production of printed documents and requires
information to be moved (to produce footnotes), copied (to produce tables of contents) and
collated (to produce indexes). HyTime is useful in this situation because it can describe the
relationship between individual text items and the larger document structure. For example,
in order to produce an index a list of terms has to be decided on, and then all the relevant
occurrences of each term (or its synonyms) must be referenced in the text. Each index entry
catalogues the relationship between its term and a number of occurrences in the document
and can thus be modelled by a hyperlink (despite its name a hyperlink does not necessarily
have anything to do with hypertext, only the connection of two document objects). A
hyperlink encodes a connection between several document objects called ‘anchors’ of the
link, and assigns a ‘role’ to each of the anchors. For an entry in an index there could be two
anchors—the term to be indexed and the set of its occurrences within the document. Figure 6
shows such an index entry. It connects a ‘term’ element to an ‘occurrences’ element whose
instantiationshave ids ‘t1’ and ‘o1’ respectively. Both elements are declared to occur inside
the indexentry element. Indexentry is not part of HyTime, it is simply defined in the DTD (as
shown in Figure 7) with HyTime standard attributes. It is the HyTime attribute that identifies
the indexentry as being an example of an independent link (ilink) to the HyTime engine.
The HyTime engine can then handle the value of the linkends attribute to find the various
anchors for the text processing application to use. (More likely the value of the anchroles
attribute would be fixed in the DTD and so not given in the document instance itself.) In
text processing environments, index terms are frequently given special markup in the body
of the text. If this is the case, HyTime may locate the term’s use by referring to the markup’s
id. If this is not the case, or the indexer does not have write access to the documents text,
then HyTime may locate the index entries by using a dataloc (data location) element. A
dataloc element identifies an anonymous span of data within another named object (called
the location source, or locsrc, perhaps an element with an id or a named entity) by giving an
offset from one end of that object and an extent. For example, if this section (entitled ‘Text
processing’) had been marked up with an id of textp, the following examples of a dataloc
element could address the word ‘production’, either by counting characters or words from
the start of the section. (The dimlist element treats its numbers as a measurement along an
abstract dimension, in this case the data content of a section element.)

<dataloc locsrc=textp quantum=str><dimlist>45 10</></dataloc>
or <dataloc locsrc=textp quantum=word><dimlist>8 1</></dataloc>



WHY USE HYTIME? 171

<indexentry anchrole="term occurrences" linkends="t1 o1">
<term id=t1>multimedia
<occurrences id=o1>oc1 oc2 oc3</>

</indexentry>

Figure 6. An entry in an index

<!ELEMENT indexentry - - (term, occurrences?)>
<!ATTLIST indexentry HyTime NAME #FIXED ilink

anchrole NAMES #REQUIRED
linkends IDS #REQUIRED>

Figure 7. Defining an IndexEntry construct in the DTD

<!ATTLIST occurrences HyTime NAME #FIXED nmlist
nametype NAME #FIXED element>

Figure 8. Defining an occurrences construct in the DTD

Since each term appears numerous times within the document the ‘occurrences’ anchor
is a HyTime multloc or multiple location, which consists of a list of ids, each resolving
eventually (perhaps indirectly through a dataloc) to a word in the document. By use of the
HyTime-based indexentry document structure given above, we have enabled the document
designer to express connections between a specific document object (here a piece of text)
and numerous places in the document. This allows the index to refer not just to occurrences
of a particular word, but to whole paragraphs of text, or pictures and diagrams. It is the
responsibility of the index creator to decide how to represent each of these connections.

6.2 Presentations

Often there is a requirement to make a presentation based on the information drawn from
a collection of books. This presentation not only imposes a temporal ordering on the
information but also allocates a time-span to particular pieces of information, based not on
the length of the content, but on its perceived importance. An educational course syllabus is
an example of such a presentation. HyTime can be used to represent such a course syllabus
by using a finite coordinate system (fcs) to represent a timeline, and then mapping each
component of the course onto the appropriate position on that timeline.

Figures 9 and 10 show the definition and use of such a timeline. In Figure 10 we see that
a semester contains a course schedule which contains a number of lectures, each of which
contains a set of contents and refers to a duration for the lecture. The contents themselves
are references to the contents of a textbook, perhaps indirectly through a dataloc. Figure 9
shows how this is defined using HyTime’s constructs. The semester is an example of a
finite coordinate system whose axes are defined by a timeaxis structure (not shown here).
In fact there is just one axis here (the time axis) which would be measured in ‘teaching
blocks’ for convenience. The courseschedules which it contains are examples of HyTime’s



172 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

<!ELEMENT semester - - (courseschedule)+ >
<!ATTLIST semester

HyTime NAME #FIXED fcs
axisdefs NAME #FIXED timeaxis>

<!ELEMENT courseschedule - - (lecture)+ >
<!ATTLIST courseschedule

HyTime NAME #FIXED evsched>
<!ELEMENT lecture - - (content)+ >
<!ATTLIST lecture

HyTime NAME #FIXED event
exspec IDREFS #REQUIRED>

<!ELEMENT duration - O (#PCDATA)
-- LexModel(snzi, s+, snzi) -->

<!ATTLIST duration
HyTime NAME #FIXED extlist
id ID #REQUIRED>

<!ELEMENT content - O (#PCDATA)>
<!ATTLIST content

HyTime NAME #FIXED nmlist>

Figure 9. Defining a timeline in a DTD

<semester><courseschedule>
<lecture exspec=single>

<content>chap1</>
<lecture exspec=dbl>

<content>chap3 chap4 sect6</>
<lecture exspec=single2>

<content>chap2</>
</courseschedule></semester>
<duration id=single>26 1</>
<duration id=dbl>37 2</>
<duration id=single2>78 1</>

Figure 10. Using a timeline

event schedules. Each schedule contains many events (lectures in this example) which tie
a document object (the content elements) to a position and extent in the coordinate system
(place the content along the time axis). The purpose of the duration elements (HyTime
extlist) is to specify the start and extent of the event in the units of the coordinate system.
This example uses particularly opaque measurements, so to make it more useful to a human
it would be better to project the events in this coordinate system onto a natural calendar by
using the event projector facility of the rendition module.

6.3 Hypertext interchange

Exchanging documents between word processors is a common problem for which one
solution lies in the manufacturers of each program making translators available for import-
ing documents native to all the other (commercially successful) programs. An alternative



WHY USE HYTIME? 173

\DocID history.intro \Offset 246 \Selection Mihailovich

Figure 11. Microcosm address tuple

<nameloc id=histDoc>
<namelist nametype="entity">history.intro</></>

<dataloc id=mihail quantum=str locsrc=histDoc>
<dimspec>246 11</dimspec></>

Figure 12. Address tuple as a HyTime location ladder

approach is to define a common ‘document interchange language’ (such as Microsoft’s
Rich Text Format) for which each program only needs to provide an ‘export’ and ‘import’
facility. A similar problem exists for exchanging hypertext documents between hypertext
systems. Microcosm [6] is an open hypermedia system developed at the University of
Southampton. One of its chief features is that no information concerning links is held in
documents; instead all link information is held in external linkbases which contain the
required details about the source and destination anchors of the links. It comprises indepen-
dent components (document viewers and link managers) which communicate by passing
messages. Working in such an open environment means that the system response may be
suboptimal and so hypertexts developed in Microcosm may be translated to a cut-down
but optimized delivery environment (such as Microsoft Help). One of the major problems
inherent in such a translation is that the linking facilities of the two systems may not directly
map onto each other. The rich nature of HyTime’s linking capabilities make it possible to
translate hypertext semantics into a HyTime representation without loss of information
and it is therefore useful to use HyTime to form an intermediate representation (a kind of
‘Rich Hypertext Format’) as a midway stage in mapping between two hypertext systems.
The translation process then divides into a sub-process that converts a native Microcosm
dataset into a HyTime-based representation, and then further translation process to convert
(possibly a subset of) this HyTime representation into another hypermedia format [7].

The most common Microcosm addressing mechanism is the (document id, offset, ex-
tent) tuple. The Microcosm address specification tuple in Figure 11 references a string of
(implicit length) eleven characters starting at character offset 246 of a document whose id
is history.intro. It could be expressed as the two-stage HyTime location ladder in Figure 12,
in which the first (nameloc) element associates an SGML id histDoc with the document,
and the second (dataloc) element locates the string within the identified document. Any
reference to the name mihail will now resolve to the requested object. HyTime links may
have more than two anchors, and the document designer has to provide semantics for
each of the anchors. By contrast, Microcosm links have only two anchors (source and
destination), but a destination anchor may be composed of many documents objects (the
equivalent of a HyTime multiple location). HyTime links can take two forms—contextual
links, whose definitions appear at one of the sites of the link anchors (i.e. in context),
and independent links, whose definitions are given at some other place in the hyperdoc-
ument. Microcosm links are always of the latter type, since link definitions are stored in
separate linkbases, referring to their anchor positions through the addressing mechanisms
above. A Microcosm linkbase can now be modelled as a collection of HyTime independent
links:



174 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

<mcmlink anchrole="source destination"
linkends="srcid dstid" endterms="linkdisp1 linkdisp2">

where the multiple destination may be specified as a simple list of destinations as follows:

<nameloc id="dstid"><namelist nametype=element>
destid1 destid2 destid3</></>

This example is similar to the index example given previously, except that the informa-
tion given by the link endterms is intended to specify how the link source and destination
are to be portrayed—here the source is formatted as a button and provides a short preview
of each component of the multiple destination. This is achieved using elements of the
following form:

<displayinfo id="linkdisp1"> <anchorformat>button</></>
<displayinfo id="linkdisp2"> <anchorformat>normaltext</></>

which are referred to by references to their unique identifier (id) within the mcmlink
element. A Microcosm link may completely specify its source anchor (in terms ofdocument,
offset and content) in which case it is known as a specific link. But by leaving the offset
or document unspecified the content acts as a source anchor for this link anywhere that
it appears in any document. This is a generic link which no longer contains explicit
connections to a source document location. HyTime makes provision for locations to be
specified as the result of a query performed on the content or structure of a document,
defining a standard query notation (HyQ) for this purpose and it is possible to express the
source locations of a generic link with such a query. This can be done by replacing the
explicit dimension specification (dimspecs) in Figure 12 with an axis marker query which
represents a matching operation against the required texts. Any query notation (e.g. regular
expression searches) is allowed in this context. For specific links, the source specification
srcid resolves (through a dataloc) to a single location. For generic links, srcid resolves
to a multiple location through a query which returns a dataloc for each occurrence of a
particular piece of text, where the query domain is either a single document (local link) or
the entire hyperdocument (generic link).

7 ARGUMENTS FOR AND AGAINST HYTIME

“One man’s meat is another man’s poison” is certainly true in the world of electronic
publishing. Religious wars are fought over the use of different word processors, and the
features which endear HyTime to one community of users are likely to alienate a different
community. Certainly HyTime is a standard which provides added value for SGML, and as
such is likely to be adopted with some enthusiasm by users of SGML. However, both SGML
and HyTime have a significant emphasis towards information interchange and therefore
are frequently hidden from the end-user and visible only to application programs. Since
HyTime and SGML are so closely related, any of the arguments brought to bear against
SGML are likely to apply to HyTime. Barron [3] cites as one of the major obstacles to the
take-up of SGML the need for changes in working practices and the development of new
software. These still remain potent arguments against the use of SGML, though the number
of popular commercial products which support it is slowly increasing. HyTime, as a very
recent standard, is in a worse commercial position. However, SGML is making significant



WHY USE HYTIME? 175

inroads into major military and commercial documentation systems with concomitant
changes in working practice, thus preparing the way for HyTime-based approaches to
information handling and interchange. Another apparent weakness that is shared with
SGML is its lack of inbuilt ‘default’ structure. A standard set of tags (such as the British
Library Starter Set) are required to convey standard document semantics in SGML; standard
document architectures incorporatinghyperlinks and event schedules are similarly required
for documents to be fully shared. One of the overwhelming arguments in favour of HyTime
is the changing nature of publishing. When SGML was proposed as a standard it was
becoming more commonplace for authors to exchange individual documents electronically
and the requirement was for a common medium for expressing these documents. In recent
years the development of international networks has enabled sharing on a wider scale, with
repositories of documents and multimedia information being set up across continents. One
of the important needs is to be able to tie these information resources together, linking to
or citing other works published on a remote server. Many common applications do now
provide hypertext facilities, enabling the linking of information. However, most of them
do this as a product of an internal scripting language: the links are hidden and exist as
a consequence of the execution of a program rather than explicitly declared data objects,
making it difficult to exchange the data between applications.

8 WHO USES HYTIME?

HyTime is a very recent standard, and so there are as yet no commercial products which
are based on it although it has been used in research environments [7,8]. In the commer-
cial world TechnoTeacher, one of the lead players in the HyTime standardization effort,
are developing a set of object-oriented classes for building HyTime applications called
‘HyMinder’. A product can be made to conform to a subset of HyTime facilities with-
out providing a complete HyTime engine: for example DynaText, from Electronic Book
Technologies, can build a HyTime location ladder, but cannot use one fully. IBMs IBMID-
Doc language conforms to HyTime in its use of the base module but no other features.
HTML (see below) and the Open System Foundations standard DTD both make use of
HyTime-style hyperlinks.

9 ALTERNATIVES TO HYTIME

HyTime is one possible solution for encoding hypermedia documents for interchange.
There are a number of alternative approaches, some of which are existing or forthcoming
international standards, others of which are popular commercial or academic solutions. See
[9] for information about the relationships between these and other international standards
for text and hypermedia.

9.1 MHEG

MHEG is a forthcoming international standard for interchanging hypermedia objects [10].
It is a container architecture which allows media objects to be represented according to an
appropriate (external) standard along with instructions for their presentation and behaviour.
MHEG objects are to be encoded according to ASN.1 or SGML. It is intended as a practical
interchange standard for industrial-strength hypermedia applications requiring real-time



176 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

interchange and addresses the problem of exchanging multimedia objects for presentation.
In this way it is very different from HyTime: display and control semantics are a part of the
MHEG standard, whilst in HyTime these are devolved to the controlling application.

9.2 HyperODA

HyperODA is a set of proposed extensions to the Open Document Architecture standard
(ISO 8613). ODA is a container architecture which represents text and graphics (each
expressed according to an appropriate external standard), providing logical (abstract) and
layout (physical) views of the document in parallel. HyperODA extends this model with
extra content architectures for audio and images, as well as the link objects and temporal
layout. HyperODA is similar to MHEG in that it associates presentation semantics with the
document objects, but is more prescriptive than MHEG since it constrains the representation
of the component multimedia objects to a small number of international standards. This
has the advantage that two HyperODA-compliant applications can always completely
understand any document that they exchange, but has the disadvantage that new kinds of
media object (movies, for example) cannot be represented without a new version of the
standard being defined. HyperODA’s similarity to HyTime comes from its association of
logical structure with the document components.

9.3 HTML

HTML (HyperText Markup Language) is an SGML-based document architecture used by
the academic ‘World-Wide Web’ (WWW) project [11]. It is designed for simply struc-
tured textual documents with embedded graphics and provides hypertext links. As well as
providing HTML’s architecture for expressing documents, the project defines a universal
addressing scheme and a transport protocol for locating and retrieving networked docu-
ments. HTML’s links are similar to HyTime’s contextual links and can be expressed in a
HyTime-compliant fashion. Since WWW provides both a document architecture with ren-
dering semantics and an application environment for viewing its documents it would seem
more immediately useful than HyTime. However, HyTime’s advantage is its extensibility:
it can be applied to many document architectures, and a single HyTime ‘application engine’
can provide the hypertext facilities for all of them.

9.4 Acrobat

Adobe’s new ‘Acrobat’ product [12] is interesting to compare with HyTime. It defines
a platform-independent multimedia document encoding called PDF (portable document
format) which treats a document as a collection of objects. A document consists of a
set of page objects, each of which refer to a number of textual, graphical or pictorial
objects. Link, structure, annotation and page preview objects are also supported, along
with video and audio objects in a forthcoming release. All objects are coded in PDF’s
7-bit text representation, although they may be decoded into various standard media types
(e.g. JPEG). Acrobat is quite unlike HyTime in many ways since all the objects are pre-
formatted for presentation onto pages of a specific size. There is no abstract information
held with any of the objects, and it is even a non trivial task to extract the text from its
formatting. Fundamentally PDF is an architecture based on a hierarchy of objects which



WHY USE HYTIME? 177

has implicit semantics for document and page objects. This architecture could easily be
extended to allow alternative representations for each object, for example to provide a
variety of image formats (to support a variety of display software), image resolutions (to
support differing speeds of communications link), text renditions (to support language
dependencies) or structure abstractions (logical or physical representations to support both
formatted display and textual searches). Work is in fact currently underway to try to meld
both SGML abstract and PostScript physical representations which would provide facilities
similar to ODA. An Acrobat link has a source which is a rectangle in a pages coordinate
space and a destination which is a view of another page within the same document. What
Acrobat lacks is the ability to fix link anchors into the content and the ability to address
objects from other documents. The former arises because there is no easy way to address
an object’s internal structure, the latter because there is no universal document addressing
mechanism on the software platforms on which Acrobat depends. Both of these concerns
are addressed by HyTime through its extensions to SGML’s simple addressing capabilities.

10 CONCLUSION

Markup can express important information about documents: about their structure and the
way they should be presented. This information is added value. It allows a document to
be reused and interchanged between systems for many purposes and therefore is an eco-
nomic consideration. The benefits of generalized markup (as exemplified by SGML) for
representing document structure are increasingly appreciated, especially in commercial and
military organizations which have to deal with large volumes of information. Projects such
as the Oxford English Dictionary [13,14] illustrate the benefits of this approach both for the
production of different versions of the dictionary in printed form and for the production of
a CD-ROM-based version with advanced searching capabilities. The next wave of devel-
opment in electronic document handling will be in the field of hypermedia documents, and
facilities akin to those provided by SGML for simple text-based documents are required to
describe the more complex structures of multimedia hyperdocument collections and their
inter-relationships.HyTime extends the SGML model to meet these requirements. There are
alternatives to the use of HyTime, each with different strengths and weaknesses. MHEG
and Acrobat provide good presentation features, but ignore the information’s structure.
HTML provides one simple logical document architecture, but is not extensible. Hyper-
ODA accommodates both presentation and structure but restricts the kind of multimedia
objects that can be used. Many alternatives exist for the simple handling of multimedia
documents; many alternatives exist for the simple handling of hypertexts. However, there is
no alternative to HyTime for applications in which it is necessary to preserve the structure
of the document and express the relationships between its structured components.

ACKNOWLEDGEMENTS

Particular thanks are due to Martin Bryan for his explanation of HyTime.

REFERENCES

1. Hypermedia/Time-based Structuring Language (HyTime), ISO/IEC Standard 10744, Interna-
tional Standards Organization, 1992.



178 L.A. CARR, D.W. BARRON, H.C. DAVIS AND W. HALL

2. S. Newcomb, N. Kipp and V. Newcomb, ‘The hytime hypermedia/time-based document struc-
turing language’, Communications of the ACM, 34(11), 67–83, (November 1991).

3. D. Barron, ‘Why use SGML?’, Electronic Publishing: Origination, Dissemination and Design,
2(1), 324, (1989).

4. Standard Generalized Markup Language (SGML), ISO Standard 8879, International Standards
Organization, 1986.

5. L. Burnard, ‘Rolling your own with the tei’, Information Services and Use, 13, 141–154, (1993).
6. H. Davis, W. Hall, I. Heath, G. Hill and R. Wilkins, ‘Towards an integrated information envi-

ronment with open hypermedia systems’, in Proceedings of the ACM Conference on Hypertext,
ACM Press, New York (1992).

7. L. Carr, H. Davis and W. Hall, ‘Experimenting with hytime architectural forms for hypertext
interchange’, Information Services and Use, 13, 111–119, (1993).

8. J.F. Koegel, L.W. Rutledge, J.L. Rutledge and C. Keskin, ‘Hyoctane: a Hytime engine for an
MMIS’, in Proceedings of the First International Conference on Multimedia, pp. 129–136,
ACM Press, New York (1993).

9. M. Bryan, ‘Standards for text and hypermedia processing’, Information Services and Use, 13,
93–102, (1993).

10. R. Price, ‘MHEG: an introduction to the future international standard for hypermedia object
interchange’, in Proceedings of the First International Conferenceon Multimedia, pp. 121–128.
ACM Press, New York (1993).

11. T.J. Berners-Lee, R. Cailliau and J.-F. Groff, ‘The world-wide web’, Computer Networks and
ISDN Systems, 24(45), 454–459.

12. D. Brailsford, Adobe’s Acrobat—the Electronic Document Catalyst, Computer Science Techni-
cal Report, Nottingham University (1993).

13. D. Raymond and F. Tompa, ‘Hypertext and the Oxford English Dictionary’, Communications
of the ACM, 31(7), 67–83, (1988).

14. E. Weiner, ‘The electronic English dictionary’, Oxford Magazine, 6–9, (1987).


	SUMMARY
	1 INTRODUCTION
	2 MARKUP
	2.1 Using markup to express document objects
	2.2 Expressing inter-object relationships

	3 MISCONCEPTIONS ABOUT HYTIME
	3.1 HyTime is not an application program
	3.2 HyTime is not a document architecture

	4 HYTIME DEFINED
	4.1 HyTime extends SGML
	4.2 What HyTime provides

	5 A BRIEF TOUR OF HYTIME
	6 THE MANY FACES OF HYTIME
	6.1 Text processing
	6.2 Presentations
	6.3 Hypertext interchange

	7 ARGUMENTS FOR AND AGAINST HYTIME
	8 WHO USES HYTIME?
	9 ALTERNATIVES TO HYTIME
	9.1 MHEG
	9.2 HyperODA
	9.3 HTML
	9.4 Acrobat

	10 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

