ELECTRONIC PUBLISHING, VOL. 7(3), 163-178 (SEPTEMBER 1994)

Why use HyTime?

L. A.CARR, D. W. BARRON, H. C. DAVISAND W. HALL

Department of Electronics & Computer Science
University of Southampton

Southampton SO9 5NH

UK

SUMMARY

The Hypermedia/Time-based Structuring Language (HyTime) is a recently adopted I nter na-
tional Standard (1 SO/I EC 10744:1992). The paper presentsthe need and potential for HyTime,
providesa brief explanation of its various facilities and shows how it may be applied to good
effect in varioussituations, with particular referenceto hypertext interchangefrom Microcosm
(an open hypertext system). It then goes on to explore several alternatives to HyTime and
comparetheir relative strengths and weak nesses.

1 INTRODUCTION

The aim of the Hypermedia/Time-based Structuring Language, or HyTime [1,2] is to
preserve information about the scheduling and interconnection of related components of
a hypermedia document (e.g. audio, music score and librettoin a CD-ROM version of an
opera) that would otherwise be embedded inside application-specific ‘ scripts'. It grew out
of thework of the ANSI X3V 1.8M committee on a Standard Music Description Language,
and became a separate standards activity in 1989, achieving draft statusin 1991 and final
International Standard statusin April 1992. HyTimeis astandard for expressing document
architectures in SGML and so to understand HyTime it is necessary to understand the
particular importance of generic markup as embodied in SGML.

2 MARKUP

Traditionally, markup was the process of marking a manuscript with instructions to the
compositor for rendering the manuscript in print. More recently the manuscript has become
acomputer file and the compositor a computer program; markup now comprises the codes
inserted into the text to control the composition program. These codes may be explicitly
inserted by the author (in the case of typesetting systems like IATEXor troff) or added
‘behind the scenes’ as a consequence of the author choosing a particular style from amenu
(in word processor systems like Microsoft Word or WordPerfect). These codes control
printed (physical) attributes of the document, such as the fonts and spaces used to render
thetext (Figure 1), and mimic the pre-existing technology used by printers, so the models
which both the above kinds of programs manipulateisthat of a book, magazine, memo, or
letter—i.e. any printed item.

Because of thetediousand repetitivenature of this‘ physically oriented’ low-level typo-
graphic mani pul ation, markup languages adopt procedura abstractions (macros) (Figure 2)
which mirror higher-level physical document constructs like display paragraphs, hanging
indents, bulleted lists and headings, and reflect a document’s logical or abstract composi-
tion, such as its construction from chapters, sections and subsections, figures and tables.

CCC 0894-3982/94/030163-16 Received 20 June 1993
01994 by John Wiley & Sons, Ltd. Revised 21 January 1994

© 1998 by University of Nottingham.

164 L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

.ce 1l

ft B

Atitle, atitle, my kingdomfor a title
ft R

.sp 0.5i

In this chapter we | ook at the possible

Figure 1. Nroff physical markup for a section heading

.H1"Atitle, atitle, my kingdomfor a title
In this chapter we | ook at the possible

Figure 2. Nroff mmlogical markup for a section heading

Emphasized text is no longer marked up with prescriptive physica commands to “change
thefont toitalic”, but with an abstract declaration that “the following text is emphasized”.
It is now the responsibility of the composition program to know how to suitably render
emphasized text—in other words its role has expanded from dealing with page-imaging
semantics to dealing with document semantics. The advantage of this style of markup is
that the author can concentrate on expressing ideas withinan appropriatel ogical framework
without worrying about i ssues of presentation that the compositor should deal with. Markup
systems which adhere to this philosophy (troff+mm, IATEX, GML) emphasize the logical
nature of their markup, especialy the facilitiesfor expressing the document’s overall hier-
archical structure. However, acloser inspection reveals that such markup is still implicitly
tied to describing the physical layout of a printed document. In fact mm and IATEX markup
for a‘section’ or ‘chapter’ is defined in terms of lower-level primitivesfor changing fonts
and leaving vertica space, and so is till aphysically oriented markup, rather than atruly
logical one. Document structureslike ‘ sections' are catered for in name only; infact oneis
really marking up the section heading alone. Another apparently separate component of the
logical document structure, the footnote, only has any meaning in a paginated environment
and may need to be re-interpreted as a marginal paragraph or an endnote in an on-linetext
presentation system. Logical markup has been taken to its (logical) extreme by SGML,
the Standard Generalized Markup Language [3,4], which defines a regime for document
markup without any predefined processing operations or any built-in document structure
semantics. This lack of built-in semantics is both SGML's greatest strength and greatest
weakness. The strength is that SGML forces abstraction from the eventual document de-
livery medium and allows a content-based approach, imposing a cognitive discipline that
brings benefits beyond the immediate publishing requirements. The weakness is that the
immediate requirement is usually for printing! SGML specifies each document architec-
ture with a DTD (Document Type Definition) defining the hierarchy of structures which
may compose the document. This architecture may be used by an interactive document
editor to check the structure of the document being created, or by a document formatter to
process the entire document. Thereisastrict syntax associated with the architecture which
may be understood and verified by any SGML-compliant application, but each application
is responsible for interpreting the ‘meaning’ of the document structure, according to its
requirements.

WHY USE HYTIME? 165

<entry>

<bi ogr aphand><nane>John Sni t h</ ></ >

<dob><day>12<nont h>June<year >1934</ dob>
<dod><day>1<nont h>Feb<year >1987</ dob>

John was born in <birthpl ace><pl ace>Edi nbur gh</ bi rt hpl ace> and
st udi ed <subj ect >Engl i sh</> at <educati on><pl ace>Sout hanpt on</ >
Uni versity</>, graduating in

<gr aduat i on><dat e><yr >1956</ graduation>. He nmarri ed
<spouse><nanme>Enma Jones</ nane></spouse> in 1962 and becane
<prof essi on>MP</ > for Southanpton in 1975 until his death.
</entry>

Figure 3. SGML markup for an entry in a biographical dictionary

For example, abiographica dictionary may be marked up as in Figure 3. To produce
a printed document it may only be necessary to specialy highlight the start of the entry,
the name and dates of birth and death of the individual. The other tags may be completely
ignored during formatting, with the text set as if they were not there. However, when
forming a biographical database from the same document it may be deemed important to
identify all the information marked above so that the database can be used to determine
everyonewho was educated at a particul ar university. Furthermore, in an on-line hypertext
version, any of the names that appear in the body of an entry may require a button to
appear over them if that person is further described in their own entry. Without the extra
markup it would be impossibleto pick out these detail sthat make the data useful for many
purposes apart from printing. Thisisespecially pertinent since many published works (par-
ticularly encyclopaedias and dictionaries) are becoming availablein printed and electronic
versions. (See[5] for adescription of the construction of an SGML DTD for coding literary
texts.)

In a modern hypermedia document environment, the models manipulated by the com-
puter programs are no longer those of traditional printing technology, with common inter-
facesand operational semantics. A document may consist of acollection of video sequences,
audio clips and computer animationsas well astext. Abstract but physically based markup
can no longer be used to define ‘how to’ present each piece of information because there
isasyet no standard practice to follow for presenting non-textual information. In any case
instructions such as “leave 2 seconds of space and then show thisvideo clip in the top-left
corner of the screen with that text next to it” leave little room for true hypermedia which
necessitates user-directed interaction.

Although physically oriented markup has alimited rolein atruly multimediaenviron-
ment, it has acrucid roleto play in describing each different component of the document,
describing its representation and its purpose (especialy for non-textual information). The
markup can therefore be used in two ways

1. To encode or represent the various document objects themselves.
2. To describe meta-information about the objects or their intended use.

166 L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

;IEEJ

Welcome to the
Department of Electronics
and Computer Science.
Click on the map belovs.

P rof
ure|l Fower Bafman
G all

The Depatfrmerdwas (L | —
formred & 1350 25 & . ST D
menter bedveen the L Hall
Oepatrents of ISR M
Electronics (Facuty || p——— Car
of Ergineeing) and
Computer Sanoe Mutimedia Lak My
(Maths). THis fas Datvis

Figure 4. A multimedia document

2.1 Using markup to express document objects

For example, Figure4 demonstrates a document which consists of sometext, adiagram and
avideo sequence. Figure 5 shows how it might be coded according to an SGML DTD, with
the document structure used as a container to hold the various encodings of the document
media (text, pictureand video). The contents of the text objects are also coded according to
the DTD, athoughthe diagram object is coded according to some external scheme and the
video object as amixtureof SGML markup and external scheme. All the document objects
(text, diagram and video) are coded using SGML markup and also have specia tags which
give information about the objects.

2.2 Expressing inter-object relationships

Having established that we can use a markup environment based on an SGML DTD to
code the basi ¢ objects and embedded data structures that make up a multimedia document,
we turn our attention to the interaction between the various objects within adocument, and
to the interaction of a reader with those objects. Multimedia information comes in many
guises. movies can be embedded in a word-processed office memo, maintenance manuals
can use video sequences to demonstrate exactly how to replace afaulty component, and a
music CD-ROM could contain the orchestral score and libretto for amusical aswell asthe
choreography and lighting instructions. The first example can be easily accomplished on

WHY USE HYTIME? 167

<muoc>

<el enent type=text>Wel cone to the Departnent of
El ectroni cs and Conputer Science. <p>Click on the map
bel ow. </ >

<el enent type=di ag si ze=7x8 renderi ng=wi nnet afil e>
AA145367382A5</ >

<el enent type=text>The Departnent was forned in 1990 as
a nerger between the Departnments of El ectronics
(Faculty of Engineering) and Conputer Science
(Maths). This has resulted in a successfu
partnershi p of hardware and software expertise.</>

<el enent type=vi deo size=3x3 rendering=franes>
<frame numel tinmecode=002701>AA145367382A5. .
<frame nume2 tinmecode=002702>AA145367382A5. .
<frame nume3 tinmecode=002703>AA145367382A5. .
</ >

</ mrdoc>

Figure 5. Representing the document with SGML

amultimedia PC and is often seen in product advertisements but has dubious utility. The
second exampl e requires more resources to create and a good ded of information design,
but is well within the technica grasp of a publisher to produce on CD-ROM. The third
example is much more problematic: a number of different media sources are related to
each other in time. The connections between the objectsin the first exampleis minimal (a
video can have a rectangular bounding box for placement within the document, but will
usualy only be activated when the reader invokes some ‘play’ command). There is more
complexity of relationship between the objectsin the second example, but thiscan probably
be represented as a tree of objects with explicit relationships between any text object and
the other text and video objectsto whichit refers. Thethird example, however, iscomposed
not of independent information units but of continuous streams of information which are
closdly tied at al pointsin each information source. HyTime was particularly designed
for expressing these rel ationshi ps between different information objects. Although SGML
or any similar encoding scheme may provide rudimentary cross-referencing facilities for
implementing the connectionsin thefirst two examples, it isthe complex situations which
the third example demonstrates where Hy Time comes into its own.

3 MISCONCEPTIONSABOUT HYTIME
3.1 HyTimeisnot an application program

HyTimeis amethodology for describing document features and the rel ati onshi ps between
different parts of documents, but it does not prescribe the meaning of these features or
relationships. It uses terms like *hyperlinking’ without defining what happens when a link
isfollowed, or even how alinkisactivated. HyTimeis not a system that can be executed to
display multimedia documents and jump between document objects using hyperlinks. An

168 L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

application would need HyTime added-value to interpret a Hy Time-compliant document
and render it for display. It isin fact anticipated that the main use of HyTime will be for
encoding documents for interchange between various proprietary systems, and athough
the HyTime standard provides various facilitiesto speed up native rendering of aHyTime
document, HyTime is not necessarily the most suitable format for coding multimedia
materid.

3.2 HyTimeisnot adocument architecture

Although Hy Timeisused to mark up hypermediadocumentsin conjunctionwith SGML itis
not asingledocument architecture(i.e. itisnot aDTD). Early versionsof thedraft standard
didinfact defineaHyTime DTD, but thiswas abandoned as being too restrictive. Instead
HyTimeis often referred to as ameta-DTD since it provides a set of standard components
(or architectural forms) which can be used to construct document architectures. As such,
HyTimedefines a (very large) family of document architectures, and rulesfor constructing
their DTDs.

4 HYTIME DEFINED

HyTimeis neither an application that implements hypertext or multimediafacilitiesnor a
singledocument architecture that requires document objectsto be expressed in a particul ar
fashion. Instead it provides a set of standard abstract facilities that can be built into any
document architecture that is expressed in SGML. HyTime is both abstract and specific:
it provides abstractions of facilitiesthat are useful in building document architectures, but
is very specific about how these abstract facilities must be coded. All HyTime facilities
are expressed in SGML and use SGML as a starting point for document representation;
in fact the HyTime standard includes many miscellaneous features such as ‘glossaries
which are intended to make SGML authoring easier. HyTime constructs are expressed as
combinations of SGML e ements and attributeswhich have to be interpreted by aHyTime
engine subsequent to their parsing as SGML el ements. Although such a HyTime engine
may appear to play the role of a postprocessor for SGML files, a more cooperative role
is needed, since the SGML parser may be required to provide access to any objectsin
externa entities which the HyTime engine needs to interpret. In fact, both HyTime and
SGML processing engines may be components of alarger document environment.

4.1 HyTimeextends SGML

HyTimeisprimarily concerned with documenting the rel ationshi psbetween different parts
of documents. SGML aready has facilities for making references between dements of a
document: elements may be labelled with an id attribute and then referred to by that |abel
inanother element’sidref attribute. Thisfacility can be used toimplement cross-references,
hypertext jJumps, object class systems, style sheets or many other constructs; however, itis
quiterestrictivefor anumber of reasons. Firstly, only wholeelementsmay be addressed, and
so document objects are rigidly defined with quite a coarse granularity—it is not possible
to quote areference to arelevant fragment of a paragraph. Secondly, every element which
isto be addressed must be explicitly labelled (conversdly, only elements which the author
has bothered to label may be addressed). Thisis not aworrying restriction to the originator

WHY USE HYTIME? 169

of a document, who is free to make whatever labelling additions may be desired, but an
author who istrying to ‘link in’ to an existing work (a standard reference resource such
as a dictionary, or a semina academic paper) may have great problems expressing an
arbitrary link using just anidref. The third problem with SGML idrefsisthat they may only
refer to labels within the same document. This makes linking to external reference works
impossible without including them in their entirety through an entity reference. Thus in
order to alow flexiblelinking of documents, one of HyTime' smajor functionsisto extend
SGML's object addressing model.

4.2 What HyTime provides

HyTime enhances SGML with extra capabilities with regard to the representation and
addressing of objects, so that they do not have to correspond one-to-one with labelled
elements. Object addresses may be constructed from a combination of sub-addressing
techniques, starting from a well-known object, such as an SGML named external entity or
aprevioudy labelled SGML element (or HyTime object). From such a starting place it is
possible to repeatedly narrow down the address by taking a linear offset from one of the
ends of the object, or by specifying a hierarchica position within a tree-structured object.
Object addresses (or a part of an object’s address) may also be specified as the result of a
guery on the document (its structure or data content). This flexible addressing mechanism
may be used, for example, to allow aliterature student to refer to a specific word or phrase
buried inside a paragraph of a read-only document that is not even marked up in SGML.
HyTime also provides somefacilities for describing hypertext links. These are nothing that
plain SGML could not do, given the extra addressing capabilities of HyTime, but it isvery
useful to have an agreed standard for representing marked up links. One of Hy Time' smost-
publicized enhancements is the ability to represent complex temporal -based information,
and amajor part of it isto control the sequencing and coordination of the rendition of the
various objects.

5 ABRIEFTOUROFHYTIME

HyTime is a modular standard, with the document designer free to choose only those
facilitieswhich will be needed. The base moduleisaways required and providesfacilities
using SGML constructs for object representation and addressing, as well as miscellaneous
facilities for other HyTime modules. The measurement module defines the concept of
addressing document objects according to a measurement along some abstract dimension
(e.g. words 3 to 27 could be a measurement within a paragraph). Various standard units are
defined for familiar temporal and spatia measurements. Thelocation addressmoduleal lows
referenceto be madeto document objectswhich cannot be addressed with thenorma SGML
facilities of the base module: these objects can be referenced by name, position or query.
A location ladder can be built up of gradually more and more specific location addresses
(e.g. thedraft chapter’sfourth heading’ sthird word’ ssecond letter). The hyperlinks module
provides methods for representing link objects (based on the various object addressing
and representation methods provided above) and the semantics associated with traversing
the link. The scheduling module provides events which are objects positioned within a
multidimensional coordinate space. The rendition modul e provideswaysfor describing the
modifications that can be made to an object within an event and the ways that events can
be projected from one coordinate system into another.

170 L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

6 THE MANY FACESOF HYTIME

HyTime sfacilitiesare al to dowithlocating and linkinginformation. The location module
enablesarbitrary informati onto beaddressed, thehyperlinks modul eall owsthisinformation
to be associated with other information, the scheduling modul eallowsdifferent information
objectsto be coordinatedin someway. Only therenditionmodul e providesany rudimentary
facilitiesfor atering objects. Because of thevery general nature of thesefacilities, HyTime
has applicationin many different situations: here are some examples of itsusein thefields
of text processing, presentations and hypertext interchange.

6.1 Text processing

Text processing ismostly concerned with the production of printed documentsand requires
information to be moved (to produce footnotes), copied (to produce tables of contents) and
collated (to produce indexes). HyTimeisuseful in thissituation because it can describe the
rel ationship between individual text items and the larger document structure. For example,
in order to produce an index alist of terms has to be decided on, and then all the relevant
occurrences of each term (or its synonyms) must be referenced in thetext. Each index entry
catal ogues the rel ationship between itsterm and anumber of occurrences in the document
and can thus be modelled by a hyperlink (despite itsname a hyperlink does not necessarily
have anything to do with hypertext, only the connection of two document objects). A
hyperlink encodes a connection between several document objects called ‘anchors’ of the
link, and assignsa ‘rol€' to each of the anchors. For an entry in an index there could be two
anchors—thetermto beindexed and the set of itsoccurrences withinthedocument. Figure6
shows such an index entry. It connectsa‘term’ element to an ‘ occurrences' element whose
instantiationshaveids‘tl’ and ‘ol respectively. Both elements are declared to occur inside
theindexentry el ement. Indexentryisnot part of HyTime, itissimply definedintheDTD (as
showninFigure7) withHyTime standard attributes. It isthe HyTime attributethat identifies
the indexentry as being an example of an independent link (ilink) to the HyTime engine.
The HyTime engine can then handle the value of the linkends attributeto find the various
anchors for the text processing application to use. (More likely the vaue of the anchroles
attribute would be fixed in the DTD and so not given in the document instance itself.) In
text processing environments, index terms are frequently given special markup in the body
of thetext. If thisisthe case, HyTime may locatetheterm’suseby referring to themarkup’s
id. If thisis not the case, or the indexer does not have write access to the documents text,
then HyTime may locate the index entries by using a dataloc (data |ocation) element. A
datal oc e ement identifies an anonymous span of data within another named object (called
thelocation source, or locsrc, perhaps an e ement with anid or anamed entity) by givingan
offset from one end of that object and an extent. For example, if this section (entitled ‘ Text
processing’) had been marked up with an id of textp, the following examples of a dataloc
element could address the word ‘ production’, either by counting characters or wordsfrom
the start of the section. (The dimlist el ement treats its numbers as a measurement along an
abstract dimension, in this case the data content of a section element.)

<dat al oc | ocsrc=textp quantunestr><di mist>45 10</></dat al oc>
or <dat al oc | ocsrc=t extp quantumrwor d><di nl i st >8 1</ ></dat al oc>

WHY USE HYTIME? 171

<i ndexentry anchrol e="termoccurrences" |inkends="t1l ol">
<termid=t1l>nultinedia
<occurrences id=ol>ocl oc2 oc3</>

</i ndexentry>

Figure6. An entry in an index

<! ELEMENT i ndexentry - - (term occurrences?)>

<! ATTLI ST i ndexentry HyTi me NAME #FI XED il i nk
anchrol e NAMES #REQUI RED
I i nkends | DS #REQUI RED>

Figure 7. Defining an IndexEntry construct in the DTD

<I ATTLI ST occurrences HyTine NAME #FlI XED nm i st
nanet ype NAME #FI XED el enent >

Figure 8. Defining an occurrencesconstructin the DTD

Since each term appears numeroustimes within the document the ‘ occurrences’ anchor
is a HyTime multloc or multiple location, which consists of a list of ids, each resolving
eventually (perhaps indirectly through a dataloc) to aword in the document. By use of the
HyTime-based indexentry document structure given above, we have enabled the document
designer to express connections between a specific document object (here a piece of text)
and numerous placesin the document. Thisallowstheindex to refer not just to occurrences
of a particular word, but to whole paragraphs of text, or pictures and diagrams. It is the
responsibility of theindex creator to decide how to represent each of these connections.

6.2 Presentations

Often there is a requirement to make a presentation based on the information drawn from
a collection of books. This presentation not only imposes a tempora ordering on the
information but al so allocates atime-span to particular pieces of information, based not on
thelength of the content, but on itsperceived importance. An educational coursesyllabusis
an exampl e of such a presentation. HyTime can be used to represent such a course syllabus
by using a finite coordinate system (fcs) to represent a timeline, and then mapping each
component of the course onto the appropriate position on that timeline.

Figures9 and 10 show the definitionand use of such atimeline. In Figure 10 we see that
asemester contains a course schedule which contains a number of lectures, each of which
contains a set of contents and refers to a duration for the lecture. The contents themselves
are references to the contents of atextbook, perhapsindirectly through a dataloc. Figure 9
shows how this is defined using HyTime's constructs. The semester is an example of a
finite coordinate system whose axes are defined by atimeaxis structure (not shown here).
In fact there isjust one axis here (the time axis) which would be measured in ‘teaching
blocks' for convenience. The courseschedules which it containsare examples of HyTime's

172 L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

<! ELEMENT semester - - (courseschedule)+ >
<I ATTLI ST senester
HyTi me NAMVE #FI XED fcs
axi sdef s NAME #FI XED ti nmeaxi s>
<! ELEMENT courseschedule - - (lecture)+ >
<! ATTLI ST cour seschedul e
HyTi me NAME #FI XED evsched>
<l ELEMENT | ecture - - (content)+ >
<! ATTLI ST |l ecture
HyTi me NAME #FI XED event
exspec | DREFS #REQUI RED>
<! ELEMENT duration - O (#PCDATA)
-- LexModel (snzi, s+, snzi) -->
<! ATTLI ST duration
HyTi me NAMVE #FI XED ext | i st
id | D#REQUI RED>
<! ELEMENT content - O (#PCDATA) >
<I ATTLI ST cont ent
HyTi me NAVE #FI XED nm i st >

Figure 9. Defining atimelineina DTD

<senest er ><cour seschedul e>
<l ecture exspec=singl e>
<cont ent >chapl</ >
<l ecture exspec=dbl >
<cont ent >chap3 chap4 sect 6</ >
<l ecture exspec=si ngl e2>
<cont ent >chap2</ >
</ cour seschedul e></ senest er >
<duration id=single>26 1</>
<duration id=dbl >37 2</>
<duration id=single2>78 1</>

Figure 10. Using a timeline

event schedules. Each schedule contains many events (lectures in this example) which tie
adocument object (the content e ements) to a position and extent in the coordinate system
(place the content along the time axis). The purpose of the duration elements (HyTime
extlist) isto specify the start and extent of the event in the units of the coordinate system.
Thisexampl e uses particularly opague measurements, so to make it more useful to ahuman
it would be better to project the eventsin this coordinate system onto anatural calendar by
using the event projector facility of the rendition module.

6.3 Hypertext interchange

Exchanging documents between word processors is a common problem for which one
solutionliesin the manufacturers of each program making translatorsavailable for import-
ing documents native to all the other (commercialy successful) programs. An aternative

WHY USE HYTIME? 173

\DoclD history.intro \Ofset 246 \Sel ecti on M hail ovich

Figure 11. Microcosmaddresstuple

<nanel oc i d=hi st Doc>

<nanel i st nanetype="entity">history.intro</></>
<dat al oc id=m hail quantunestr | ocsrc=hi stDoc>

<di mepec>246 11</di nspec></>

Figure 12. Addresstuple as a HyTime location ladder

approach is to define a common ‘document interchange language’ (such as Microsoft's
Rich Text Format) for which each program only needs to provide an ‘export’ and ‘import’
facility. A similar problem exists for exchanging hypertext documents between hypertext
systems. Microcosm [6] is an open hypermedia system developed at the University of
Southampton. One of its chief features is that no information concerning linksis held in
documents; instead all link information is held in externd linkbases which contain the
required detailsabout the source and destination anchors of thelinks. It comprisesindepen-
dent components (document viewers and link managers) which communicate by passing
messages. Working in such an open environment means that the system response may be
suboptimal and so hypertexts developed in Microcosm may be trandated to a cut-down
but optimized delivery environment (such as Microsoft Help). One of the major problems
inherent insuch atrand ationisthat thelinkingfacilities of thetwo systemsmay not directly
map onto each other. The rich nature of HyTime's linking capabilities make it possible to
trandlate hypertext semantics into a HyTime representation without loss of information
and it istherefore useful to use HyTime to form an intermediate representation (akind of
‘Rich Hypertext Format’) as a midway stage in mapping between two hypertext systems.
The trand ation process then divides into a sub-process that converts a native Microcosm
dataset into a Hy Time-based representation, and then further trand ation process to convert
(possibly a subset of) this HyTime representation into another hypermedia format [7].

The most common Microcosm addressing mechanism is the (document id, offset, ex-
tent) tuple. The Microcosm address specification tuplein Figure 11 references a string of
(implicit length) eleven characters starting at character offset 246 of a document whoseid
ishistory.intro. It could be expressed as the two-stage Hy Timelocation ladder inFigure 12,
in which the first (nameloc) element associates an SGML id histDoc with the document,
and the second (dataloc) element locates the string within the identified document. Any
reference to the name mihail will now resolve to the requested object. HyTime links may
have more than two anchors, and the document designer has to provide semantics for
each of the anchors. By contrast, Microcosm links have only two anchors (source and
destination), but a destination anchor may be composed of many documents objects (the
equivaent of a HyTime multiplelocation). HyTime links can take two forms—contextual
links, whose definitions appear at one of the sites of the link anchors (i.e. in context),
and independent links, whose definitions are given at some other place in the hyperdoc-
ument. Microcosm links are always of the latter type, since link definitions are stored in
separate linkbases, referring to their anchor positionsthrough the addressing mechanisms
above. A Microcosm linkbase can now be modelled as a collection of Hy Timeindependent
links:

174 L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

<ntnl i nk anchrol e="source destination”
i nkends="srcid dstid" endterns="1inkdi spl |inkdisp2">

where the multiple destination may be specified as asimplelist of destinations as follows:

<nanel oc id="dstid"><nan®el i st nanetype=el ement >
desti dl destid2 destid3</></>

Thisexampleissimilar to the index example given previously, except that theinforma-
tion given by the link endterms is intended to specify how the link source and destination
are to be portrayed—here the source is formatted as a button and provides a short preview
of each component of the multiple destination. This is achieved using elements of the
following form:

<di spl ayi nfo id="1inkdi spl"> <anchorf or mat >butt on</ ></ >
<di spl ayi nfo id="1inkdi sp2"> <anchorf or mat >nor mal t ext </ ></ >

which are referred to by references to their unique identifier (id) within the memlink
element. A Microcosm link may compl etely specify its sourceanchor (interms of document,
offset and content) in which case it is known as a specific link. But by leaving the offset
or document unspecified the content acts as a source anchor for this link anywhere that
it appears in any document. This is a generic link which no longer contains explicit
connections to a source document location. HyTime makes provision for locations to be
specified as the result of a query performed on the content or structure of a document,
defining a standard query notation (HyQ) for this purpose and it is possible to express the
source locations of a generic link with such a query. This can be done by replacing the
explicit dimension specification (dimspecs) in Figure 12 with an axis marker query which
represents amatching operation against the required texts. Any query notation (e.g. regular
expression searches) is alowed in this context. For specific links, the source specification
srcid resolves (through a dataloc) to a single location. For generic links, srcid resolves
to a multiple location through a query which returns a dataloc for each occurrence of a
particular piece of text, where the query domainis either a single document (local link) or
the entire hyperdocument (generic link).

7 ARGUMENTSFOR AND AGAINST HYTIME

“One man’'s meat is another man’s poison” is certainly true in the world of electronic
publishing. Religious wars are fought over the use of different word processors, and the
features which endear HyTime to one community of users are likely to aienate a different
community. Certainly HyTimeis astandard which provides added valuefor SGML, and as
suchislikely to be adopted with some enthusiasm by usersof SGML. However, both SGML
and HyTime have a significant emphasis towards information interchange and therefore
are frequently hidden from the end-user and visible only to application programs. Since
HyTime and SGML are so closely related, any of the arguments brought to bear against
SGML arelikely to apply to HyTime. Barron [3] cites as one of the major obstacles to the
take-up of SGML the need for changes in working practices and the development of new
software. These still remain potent arguments against the use of SGML, though the number
of popular commercia products which support it is slowly increasing. HyTime, as avery
recent standard, isin aworse commercia position. However, SGML ismaking significant

WHY USE HYTIME? 175

inroads into major military and commercia documentation systems with concomitant
changes in working practice, thus preparing the way for HyTime-based approaches to
information handling and interchange. Another apparent weakness that is shared with
SGML isitslack of inbuilt ‘default’ structure. A standard set of tags (such as the British
Library Starter Set) arerequired to convey standard document semanticsin SGML ; standard
document architecturesincorporating hyperlinksand event schedules are similarly required
for documentsto be fully shared. One of the overwhelming argumentsin favour of HyTime
is the changing nature of publishing. When SGML was proposed as a standard it was
becoming more commonpl ace for authorsto exchange individual documentselectronically
and the requirement was for a common medium for expressing these documents. In recent
yearsthe devel opment of international networks has enabled sharing on awider scale, with
repositories of documents and multimediainformation being set up across continents. One
of the important needs is to be able to tie these information resources together, linking to
or citing other works published on a remote server. Many common applications do now
provide hypertext facilities, enabling the linking of information. However, most of them
do this as a product of an interna scripting language: the links are hidden and exist as
a consequence of the execution of a program rather than explicitly declared data objects,
making it difficult to exchange the data between applications.

8 WHOUSESHYTIME?

HyTimeis a very recent standard, and so there are as yet no commercial products which
are based on it although it has been used in research environments [7,8]. In the commer-
cial world TechnoTeacher, one of the lead players in the HyTime standardization effort,
are developing a set of object-oriented classes for building HyTime applications called
‘HyMinder’. A product can be made to conform to a subset of HyTime facilities with-
out providing a complete HyTime engine: for example DynaText, from Electronic Book
Technologies, can build a Hy Time location ladder, but cannot use one fully. IBMsIBMID-
Doc language conforms to HyTime in its use of the base module but no other features.
HTML (see below) and the Open System Foundations standard DTD both make use of
HyTime-style hyperlinks.

9 ALTERNATIVESTOHYTIME

HyTime is one possible solution for encoding hypermedia documents for interchange.
There are a number of aternative approaches, some of which are existing or forthcoming
international standards, others of which are popular commercia or academic solutions. See
[9] for information about the rel ationshi ps between these and other international standards
for text and hypermedia.

9.1 MHEG

MHEG is aforthcoming international standard for interchanging hypermedia objects[10].
It isacontainer architecture which alows media objects to be represented according to an
appropriate (external) standard a ong withinstructionsfor their presentation and behaviour.
MHEG objectsare to beencoded according to ASN.1 or SGML. Itisintended asapractical
interchange standard for industria-strength hypermedia applications requiring real-time

176 L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

interchange and addresses the problem of exchanging multimedia objectsfor presentation.
Inthisway itisvery different from HyTime: display and control semantics are apart of the
MHEG standard, whilst in Hy Time these are devolved to the controlling application.

9.2 HyperODA

HyperODA is a set of proposed extensions to the Open Document Architecture standard
(ISO 8613). ODA is a container architecture which represents text and graphics (each
expressed according to an appropriate externa standard), providing logical (abstract) and
layout (physical) views of the document in parallel. HyperODA extends this model with
extra content architectures for audio and images, as well as the link objects and temporal
layout. HyperODA issimilar to MHEG inthat it associ ates presentation semantics with the
document obj ects, butismore prescriptivethan MHEG sinceit constrainstherepresentation
of the component multimedia objects to a small number of international standards. This
has the advantage that two HyperODA-compliant applications can aways completely
understand any document that they exchange, but has the disadvantage that new kinds of
media object (movies, for example) cannot be represented without a new version of the
standard being defined. HyperODA's similarity to HyTime comes from its association of
logicd structure with the document components.

9.3 HTML

HTML (HyperText Markup Language) isan SGM L-based document architecture used by
the academic ‘World-Wide Web' (WWW) project [11]. It is designed for simply struc-
tured textual documents with embedded graphics and provides hypertext links. Aswell as
providing HTML's architecture for expressing documents, the project defines a universa
addressing scheme and a transport protocol for locating and retrieving networked docu-
ments. HTML's links are similar to HyTime's contextual links and can be expressed in a
HyTime-compliant fashion. Since WWW provides both adocument architecture with ren-
dering semantics and an application environment for viewing its documentsit would seem
more immediately useful than HyTime. However, HyTime's advantage isits extensibility:
it can be applied to many document architectures, and asingleHyTime‘ application engine
can providethe hypertext facilitiesfor al of them.

9.4 Acrobat

Adobe's new ‘Acrobat’ product [12] is interesting to compare with HyTime. It defines
a platform-independent multimedia document encoding called PDF (portable document
format) which treats a document as a collection of objects. A document consists of a
set of page objects, each of which refer to a number of textual, graphical or pictorid
objects. Link, structure, annotation and page preview objects are also supported, along
with video and audio objects in a forthcoming release. All objects are coded in PDF's
7-hit text representation, although they may be decoded into various standard media types
(e.g. JPEG). Acrobat is quite unlike HyTime in many ways since al the objects are pre-
formatted for presentation onto pages of a specific size. There is no abstract information
held with any of the objects, and it is even a non trivia task to extract the text from its
formatting. Fundamentally PDF is an architecture based on a hierarchy of objects which

WHY USE HYTIME? 177

has implicit semantics for document and page objects. This architecture could easily be
extended to alow dternative representations for each object, for example to provide a
variety of image formats (to support avariety of display software), image resolutions (to
support differing speeds of communications link), text renditions (to support language
dependencies) or structure abstractions (logical or physical representationsto support both
formatted display and textua searches). Work isin fact currently underway to try to meld
both SGML abstract and PostScript physical representationswhichwould providefacilities
similar to ODA. An Acrobat link has a source which is a rectangle in a pages coordinate
space and a destination which isaview of another page within the same document. What
Acrobat lacks is the ability to fix link anchors into the content and the ability to address
objects from other documents. The former arises because there is no easy way to address
an object’sinterna structure, the latter because there is no universal document addressing
mechanism on the software platforms on which Acrobat depends. Both of these concerns
are addressed by HyTimethroughits extensionsto SGML’'s simple addressing capabilities.

10 CONCLUSION

Markup can express important information about documents: about their structure and the
way they should be presented. This information is added value. It alows a document to
be reused and interchanged between systems for many purposes and therefore is an eco-
nomic consideration. The benefits of generalized markup (as exemplified by SGML) for
representing document structure areincreasingly appreciated, especially in commercia and
military organizationswhich have to ded with large volumes of information. Projects such
asthe Oxford English Dictionary [13,14] illustrate the benefits of thisapproach both for the
production of different versions of the dictionary in printed form and for the production of
a CD-ROM-based version with advanced searching capabilities. The next wave of devel-
opment in electronic document handling will beinthefield of hypermedia documents, and
facilitiesakin to those provided by SGML for simpletext-based documents are required to
describe the more complex structures of multimedia hyperdocument collections and their
inter-rel ationships. Hy Timeextendsthe SGM L model to meet theserequirements. Thereare
alternatives to the use of HyTime, each with different strengths and weaknesses. MHEG
and Acrobat provide good presentation features, but ignore the information’s structure.
HTML provides one simple logical document architecture, but is not extensible. Hyper-
ODA accommodates both presentation and structure but restricts the kind of multimedia
objects that can be used. Many alternatives exist for the simple handling of multimedia
documents; many aternativesexist for the simplehandling of hypertexts. However, thereis
no alternativeto HyTime for applicationsin which it is necessary to preserve the structure
of the document and express the rel ationships between its structured components.

ACKNOWLEDGEMENTS

Particular thanks are due to Martin Bryan for his explanation of HyTime.

REFERENCES

1. Hypermedia/Time-based Structuring Language (HyTime), ISO/IEC Sandard 10744, Interna-
tional Standards Organization, 1992.

178

L.A. CARR, D.W. BARRON, H.C. DAVISAND W. HALL

10.

11

12.

13.

14.

S. Newcomb, N. Kipp and V. Newcomb, ‘ The hytime hypermedia/time-based document struc-
turing language’, Communications of the ACM, 34(11), 67-83, (November 1991).

D. Barron, ‘Why use SGML?, Electronic Publishing: Origination, Dissemination and Design,
2(1), 324, (1989).

Sandard Generalized Markup Language (SGML), 1SO Standard 8879, International Standards
Organization, 1986.

L. Burnard, ‘ Rolling your own with thetei’, Information Servicesand Use, 13, 141154, (1993).
H. Davis, W. Hall, I. Heath, G. Hill and R. Wilkins, ‘ Towards an integrated information envi-
ronment with open hypermediasystems’, in Proceedingsof the ACM Conferenceon Hypertext,
ACM Press, New York (1992).

L. Carr, H. Davis and W. Hall, ‘Experimenting with hytime architectural forms for hypertext
interchange’, Information Servicesand Use, 13, 111-119, (1993).

J.F. Koegel, L.W. Rutledge, J.L. Rutledge and C. Keskin, ‘Hyoctane: a Hytime engine for an
MMIS', in Proceedings of the First International Conference on Multimedia, pp. 129-136,
ACM Press, New York (1993).

M. Bryan, ‘ Standards for text and hypermedia processing’, Information Servicesand Use, 13,
93-102, (1993).

R. Price, ‘"MHEG: an introduction to the future international standard for hypermedia object
interchange’, in Proceedingsof the First International Conferenceon Multimedia, pp. 121-128.
ACM Press, New York (1993).

T.J. Berners-Lee, R. Cailliau and J.-F. Groff, ‘The world-wide web’, Computer Networks and
ISDN Systems, 24(45), 454-459.

D. Brailsford, Adobe’s Acrobat—the Electronic Document Catalyst, Computer Science Techni-
cal Report, Nottingham University (1993).

D. Raymond and F. Tompa, ‘Hypertext and the Oxford English Dictionary’, Communications
of the ACM, 31(7), 67-83, (1988).

E. Weiner, ‘ The electronic English dictionary’, Oxford Magazine, 6-9, (1987).

	SUMMARY
	1 INTRODUCTION
	2 MARKUP
	2.1 Using markup to express document objects
	2.2 Expressing inter-object relationships

	3 MISCONCEPTIONS ABOUT HYTIME
	3.1 HyTime is not an application program
	3.2 HyTime is not a document architecture

	4 HYTIME DEFINED
	4.1 HyTime extends SGML
	4.2 What HyTime provides

	5 A BRIEF TOUR OF HYTIME
	6 THE MANY FACES OF HYTIME
	6.1 Text processing
	6.2 Presentations
	6.3 Hypertext interchange

	7 ARGUMENTS FOR AND AGAINST HYTIME
	8 WHO USES HYTIME?
	9 ALTERNATIVES TO HYTIME
	9.1 MHEG
	9.2 HyperODA
	9.3 HTML
	9.4 Acrobat

	10 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

