
ELECTRONIC PUBLISHING, VOL. 6(1), 35–63 (JUNE 1993)

Design and implementation of the HB1 hyperbase
management system
JOHN L. SCHNASE JOHN J. LEGGETT, DAVID L. HICKS,

PETER J. NUERNBERG, AND J. ALFREDO SÁNCHEZ
Advanced Technology Group Hypermedia Research Laboratory
School of Medicine Library and Biomedical Department of Computer Science

Communications Center Texas A&M University
Washington University School of Medicine College Station, Texas 77843, USA
660 South Euclid Avenue (Box 8132)
St. Louis, Missouri 63110, USA

SUMMARY
Hypermedia systems manage interconnected information residing within a potentially wide
range of data types, including text, graphics, animations, and digitized sound and images.
Effective database support for hypermedia-basedcomputing environments is essential. In order
to be effective, this support must provide a variety of capabilities that are not offered by
the current generation of database management systems. We report on a prototypic system
called HB1 that has been designed to meet the storage needs of advanced hypermedia system
architectures. HB1 is referred to as a hyperbase management system (HBMS) because it stores
and manipulates information and the connectivity data that link information together to form
hypermedia.

HB1 is composed of three subsystems: the Object Manager (OM), Association Set Manager
(ASM), and Storage Manager (SM). OM and ASM are both server processes accessible to
distributed client processes via IPC interfaces. OM is an object server. ASM manages struc-
tural data applicable to the objects within OM’s repository that are involved in hypermedia
connections. Physical storage is managed by SM which, in this implementation, is a semantic
network database management system. HB1 instantiates a conceptual model of hypermedia
that is distinctly computational, has a strong notion of anchor and link, and abstracts infor-
mation, behavior, and structure from hypermedia. It has been used as a back-end for an open,
object-based hypermedia system that implements distributed, inter-application linking. HB1 is
proving to be an effective vehicle for research on HBMS organization.

KEY WORDS Hyperbase management system Hypermedia Hypertext Open hypermedia system

architecture Inter-application linking Semantic object-oriented database management system

INTRODUCTION

The sophistication and effectiveness of hypermedia-based computing environments has
steadily increased over the past several years. Given the anticipated improvements in
hardware and software technologies, it is likely that this trend will continue. We expect
the next generation of hypermedia system architectures to be network- and object-based.
They will accommodate multiple media types on high-performance hardware and reflect
an open and extensible design philosophy. Advanced hypermedia environments will allow
multiple users to work cooperatively with extremely large volumes of richly textured,

CCC 0894–3982/93/010035–29 Received 23 February 1993
1993 by John Wiley & Sons, Ltd. Revised 16 March 1993

© 1998 by University of Nottingham.

36 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

complex, dynamic, and arbitrarily structured information. Hypermedia will undoubtedly
play an important role in a variety of information-intensive settings, such as electronic
publishing, personal knowledge management, and digital libraries.

For this future to be realized, however, effective database support for advanced hyper-
media environments is essential. In order to be effective, this support must provide a variety
of capabilities that are not offered by the current generation of database management sys-
tems. In addition to the usual requirement for permanence of data, controlled sharing, and
backup and recovery, data management facilities must be capable of modeling complex
interrelationships and providing direct support for novel data types. They must also be
able to handle lengthy transactions, transactions that are unique to hypermedia, massive
distribution of functionality, extensibility, and versioning of both the data and structure of
hypermedia.

HB1 is a prototype database management system (DBMS) designed to meet the storage
needs of advanced hypermedia system architectures. We refer to HB1 as a hyperbase
management system (HBMS) because it supports not only the storage and manipulation
of information, but the storage and manipulation of connectivity data as well. HB1 was
designed with a very specific goal in mind. It is intended to support an open, object-
based system architecture for distributed, inter-application linking. A hypermedia system,
called System Prototype 1 (SP1), based on such an architecture has been developed in the
Hypermedia Research Laboratory at Texas A&M University, and HB1 is its back-end.

As shown in Figure 1, HB1 is composed of three subsystems: the Object Manager
(OM), the Association Set Manager (ASM), and the Storage Manager (SM). OM manages

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

IPC Interface IPC Interface

Object Manager
(OM)

Association Set Manager
(ASM)

Saberel Interface Saberel Interface

Storage Manager
(SM)

The HB1 Hyperbase Management System

Figure 1. HB1 hyperbase system architecture

HB1 HYPERBASE MANAGEMENT SYSTEM 37

a shared object repository and ASM manages hypermedia connections that exist among OM
objects. SM maps HB1’s data model into physical storage. In the current implementation,
SM is a semantic network database management system. Heterogeneous distribution of
OM and ASM functionality is achieved by a client/server model using X Window System’s
interprocess communication facilities. In this paper, we report on the design and imple-
mentation of the HB1 hyperbase management system and describe its operation within the
SP1 framework. We also summarize our experiences using these systems and identify the
important issues that must be addressed by future research in this emerging area.

HYPERMEDIA CONCEPTS

The concepts underlying hypermedia have been described in several places [1–7]. Simply
put, hypermedia systems allow networks of linked information to be created and manipu-
lated. For example, in Figure 2, a portion of the digitized image of a bird in a multimedia
document has been linked to a paragraph of related information in a text object. A typical
system would provide the necessary mechanisms to display and edit images and text, author
links, and highlight information that is linked. Subsequent access to connected information
is then obtained through an active process of navigation. With the aid of a high-resolution,
bitmapped display and a pointing device, users move through hypermedia by traversing
links, or browsing, in addition to traditional query mechanisms. It is this ability to au-
thor and browse arbitrary connections among information that distinguishes hypermedia
systems from other types of multimedia information systems.

Beyond these basic notions, the abstractions, interfaces, functionality, and terminology
presented by the current generation of hypermedia systems differ widely. Despite the varia-
tion in existing hypermedia systems, most have one critical architectural feature in common:
they are monolithic, stand-alone applications. The behaviors that make them distinctive are
encapsulated within each system. The hypermedia structures that they manipulate cannot
be shared, and the information they manage is relatively isolated from other applications.

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

(3) How much additional food was required to raise young?Parental investment may be defined as any investment by the
parent of an individual offspring that increases the offspring’s
chance of surviving at the cost of the parent’s ability to invest in
other offspring (Trivers, 1972). Although it is difficult to distill a
single metric to represent the time, energy, and risk associated
with parental investment, a rough estimate can be obtained by
considering the combined qualitative and energetic contributions
of parents to the reproductive effort (Biedenweg, 1983).

Assuming a production efficiency of 75% (Ricklefs, 1974), the
rate of production (H′p) per min at age d is:

H′p(d) = (16)

 86.59 86.59
 − 
 1 + 19.1 e-0.67d 1 + 19.1 e-0.67{d-1}

 ÷ 0.75 ÷ 1440 kJ⋅min-1


In Cassin’s Sparrow, territorial
defense is the responsibility of
the male and primarily involves
the allocation of energy
resources with little associated
risk. Egg production, requiring
energy, and incubation,
requiring time, are done
entirely by the female. Feeding
of offspring demands time and
energy and appears to be
skewed toward the female
during both the nestling and
fledgling care phases.

Table 10 presents results of simulating the nestling model for 1
chick over the nesting phase’s 9-day duration. Assuming an
average clutch size of 2.2 (13 fledglings ÷ 6 males), an
additional 716 kJ (325 kJ × 2.2) was required for nestling
development. This translates into an arthropod requirement
of 158 g. Over the same 9-day period, a female would require
a total of 117 g of arthropods for her own energetic needs.
Therefore, if females were entirely responsible for feeding
young, it was necessary for them to augment their foraging an
average of 135% ((117 + 158) ÷ 117), considerably more than
the 87% increase observed in Savannah Sparrow where both
sexes participate in the feeding effort (Williams, 1987).

Figure 1. Cassin’s Sparrow fledgling
foraging in a Honey mesquite tree
(Prosopis glandulosa).

Figure 2. A simple linking example

38 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

In short, most existing hypermedia systems lack the architectural framework required for
integration into computing environments of the future.

CONCEPTUAL MODEL UNDERLYING HB1

Our work focuses on software architectures to support advanced hypermedia functionality.
In particular, we are interested in approaches that accommodate openness, extensibility,
distribution, and inter-application linking. Over the past several years, a perspective on
hypermedia has evolved that fulfills these requirements.

Figure 3 shows the conceptual model of hypermedia upon which HB1 is based. The
model consists of six principal elements, the first three of which are: applications, compo-
nents, and persistent selections. Applicationsare simply programs. Components are the data
or information manipulated by applications. For example, text editor applications typically
manipulate ASCII components. Persistent selections are selections withincomponents that,
in contrast to the usual implementation of selection, persist between application sessions
and can be accessed at a later time. Applications implement this functionality by maintain-
ing persistent selection data structures for components (Figure 4). Within this conceptual
framework, applications, components, and persistent selections embody the information

xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

Link

Association

Anchor Anchor

Link Services Subsystem

Participating Applications

Application Application

Persistent Selection Persistent Selection

Component Component

Figure 3. Conceptual model of hypermedia underlying HB1

HB1 HYPERBASE MANAGEMENT SYSTEM 39

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

PS
ID

 PS
Value

Anchor
 Bit

Link
 Bit

00000000 0021:0003 0 0

10000:0013 100000001

00000002 1 1014A:0013

00000003 RasterSelect(fig1,x,y,001B) 1 1

00000004 12FA:008C 1 0

• • • • • • • • • • • •
n 0 00000:0000

Parental investment may be defined as "any investment by the parent of
an individual offspring that increases the offspring’s chance of surviving at
the cost of the parent’s ability to invest in other offspring (Trivers, 1972).
Although it is difficult to distill a single metric to represent the time,
energy, and risk associated with parental investment, a rough estimate
can be obtained by considering the combined qualitative and energetic
contributions of parents to the reproductive effort (Biedenweg, 1983).

In Cassin’s Sparrow, territorial
defense is the responsibility of
the male and primarily involves
the allocation of energy
resources with little associated
risk. Egg production, requiring
energy, and incubation, requiring
time, are done entirely by the
female. Feeding of offspring
demands time and energy and
appears to be skewed toward the
female during both the nestling
and fledgling care phases.

Figure 1. Cassin’s Sparrow fledgling
foraging in a Honey mesquite tree (Prosopis
glandulosa).

Figure 4. Component and persistent selection data structure (in this case, a persistent selection
table)

managed by a system, and the network structure of hypermedia results from the connec-
tions forged among persistent selections.

The remaining three components of the model, anchors, links, and associations, are
essential for hypermedia functionality. Anchors and links are processes in the operating
systems sense of the word. They are programs or program components that can be indepen-
dently scheduled by the underlying operating system in order to accomplish some task. In
this case, they implement the behaviors that characterize hypermedia, such as customized
views or various traversal behaviors. As shown in Figure 3, anchors are associated with
persistent selections, and links are associated with anchors, thereby completing connections
among persistent selections. The relationships between these elements, depicted as arcs in
Figure 3, are associations. Associations, in contrast to anchors and links, do not implement
behavior. They are structural entities—collections of identifiers that tie elements together.

A general hypermedia system architecture implemented along these lines allows the
integration of diverse applications, anchors, and links under a common hypermedia model.
Specifically, non-monolithic, inter-application linking can be realized by moving hyper-
media connectivity data (associations) and hypermedia functionality (anchors and links)
into a distinct “link services” subsystem of a computing environment (Figure 3). Hyper-

40 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

media services can then be provided to participating applications through interprocess
communication (IPC).

Inter-application linking is a powerful means of achieving application-level extensi-
bility within a hypermedia system. However, HB1’s data model accommodates exten-
sibility in other ways as well. New hypermedia functionality—that is, new anchor and
link processes—can be incorporated at any time without affecting the underlying structure
of hypermedia. In addition, massive distribution of functionality is accommodated since
application, anchor, and link processes, as well as processes affecting associations, can
conceptually reside anywhere within the IPC domain of the architecture.

It should be noted that many of the central concepts found in current monolithic hy-
permedia systems do not carry over to a non-monolithic, link services world. For example,
the concept of node essentially goes away, and the semantics of authoring and browsing
become the shared responsibility of applications and the link services subsystem. Con-
nections, in a sense, exist only from information to information. The traditional notion of
anchor corresponds most closely to our persistent selection, which is managed entirely by
applications rather than link services.

HB1 DESIGN AND IMPLEMENTATION

As indicated earlier, the overall goal for HB1 is to provide effective data management
support for advanced hypermedia environments. In attaining this goal, HB1 follows the
approach of providing a lightweight, broadly applicable hyperbase service within an open,
distributed architectural setting [8]. The basic assumption is that carefully defined generality
at the hyperbase level can facilitate flexibility, tailorability, and extensibility system-wide.
HB1’s conceptual design and its prototypic implementation are an attempt to produce a
framework that allows this hypothesis to be examined.

HB1’s architecture is specifically tuned to the conceptual model for hypermedia de-
scribed in the previous section. This model leads rather directly to a functional decomposi-
tion that distinguishes between structure and object management and between management
at an abstract, or logical, level and management at a physical level. In order to support
these distinctions, HB1 is organized around three domains: an abstract object domain, an
abstract structure domain, and a physical domain. It is the responsibility of the object
domain and the structure domain to implement HB1’s data model; the physical domain is
responsible for managing physical storage. Clients interface directly with the object and
structure domains, while these two domains interface internally with the physical domain.

This philosophical organization is embodied in the HB1 system architecture shown
in Figure 1. HB1 is a centralized, single-user HBMS consisting of three subsystems: the
Object Manager (OM), Association Set Manager (ASM), and the Storage Manager (SM).
OM implements the notion of a large, shared repository of simple, unstructured objects.
ASM provides persistent and sharable storage for the connectivitydata that link information
together to form hypermedia. Together OM and ASM implement HB1’s data model, which
abstracts inter-object connectivity, behaviors, and information from hypermedia. SM maps
HB1’s data model into physical storage. Distributionof OM and ASM functionalityacross a
range of platforms is achieved by a client/server model using interprocess communication
facilities. We begin a more detailed discussion of HB1’s architecture by looking at the
Storage Manager.

HB1 HYPERBASE MANAGEMENT SYSTEM 41

Storage Manager (SM)

HB1’s Storage Manager is a prototypic semantic network database management system
called Saberel1, now under development by IBM. Saberel was chosen because it allows
unstructured objects to be stored, manipulated, and accessed by way of conveniently
defined inter-object relationships. Traditionally, Saberel has been used for CAD and VLSI
design applications. We have extended and modified this storage system to better support
distribution, large object size, and hypermedia transactions. We elaborate on our experiences
with the semantic modeling of hypermedia associations in [9]. Before describing Saberel
further, we quickly review the major distinctions between semantic and traditional database
approaches.

Semantic database models

Traditional database management approaches tend to emphasize information structures that
promote efficient storage and retrieval of fixed-size information. For example, the relational,
hierarchical, and network models use a simple record-based format. These approaches
generally lack direct support for relationships, data abstraction, inheritance, constraints,
and unstructured objects [10]. In the past several years, however, greater consideration
has been given to the user’s perception of data rather than its physical representation.
This has resulted in a requirement for richer, more expressive data structuring capabilities
and has led to a renewed interest in semantic data models. Semantic models attempt to
provide more powerful abstractions for structuring complex objects than are supported by
traditional models. Although a detailed consideration of semantic modeling is beyond the
scope of this paper, excellent surveys can be found in [11,12].

Saberel

The Saberel semantic network database management system is representative of a family
of “binary” semantic models, all of which represent data using two primary constructions:
entity sets and binary relationships. As we will show, schemas of these models generally
consist of labeled nodes for entity sets and labeled arcs corresponding to binary relationships
between them.

Saberel supports atomic objects, called subjects. Subjects can carry a printable name
and a string of data of arbitrary size, referred to as a user managed string or UMS. Virtually
all of Saberel’s higher-level abstractions are derived from subjects. For example, entity sets,
or categories, are themselves subjects, as are relationship names. As a result, the semantic
distinction between objects, types, and attributes is not directly enforced by Saberel’s
modeling primitives. Each binary relation is viewed as an inverse pair of single-valued
functions. Saberel subjects are stored in a repository and partitioned among any number
of lockable areas. Repositories and areas are implemented as UNIX files, and, while they
assist the user in organizing a Saberel database, they do not participate as abstractions in
Saberel’s semantic model.

Saberel does not support type constructors, ISA relationships, or derived schema com-
ponents and enforces few combining restrictions or integrity constraints. The philosophical

1 Sabarel is not a product.

42 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

approach of Saberel, and similar models, is to provide a small, universal set of constructs
that can be used to build more powerful structures. These models tend to be “minimalist”
in the sense that they require the database designer to understand fewer constructs. One
apparent benefit of such an approach is the relative ease with which additional behavioral
layers can be applied to a structural database of information.

Saberel has two programming interfaces: a low-level procedural interface to the library
routines that implement a Saberel database and a declarative, high-level language that can be
precompiled into C applications. Existing Saberel applications have required little sharing
of data. Consequently, the system has not supported distributionor transaction management
at the database level. One of our objectives was to extend Saberel functionalityby creating a
network-accessible server interface to the system. HB1’s Object Manager and Association
Set Manager subsystems are the first two such interfaces we have developed.

Object Manager (OM)

HB1’s Object Manager is a server process that provides persistent and sharable storage
for applications. As shown in Figure 1, OM is built on top of HB1’s Storage Manager
and provides an IPC interface to clients. OM, in effect, manages a Saberel repository of
unstructured objects.

OM data model

HB1 objects are simple. They are arbitrary-size byte strings having unique identity and
optional type and name attributes. We avoided implementing objects with execution se-
mantics because we wanted the server to be lightweight and general [8]. HB1 objects have
no class structure, methods, or inheritance, although these mechanisms could readily be
built on top of OM. This simple view of object is one that is shared by a class of data
managers referred to as persistent object stores [10]. As described later, persistent object
stores are sometimes used for storage management within more complete object-oriented
database systems and, in many respects, can be thought of as extensions of virtual memory.

Each object in the database has a unique 32-bit identifier (OID). OIDs are sequentially
allocated by the server upon request from clients creating objects. The OIDs of deleted
objects are not reused since references to the objects may remain in the database. Since HB1
is a centralized server, many of the naming problems that arise in decentralized distributed
systems are avoided. As described below, most client interactions with OM are based on
OIDs. OM allows clients to have direct access to OIDs. The OIDs presented to clients
are the same OIDs used internally by OM and persist across sessions; they are not special
“handles” that cannot be examined further or stored outside the database. This makes it
possible to extend OM’s policies and mechanisms through additional layers interspersed
between HB1 and the client space.

Applications use objects by copying them from the server into the virtual memory space
of their own processes where they are manipulated locally and written back to the server.
OM implements the following basic back-end operations: Create, Delete, Retrieve, and
Store. The Create operation generates a new OID. Delete, Retrieve, and Store operations
are based on input OIDs. OM also implements attribute operations such as Name and Type
and a Resolve operation that allows searches of an OM repository based on object attributes.

HB1 HYPERBASE MANAGEMENT SYSTEM 43

Semantic modeling of OM data

Figure 5 shows how Object Manager data are modeled by the Storage Manager. Three
subject categories are explicitly represented in the database: OBJECT, NAME, and TYPE.
The chunks of memory that constitute objects in our system are members of the OBJECT
category. Ovals in Figure 5 represent Saberel subjects, and, in this instance schema, we
show the binary relationships that exist between example subjects in each category.

OBJECT

NAME

HasMember
IsMemberOf TYPE

HasName
IsNameOf

00000001

WandaHasType
IsTypeOf

00000002 Graphics

00000003 Bitmap

00000004 Executable

Text

Figure 5. An instance schema showing how Object Manager objects are modeled by HB1’s Storage
Manager

Association Set Manager (ASM)

The Association Set Manager is a server process that provides persistent and sharable
storage for associations and manages their run-time representation in support of a link
services subsystem. To clarify what is meant by this, we must first explain ASM’s data
model. ASM manages the structural or connectivity data applicable to those objects within
OM’s repository that are involved in hypermedia associations. In a sense, it manages the
static, backing store representation of hypermedia. ASM is built on top of HB1’s Storage
Manager and provides its own IPC interface to clients (Figure 1). For more details, see
[13].

44 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

ASM data model

In Figure 6, we present a simple example of an association. Here, a hypermedia connection
exists between persistent selections in two different components, each of which is handled
by a different application. The persistent selections, components, applications, anchors,
and links all have unique IDs. PSIDs are generated and managed by applications, and the
scope of their uniqueness extends only to the components in which they reside. CompIDs,
AppIDs, AnchorIDs, and LinkIDs correspond to the OIDs for these objects on backing
store. These identifiers are generated and maintained by HB1’s Object Manager, and the
objects are stored in the Storage Manager’s repository. As a result, these identifiers are
unique across the world served by HB1.

xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

Association

LinkID 6

AnchorID 5 AnchorID 5

Side Side
AppID 2 AppID 3

BridgeBridge
PSID 3 PSID 28

CompID 4 CompID 1

Figure 6. Simple example of an association showing ASM’s three major abstractions

To represent the structural information involved in such a connection, ASM’s data model
defines three collections of IDs: Bridges, Sides, and Associations (see Figure 6). A Bridge
consists of a PSID, CompID, AppID triple and imparts global uniqueness to a PSID. We
use the term bridge because the triple spans the distinct address domains managed by HB1
and individual applications. An AnchorID associated with one or more Bridge triples forms
a Side. Finally, the connection is completed by a LinkID being associated with two or more
Sides. This is called an Association. The set of associations available at a given moment
defines a context. Note that this definition allows connections to occur at the level of anchors
and at the level of links. For example, Figure 7 shows a more complex association having
three sides, two of which contain multiple bridges. It is in the definition of ASM’s data
model that structure (Bridges, Sides, and Associations) is abstracted from the behavioral
elements (Anchors and Links) and information (Persistent Selections, Components, and
Applications) of hypermedia.

With respect to structure manipulation, the major abstractions presented to clients by

HB1 HYPERBASE MANAGEMENT SYSTEM 45

xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx

xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

LinkID 10
AnchorID 8

AnchorID 8

AnchorID 9AppID 1

PSID A

AppID 4
PSID B

CompID 5

AppID 3
PSID A

CompID 7
AppID 2

PSID A

CompID 6

PSID C

CompID 5

Figure 7. Complex example of an association

ASM are sides and associations. The semantics of structure manipulation are provided
through a set of basic operations that include: AttachAnchor, AttachLink, DetachAnchor,
DetachLink, and FollowAssociation. Attach- and DetachAnchor allow sides to be created
and deleted. Likewise, Attach- and DetachLink allow associations to be created and deleted.
FollowAssociation is a query that returns the IDs of elements (PSID, CompID, AppID
triples, AnchorIDs, LinkIDs) reachable in an association given one or more input IDs.
This operation is primarily in support of browsing semantics and would generally compute
reachability based on an input PSID, CompID, AppID triple that had been selected at the
application level as the starting point of a navigation operation.

Semantic modeling of ASM data

Figure 8 is a semantic schema showing how Association Set Manager data are modeled by
the Storage Manager. It is important to understand that the OM and ASM operate on the
same Saberel repository, although OM objects reside in a different area than ASM’s data.
Figure 8 is a complete instance schema for the simple association example of Figure 6.

46 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

 H
as

S
id

e
Is

S
id

eO
f

S
ID

E
B

R
ID

G
E

H
as

A
ss

oc
ia

tio
n

Is
A

ss
oc

ia
tio

nO
f

A
S

S
O

C
IA

T
IO

N

O
B

JE
C

T

N
A

M
E

H
as

N
am

e
Is

N
am

eO
f

T
Y

P
E

00
00

00
01

W
an

da
H

as
T

yp
e

Is
T

yp
eO

f
00

00
00

02
G

ra
ph

ic
s

P
S

ID

00
00

00
03

B
itm

ap
H

as
A

pp
lic

at
io

n
Is

A
pp

lic
at

io
nO

f
3

00
00

00
04

E
xe

cu
ta

bl
e

H
as

C
om

po
ne

nt

Is
C

om
po

ne
nt

O
f

 H
as

P
S

ID

Is
P

S
ID

O
f

28
T

ex
t

S

im
pl

e

 A
nc

ho
r

H
R

L
A

nc
ho

r
00

00
00

05
H

as
A

nc
ho

r
Is

A
nc

ho
rO

f

R
ef

er
en

ce

 L
in

k
00

00
00

06
H

R
L

Li
nk

H
as

Li
nk

Is
Li

nk
O

f

Figure 8. An instance schema showing Association Set Manager data modeled by HB1’s Storage
Manager. The schema corresponds to the simple association example in Figure 6.

HB1 HYPERBASE MANAGEMENT SYSTEM 47

The shaded area in Figure 8 corresponds to the OM schema in Figure 5, and the subjects
and relations lying outside the shaded region are the part of the schema manipulated by
ASM. This example shows graphically how information, structure, and behavior have been
separated in HB1.

Semantic modeling of ASM data

The OBJECT category in Figure 8 contains applications, components, links and anchors as
well as other objects handled by OM. In addition, ASM uses the categories PSID, BRIDGE,
SIDE, and ASSOCIATION. ASM stores any PSIDs involved in connections in the PSID
category. Subjects in the BRIDGE category tie together objects identified by PsID, CompID,
AppID triples. Subjects in the SIDE category reference BRIDGEs that have been grouped
together by anchor attachment, and ASSOCIATION subjects join SIDEs that have been
grouped by link attachment. It is important to notice that the Storage Manager, by virtue
of its underlying semantic database, directly represents associations among linked objects
in our system. Or, said another way, the collection of IDs that define BRIDGE, SIDE, and
ASSOCIATION entities need not be repeated in the database because these Saberel subjects
have relationships that point directly to the objects involved. The connectivity information
maintained by the Association Set Manager, in effect, overlays the objects maintained by
the Object Manager.

HB1/SP1 operation

As indicated earlier, HB1 provides data management support for a hypermedia system
called System Prototype 1 (SP1). SP1 implements an object-based system architecture for
distributed, inter-application linking. Basically, the system allows hypermedia connections
to be forged among applications that are able to participate in a distributed link services
protocol. The functional capabilities of the system are realized by client/server relation-
ships among several software components: Participating Applications, the Link Services
Manager, and HB1’s Object Manager and Association Set Manager servers. The overall
architectural organization of SP1 is shown in Figure 9. The Link Services Manager (LSM)
is a server process that provides run-time support for inter-application linking. LSM coordi-
nates the interprocess communication required to implement the hypermedia functionality
of Participating Applications. These activities include the attachment and detachment of
anchors and links, conveying requests to the applications that they display anchored or
linked persistent selections, and browsing operations. LSM services, in a sense, instantiate
the dynamic, real-time manifestation of hypermedia with which a user or user processes
(proxies) may interact.

Since inter-application linking is mediated by the LSM, applications that wish to par-
ticipate in link services must be able to interact with this manager. Such applications are
referred to as Participating Applications (Apps) in Figure 9. Participation requires that
Apps be able to handle persistent selection and respond appropriately to messages from the
LSM. For example, Apps are responsible for providing mechanisms to create, delete, and
display persistent selections and manipulate persistent selection data structures. It is also
assumed that the Apps’ interfaces will allow users to reference persistent selections in such
a way that their identities can be determined by the applications. To date, text, graphics, and
bitmap editors have been developed as participating applications in the architecture. The

48 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

Participating
Applications

Link Services Manager
(LSM)

Xlt Toolkit
Liaison Functions

Xlt Toolkit
Liaison Functions

Xlt Toolkit Liaison Functions Xlt Toolkit Liaison Functions

Object Manager
(OM)

Association Set Manager
(ASM)

Saberel BindingsSaberel Bindings

Storage Manager
(SM)

The HB1 Hyperbase Management System

UNIX Operating System

Figure 9. System architecture for the SP1 hypermedia system prototype

Athena Text Widget has also been modified in order to make X Window System’s Xedit a
participating application [14].

The details of SP1’s overall behavior is beyond the scope of this paper. The basic notion,
however, is that hypermedia connections can be authored and browsed through coordinated
events between Participating Applications and the Link Services Manager. As shown in
Figure 9, Participating Applications communicate with HB1’s Object Manager and the
LSM, and the LSM communicates with HB1’s OM and ASM servers. The messages
that pass among the various components of the architecture essentially consist of type
information and IDs (Table 1).

Implementation

The software components in HB1 and SP1 are written in C and port to UNIX variants on a
range of platforms. LSM is a decentralized server and can be allocated to any physical pro-
cessor in our LAN, as can Participating Application processes. HB1’s Object Manager and

HB1 HYPERBASE MANAGEMENT SYSTEM 49

Table 1. Message protocol for the HB1 hyperbase management system

Server Request Message (Parameters) Server Response Message (Parameters)

Object Manager Messages

Create Object (Data, Name, Type, Size) CO Ack (OID, RC)∗

Delete Object (OID) DO Ack (RC)
Retrieve Object (OID) RO Ack (Data, Name, Type, Size, RC)
Store Object (OID, Data, Name, Type, Size) SO Ack (RC)
Get Name (OID) GN Ack (Name, RC)
Set Name (OID, Name) SN Ack (RC)
Get Type (OID) GT Ack (Type, RC)
Set Type (OID, Type) ST Ack (RC)
Resolve Attribute (Name, Type) RA Ack (OIDs, RC)

Association Set Manager Messages

Attach Anchor (n{PSID, CompID, AppID})† AA Ack (RC)
Attach Link AL Ack (RC)

Detach Anchor (n{PSID, CompID, AppID})† DA Ack (RC)

Detach Link (n{PSID, CompID, AppID})† DL Ack (RC)
Follow Association ({PSID, CompID, AppID}) FA Ack (m[LinkID, n[AnchorID,

o{PSID, AppID, CompID}]], RC)‡
∗ RC = return code.
† n ≥ 0.
‡ m ≥ 0;n ≥ 0;o ≥ 0.

Storage Manager are implemented as independent processes; however, they are centralized
to a dedicated node on which the Storage Manager’s Saberel repository resides.

In order to achieve heterogeneous distribution across a wide range of platforms, a suite
of message-passing IPC protocols were implemented using X Window System inter-client
communication facilities. It is possible for client processes on other networked workstations
to access LSM and HB1 servers by using these protocols. All messaging is bidirectional.
To facilitate construction of the various client and server modules, we developed the X
Link Services (Xlt) Toolkit. As shown in Figure 9, processes that wish to communicate with
one another bind liaison procedures from the Xlt Toolkit into their virtual memory space.
Clients then call on these routines in order to communicate with servers, and servers, in
turn, use Xlt routines to reply. These liaison procedures provide functional interfaces that
abstract from details of the underlying communication protocol. The OM and ASM servers
also bind to the libraries that implement the Saberel system.

Communication between the HB1 servers and client applications follows a mailbox
model in which “in” and “out” mailboxes are owned by each client and shared by the
servers. A client process sends a request message to the server by way of its out mailbox.
Reply messages from the server are deposited into a client’s in mailbox and subsequently
read by the receiving client. While this pattern of message passing easily accommodates
asynchronous communication, in this implementation clients wait for all server replies;
hence, at the application level, all operations appear synchronous.

When an application-level process registers for either OM or ASM services, it provides

50 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

the server with the window ID of some (possibly invisible) X window which it owns. X
properties that function as mailboxes for the communication protocols are then associated
with the application’s window. X properties are a mechanism for interprocess communica-
tion within the X Window System [15]. The basic idea is that an X application can create
and delete properties that are conceptually associated with specific application windows.
They can then receive notification about and respond to events affecting those properties. In
the HB1 prototype, the event of interest to servers and applications alike is the movement
of data into and out of an X property.

Figure 10 shows conceptually how X properties have been associated with applica-
tion windows in order for OM and ASM data to be served to the applications. In this
case, the properties are named _XLT_APP_OM and _XLT_APP_ASM (the client’s out
mailboxes) and_XLT_OM_APP and_XLT_ASM_APP (the client’s in mailbox). OM and
ASM servers solicit property notify events on the_XLT_APP_OM and _XLT_APP_ASM
properties on each client application’s window. An X event loop within the server processes
models the Ready and Active states of the server. When an X event affecting these prop-
erties is detected by the servers, the state transition from Ready to Active occurs. In the
Active state, servers perform operations that implement their functionality and then return
to their Ready states.

The Xlt Toolkit client liaison routines called by an application cause messages to be
written to the application’s X properties. These writes are detected by HB1’s servers as

ROOT WINDOW

APPLICATION 1 LSM MENU

_XLT_APP_OM _XLT_APP_OMAttach anchor
Attach link
Detach anchor
Detach link
Turn on browsing
Turn off browsing
Turn on link markers
Turn off link markers
Turn on anchor markers
Turn off anchor markers
Open context
Close context
Create context
Delete context
Merge contexts
Lock context
Unlock context
Quit

_XLT_OM_APP_XLT_OM_APP

_XLT_APP_ASM

_XLT_ASM_APP

APPLICATION 2

_XLT_APP_OM

_XLT_OM_APP

Figure 10. An example window layout showing X Properties used for Application/HB1 inter-client
communication

HB1 HYPERBASE MANAGEMENT SYSTEM 51

property notify events. The servers respond by reading a property’s data, thereby causing
the client’s message to be “sent” to the server. Server replies are written to an application’s
_XLT_OM_APP or _XLT_ASM_APP property from which it is similarly read by the
application. The main X event loop in the servers handle client requests in FCFS order.
Since servers respond completely to each client request in the Active state before returning
to the Ready state, atomicity and freedom from deadlock or starvation is assured on these
operations.

DISCUSSION

HB1 and SP1 represent significant departures from the way most existing hypermedia
systems are conceived and implemented. In this section, we take a closer look at some of
the features that make our approach distinctive.

HB1 data model

HB1’s data model can be distinguished from current hypermedia models by three inter-
related characteristics: (1) it defines a distinctly computational view of hypermedia, (2) it
has a strong notion of both anchor and link, and (3) it abstracts information, behavior, and
structure from hypermedia. We comment on anchors first.

Only a few existing systems incorporate a notion of anchor, and Intermedia typifies the
most commonly held view [16,17]. In Intermedia, anchors are essentially data structures
that specify the endpoint of a link. While these endpoints can be many things, including a
span of text, coordinate locations, a series of animation or video frames, or even bytes in
a sound buffer, anchors in Intermedia are essentially addresses—what we would refer to
as structural entities. Several recently proposed data models include a similar concept of
anchor. The Dexter hypertext reference model citecite18 and the data models of Lange [19]
and Afrati and Koutras [20] propose anchors very much like those found in Intermedia.
Anchors, as perceived by most people today, correspond closely to persistent selections in
HB1’s model.

In contrast, anchors in our model embody behavioral rather than structural character-
istics. “Attaching an anchor” means that a behavior is associated with a given persistent
selection. The rationale for a strong, computational view of anchor is simple: we believe
anchors are an appropriate locus for several classes of behaviors that are only indirectly
related to traversal. Anchors can cooperate with application processes to customize views,
filter information, coordinate searches, or even monitor events that may happen in the
future. Since they are arbitrary processes, anchors can do simple tasks or be as complex
as needed. They can, for example, be interfaces to an information retrieval system, expert
system, or database management system. In fact, anchors could actually be systems such
as these.

Links in our model are also behavioral entities. In this case, however, we see links
being primarily responsible for behaviors related to the traversal of associations. Links, for
example, can cooperate with anchor processes to create “destination” processes, disam-
biguate multiple alternative “destinations”, or perform other activities generally associated
with navigation.

HB1’s data model abstracts structure, information, and behavior from hypermedia. Un-
til now, advanced hypermedia system designs have tended to focus on abstracting only

52 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

structure and information. They have done so in order to achieve architectural advantages
such as the ability to implement contexts. Since these designs have typically been trans-
lated into monolithic applications, behavioral abstraction has largely been ignored, and
the behaviors that characterize a given system become encapsulated within the systems
themselves. Intermedia, for example, separates connectivity data from information, but
traversal behaviors are implemented within Intermedia’s applications. Among emerging
data models, those of the Dexter group [18], Lange [19], Afrati and Koutras [20], Schütt
and Streitz [21], and [22] all abstract structure from information but do not explicitly
abstract behavior.

There is an important rationale for removing addressing data from the behavioral
characteristics of anchors and links: doing so promotes extensibility of hypermedia func-
tionality through an open systems approach. In addition, it supports the massive distribution
of hypermedia functionality required of network-optimized computing environments. The
abstractions provided by most existing hypermedia data models all too often predispose
system designers toward monolithic implementations. As a consequence, the global struc-
ture of hypermedia tends to be relatively inaccessible and behaviors are not easily modified
or extended [9]. Our data model is intended to encourage implementation approaches that
avoid encapsulating structural information with structure-independent behaviors. It also
facilitates the implementation of operations that are essentially structural, and a number of
these operations—such as computing virtual structures, constructing graphical overviews,
and performing structural searches—are recognized to be crucial next-generation features
[23].

Finally, a comment on our computational bias. When anchors and links become arbitrary
processes in a hypermedia system architecture the potential of these systems is enormously
increased. It moves hypermedia systems from the class of “interesting” applications toward
operating systems and other software in the class of systems support. In fact, we see
computation as ultimately allowing hypermedia systems to achieve their potential as a new
operating paradigm for computing.

HB1 architecture

HB1’s overall architecture advances the notion of a tailored hyperbase service. Owing
largely to its underlying model, HB1’s internal organization is partitioned into object and
structure domains. Such partitioning allows each subsystem to be specifically optimized to
provide effective services over information and behavioral objects as well as the structural
elements of hypermedia.

An important design issue in this project was determining the appropriate place to
draw the line between application functionality and HBMS functionality. In our view,
applications are best suited to manipulate the abstractions they implement. This includes
“internal” abstractions such as persistent selection. In HB1, functionality was partitioned
in a way that promotes system-level integration of back-end functionality at the expense
of being able to perform certain types of operations at the hyperbase level. We see this
approach as being more general.

HB1’s simple notion of object, immutable and externally accessible object identifiers,
and a simple client/server interface make the HBMS lightweight and broadly applicable.
For example, it would be relatively easy to incorporate new policies and mechanisms
as layers that are conceptually applied on top of HB1’s basic services. Extensibility at

HB1 HYPERBASE MANAGEMENT SYSTEM 53

the hyperbase level is facilitated by HB1’s modular organization and simple inter-module
interfaces. The use of the X Window System for IPC enables access to HB1 from a variety
of physical platforms and operating systems. Few approaches to distribution encompass a
wider range of possibilities than X.

Perhaps most important, HB1’s overall architecture is scalable. New forms of physical
storage can be incorporated into the Storage Manager component of the architecture at
any time, and algorithms for handling widely distributed, heterogeneous data repositories
can be incorporated into the Object Manager and Association Set Manager servers. HB1’s
process structure could even be tailored for use on specialized multiprocessor database—
or hyperbase—computers. In summary, HB1’s architecture is designed to assimilate the
emerging software and hardware innovations that will ultimately allow HBMSs to manage
the data capacities envisioned for future hypermedia systems.

Experiences

Some of our most important experiences relate to the development of Participating Applica-
tions and use of the Xlt Toolkit. As indicated earlier, three SP1 Apps have been developed.
V and PSText Widget are text editor applications, and HyperDraw is a graphics and bitmap
editor.

V is an X Windows-based text editor modeled after vi. Like the other Participating
Applications, V implements a persistent selection capability, is able to participate in SP1’s
link services architecture, uses objects served by HB1’s Object Manager, and was developed
using the Xlt Toolkit. V consists of approximately 6000 lines of C code. HyperDraw is an
object-oriented, X Windows-based graphics and bitmap editor. This application provided
an important opportunity to work with large objects. HyperDraw was also developed from
scratch and consists of approximately 3500 lines of C code. The PSText Widget is a modified
Athena Text Widget.

The Athena Widget was provided in the MIT distribution of X11, Release 4 and is
composed of around 11 000 lines of code. The Widget was modified to incorporate the
inter-application linking capabilities of the Xlt Toolkit. We felt this aspect of the project
was particularly important since several X-based text editor applications, such as Xedit,
inherit their functionality from this Widget. PSText Widget demonstrates the ease with
which link services functionality can be incorporated into a suite of applications [14].

We were surprised to learn that only about ten percent of the source code for all
three applications is devoted to link services. In these simple cases, tailoring new and
existing applications to support persistent selection and participation appears to be relatively
uncomplicated. Use of the Xlt Toolkit clearly facilitated the development process.

The primary goal in implementing SP1 and HB1, however, was to provide a proof
of principle for the systems’ underlying model of hypermedia. The prototypes are, in a
sense, a feasibility study to explore the overall behavior of the HBMS architecture. While
performance has not been a major concern to us during this initial phase of research, pre-
liminary results suggest that reasonable response times are achievable. To date, information
spaces consisting of a few hundred objects have been manipulated. Real-time responses
from the ASM server are entirely acceptable within a moderately loaded network of a dozen
workstations. However, response times from the OM server for large object fetches are pro-
hibitively low. We believe that this problem can be overcome with intelligent prefetching
of objects into local caches.

54 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

Saberel’s lack of constructed types and overall simplicity proved to be a problem.
For example, BRIDGEs in Figure 8 would have been more accurately modeled as an
aggregation type, and SIDEs and ASSOCIATIONs should really be groupings. Besides
giving the semantics of object identity greater precision, the presence of constructed types
would have simplified the language mechanisms required to manipulate the database. Since
Saberel does not directly enforce integrity constraints at the database level, it was necessary
to explicitly include these constraints in many operations. Our impression is that a more
complex semantic model would have significantly reduced the coding effort by providing
simpler, higher-level abstractions [9].

RELATED WORK

There is increasing interest in providing effective database support for hypermedia. In this
section, we comment briefly on related research appearing in the hypermedia and database
literature.

Related work in hypermedia

The hypermedia literature addresses data management issues in several arenas. There is
an emerging body of work on hyperbases per se. In addition, much can be learned by
examining the back-end functionality of monolithic and non-monolithic systems. Work on
formal modeling is also contributing to hyperbase research, as are the areas of performance
evaluation, information retrieval, and techniques for hypermedia search and query.

It is probably fair to say that work on hyperbases began with Tektronix’ Hypertext
Abstract Machine (HAM). HAM is a general-purpose, transaction-based, multi-user server
for a hypermedia storage system [24]. It has been used as a back-end to the Neptune system
which supports hypermedia-based CAD and CASE applications. HAM, however, is a low-
level storage engine that is intended to provide sufficient generality for use with other
applications [25]. HAM was designed to support monolithic applications, and, as a result,
its data model corresponds to the hypermedia abstractions envisioned in these applications.
Its monolithic orientation strongly influences the way functionality is partitioned between
applications and the database server. Some of the operations implemented in HAM require
that its server know about application-level abstractions.

In addition to HAM, there are two prominent hyperbase projects whose systems carry
identical names. The University of Aalborg’s HyperBase is similar to HAM, although
it instantiates a simpler data model [22]. Like HB1, it takes a client/server approach to
distribution, and its architecture is intended to be a general foundation upon which a wide
variety of hypermedia applications can be built. A special emphasis in this HyperBase
project has been database support for collaborative work.

GMD-IPSI’s HyperBase is built on top of the Sybase relational DBMS and has been
used extensively to support authoring tools such as SEPIA [21]. Object-oriented modeling
techniques were used to implement this HyperBase, and there are plans to eventually replace
Sybase with an object-oriented DBMS. Application independence has been an important
design goal for both HyperBase projects.

Puttress and Guimaraes have developed a toolkit approach to the construction of hyper-
media systems that includes explicit support for storage management [26]. Their storage
system, Eggs, is a simplified version of the HAM. Although Eggs was modeled after HAM,

HB1 HYPERBASE MANAGEMENT SYSTEM 55

there are several important differences. Eggs does not interpret application-level abstrac-
tions, implements a simple version management system, and manages objects that can
reference files in the underlying operating system. This allows users to cross back and forth
between the hypermedia environment and the underlying computing environment.

The University of North Carolina’s Distributed Graph Service (DGS) is a hyperme-
dia storage service that is being developed to support the Artifact-Based Collaboration
(ABC) environment [27]. Like the systems described above, DGS is intended to be suffi-
ciently general and flexible to support other applications. However, unlike other hyperbase
management systems, DGS’s design is strongly influenced by distributed file systems ar-
chitectures rather than DBMS architectures. Two key design goals for DGS are scalability
and an open systems policy for application programs.

The latest hyperbase to emerge from the University of Aalborg’s work provides several
interesting extensions to their original HyperBase. The new system, called Hyperform,
is a centralized hyperbase server implemented around the Elk (Extension Language Kit)
Interpreter, a Scheme dialect [28]. At the heart of the system is an object-oriented data
modeling facility. The novel aspect of Hyperform’s design is that the concept of exten-
sibility has been introduced at the hyperbase level. New data objects and operations can
be added dynamically, thereby allowing the hyperbase to be arbitrarily customized. This
feature enables client/server architectures that support extensibility at both the back-end
and application levels. This approach also supports multiple, simultaneous data models,
and is the first heterogeneous, multihyperbase system to be prototyped.

Finally, the University of Melbourne is implementing a hyperbase system called Hype-
rion [29]. An interesting feature of Hyperion is that its layered architecture allows abstract
“nodes” and “links” to be described independent of storage organization and physical
representation.

HBMS research is also being influenced by experiences with monolithic systems. Most
existing hypermedia systems implement back-end functionality themselves using the file
system provided by the underlying operating system. There are exceptions to this rule,
however. Two such systems are Intermedia and the Virtual Notebook System.

Early versions of Intermedia were implemented on top of the INGRES relational DBMS.
In fact, one of the important contributions of Brown University’s IRIS (Institute for Re-
search in Information and Scholarship) project has been an analysis of the applicability of
relational and object-oriented (OO) methods to hypermedia databases [30]. They concluded
that an OO approach would provide a better facility for modeling complex structures. As
part of this work, an OO database schema for Intermedia was developed. However, the
transition to an OO DBMS never occurred. Intermedia remains an essentially monolithic
application, with functional extensibility provided through traditional object-oriented pro-
gramming techniques. The classes that implement Intermedia functionality are now called
IRIS Hypermedia Services, and one of its components is the Link Server. The Link Server
is a network accessible back-end to Intermedia. Persistent storage is currently provided by
the commercially available C-Tree system.

The Virtual Notebook System (VNS) is being designed to facilitate information ac-
quisition, sharing, and management in collaborative scientific and medical research [31].
A principal goal of the VNS project has been to distribute VNS within a heterogeneous
computing environment. VNS’s design envisions a number of work group servers (WGSs)
connected through a network. WGSs provide local information storage and management
by maintaining the group’s hypermedia data in a relational database on the group’s server.

56 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

Through a special Gatekeeper computer, users of a WGS can share information with other
groups and access information stored in other information and database services.

This architecture makes VNS fairly distinctive. It is an essentially monolithic system
with a separable back-end. However, the VNS back-end is a truly decentralized, distributed,
homogeneous, database management facility. This is in contrast to systems such as Knowl-
edge Management System (KMS) that accrue network accessibility and decentralization
by way of the underlying operating system’s distributed file system protocols [32].

Efforts to develop open architectures for hypermedia systems are influencing HBMS
development as well. Three important systems whose architectures are primarily oriented
toward an open systems approach are: PROXHY, Sun MicroSystem’s Link Service, and
the University of Southern California’s Distributed Hypertext (DHT) architecture.

PROXHY is an architecture for constructing hypermedia systems that is able to integrate
diverse applications under a common hypermedia model [33]. It is unusual in that the
architecture integrates principles from hypermedia, process, and object-oriented models
of software construction. The PROXHY architecture allows links to cross application
boundaries, thereby supporting a notion of inter-application linking. PROXHY’s back-end
layer can be organized in a number of ways, however, in its prototypic implementation, the
system utilizes the functionality available in the underlying file system.

Sun MicroSystem’s Link Service is a product that is shipped with Sun’s programming-
in-the-large software development environment called Network Software Environment
(NSE) [34]. NSE allows users to make and maintain explicit and persistent links be-
tween objects managed by autonomous front-end applications. Its capacity to support inter-
application linking makes NSE’s notion of extensibility similar to that seen in PROXHY
and SP1. The NSE server is centralized and can be accessed over a network by multiple
applications.

USC’s Distributed Hypertext (DHT) architecture illustrates an interesting move toward
an open systems architecture combined with distributed, heterogeneous database techniques
[35]. DHT is based on a client/server model and includes four components: a common hy-
permedia data model, a communication protocol, servers, and client applications. The heart
of the system is its collection of database servers. Each server consists of a gateway process
and an information repository. The gateway process transforms hypermedia operations into
local access operations and local information objects into DHT nodes or links. The infor-
mation repositories are databases, file systems, or special-purpose storage managers. From
the repository’s view, the gateway process appears as another local application accessing
the repository’s data. In this way, DHT can incorporate existing databases without having
to copy their data or modify their schemas.

There is currently widespread interest in developing formal reference models for hyper-
media, and this work is contributingindirectly to HBMS design. Among the most prominent
are those described in Afrati and Koutras [20], Delisle and Schwartz [25],[36],[37], Ha-
lasz and Schwartz [18], Kacmar and Leggett [33], Lange [19], Schütt and Streitz [21],
and Tompa [38]. Not surprisingly, these models vary along many dimensions. A detailed
consideration of their merits is beyond the scope of this paper. Unfortunately, some of the
more influential models to appear in the past few years, such as the Dexter model and that
of Afrati and Koutras, have not yet been fully implemented.

So far, it seems that the greatest amount of database-related work appearing in the
hypermedia literature pertains to the issue of data access. Several research projects are
extending information retrieval techniques to hypermedia [39–44]. Others are developing

HB1 HYPERBASE MANAGEMENT SYSTEM 57

formalisms to support structural queries [20,45,46]. Finally, there is a contingent examin-
ing ways of combining traditional querying with the type of user-directed browsing that
characterizes data access in hypermedia systems [47–49].

Related work in database

In the database area, several advancing fronts will undoubtedly shape the future design
of hyperbase systems. Research on object-oriented, semantic, structural object-oriented,
and extended relational database systems is particularly relevant. One of the important
challenges to both the hyperbase and database communities is discovering how existing
database techniques can apply to the data management problems of hypermedia systems.

Many of the application domains requiring database support today, such as computer-
aided design (CAD), computer-aided software engineering (CASE), multimedia databases,
office information systems (OIS), and, of course, hypermedia, require objects that have
arbitrarily complex internal structures and behavioral components. There is also the re-
quirement that they participate in long-duration transactions where humans interact with
information over an extended period of time. These factors have resulted in a search for
new and more effective database technologies.

The object-oriented database paradigm is currently of enormous interest to the database
community. It is based on the notion of encapsulating code and data into a single unit referred
to as an object. The interface between an object and the rest of the system is defined by a set
of messages. This abstract data type approach, where operations, or methods, are embedded
within types, derives from object-oriented programming language design. In this view, an
object is in control of its own behavior, behavior that is invoked by the messages that are
sent to the object. Similar objects are grouped to form a class, and each object is an instance
of its class from which it inherits key characteristics and behaviors.

Object-oriented data management refers to a collection of run-time issues such as
naming, persistence, concurrency control, distribution, version control, and security. These
issues have been addressed for many years by traditional database methodologies. Recent
work on object-oriented database systems has focused on transferring this technology to the
problem of managing objects. Several prominent object-oriented database systems are the
result, including GemStone from ServioLogic [50], ORION from MCC [51], Ontologic’s
ONTOS [52], and Iris from Hewlett-Packard Labs [53]. An overview of existing object-
oriented databases is presented in [10,54,55,56].

The concept of object varies widely [10]. In particular, there is growing recognition
that the traditional notions of object derived from object-oriented programming are often
too narrowly construed. While dynamically invoked methods, inheritance hierarchies, and
encapsulation are desirable for many applications, the variability present in typing and
invocation mechanisms makes database support for a simpler notion of object appealing.
This has resulted in work on persistent object stores such as Mneme [8].

A Mneme object is a contiguous block of memory associated with an object identi-
fier. Execution semantics are not applied to Mneme objects, and they have no type, class,
associated methods, or inheritance. The notion is that such an approach maximizes appli-
cability and efficiency of the store and provides a flexible framework upon which other
mechanisms—including OO features—may be built. These ideas substantially originated
in work on the Multics operating system and appear in a variety of storage systems [10].

Semantic database models attempt to provide more powerful abstractions for specifying

58 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

database schemas than are supported by traditional models. They also tend to encourage a
navigational view of data. Semantic modeling was initially introduced in the early 1970s
to facilitate the design of database schemas. Since then, research has resulted in the devel-
opment of powerful mechanisms for representing the structural aspects of data. A number
of full-fledged semantic database management systems now exist and offer a wide range
of data modeling capabilities. For a review of existing semantic models see [11,12].

Object-oriented database systems provide behavioral abstractions while semantic data-
base systems provide structural abstractions. Another important trend in the design of
advanced database systems is the integration of behavioral and structural modeling tech-
niques. Structural object-oriented database systems attempt such an integration [57–60].
The synergy between the two views is impressive. Together they provide compatible ways
of encapsulating both the structural and behavioral aspects of complex objects. Work in
this area and work on persistent object stores has clearly influenced the design of HB1.

Some new systems are attempting to address the shortcomings of existing database
technology through extensions to the relational model. POSTGRES, for example, provides
many of the same capabilities of object-oriented and semantic models by adding extensions
to the relational model [61]. In this regard, POSTGRES could be viewed as an example
of a structural object-oriented database system. Philosophically, the goal is to make as few
changes as possible to the relational model since there is broad familiarity with relational
methods, they are efficient, and they are relatively simple to understand.

The relational model underlyingPOSTGRES has been extended withabstract data types
including user-defined operators and procedures, relation attributes of type procedure, and
attribute and procedure inheritance. These mechanisms can be used to simulate a wide
variety of semantic and object-oriented data modeling constructs including aggregation
and generalization, complex objects with shared sub-objects, and attributes that reference
tuples in other relations.

We close this section by commenting on several areas of database research that are also
indirectly influencing work on hyperbase management systems. Of particular relevance is
work on the data modeling and access requirements of multimedia applications [62–64].
In addition, the problems posed by transaction management and version control in VLSI
CAD and CASE environments appear to be similar to those in hypermedia systems [65,67].
Database extensibilityis an important issue that is currently receiving considerable attention
[68,69]. The notion of mediators or agency in databases systems [59,70,71] has contributed
to the work done on HB1, as has research on heterogeneous multidatabase systems [72,73].

RESEARCH ISSUES AND FUTURE WORK

Research on hyperbase management systems is in an early, experimental phase. As a
result, the field is in tremendous flux. Comprehensive and unifying solutions to the data
management problems posed by advanced hypermedia systems have yet to emerge. The
following, however, are among the major issues that must be addressed in future HBMS
research:

• Models and architectures. Issues of scalability, extensibility, interoperability, archi-
tectural openness, distribution, and platform heterogeneity are of critical importance.

HB1 HYPERBASE MANAGEMENT SYSTEM 59

• Node, link, and structure management. (Hypermedia data and metadata manage-
ment.) Data management facilities for hypermedia must address issues relating to
object identity, naming, and constraints on object and structure integrity. In addition,
support for object composition, contexts, and views is critical, and the management
of exotic data types, including spatial, temporal, image, sequence, graph, proba-
bilistic, user-defined, and dynamic types is essential. The effective management of
behavioral entities will be important in many settings.

• Browsing/search and query. Optimizing the synergy between hypermedia’s naviga-
tional approach to data access and traditional search and query must be addressed at
the HBMS level. Important issues include the introduction of multi-level store in-
dexing techniques, agency, hyperbase heterogeneity, extensibility, and optimization.

• Version control. Effective support for versioning will require an understanding of
precisely which entities need to be versioned and when version creation occurs. In
hypermedia, there are opportunities to version not only information, but structure as
well. It will also be important to understand how version control should be partitioned
between the HBMS and application levels.

• Concurrency control, transaction management, and notification. The types of interac-
tivity and operations that characterize hypermedia applications create a requirement
for managing short, long, and very long hyperbase transactions. HBMS support for
collaboration and the sharing of information will be of critical importance.

Clearly, HB1 lacks much of the above functionality.Future work will be directed toward
addressing the system’s current shortcomings. In particular, we will introduce transaction
management in order to transition the HBMS into a multi-user environment. In addition, we
are designing policies and mechanisms for version management and object composition.
The next implementation of the HBMS will utilize the extended relational database system
POSTGRES as a Storage Manager.

CONCLUSION

The unique data management requirements of advanced hypermedia systems require capa-
bilities that are not generally provided by the current generation of database management
systems. In this paper, we have described the design and prototypic implementation of a
hyperbase management system intended to address some of these needs. The prototype,
HB1, implements several distinguishing features. For example, the HB1 system:

• meets the storage requirements of an open, extensible, object-based system architec-
ture for distributed, inter-application linking;

• abstracts structure, behavior, and information from hypermedia;
• is composed of two network-accessible server processes: one providing object man-

agement, the other managing hypermedia connectivity information;
• uses a semantic network database management system to manage physical storage;
• promotes a toolkit approach to client/hyperbase construction;
• instantiates an architectural framework that is scalable, flexible, and useful as a

vehicle for general research on HBMS organization.

HB1 has demonstrated its effectiveness in providing back-end services to an advanced
hypermedia system prototype. Experiences gained so far in this work have been used to
identify several important issues to be addressed in future HBMS research. These include

60 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

developing techniques for transaction management, controlled sharing, and versioning that
will be effective in large-scale, multi-user, hypermedia-based information systems of the
future.

ACKNOWLEDGEMENTS

The authors would like to thank other members of the team that constructed the software
described in this paper: Ron Szabo, Doug Miller, Joe Drufke, Don Dylla, and Tim Roden.
Thanks also to Ed Cunnius for helpful advice on early drafts of the paper and to Cindy
Kunz for assistance in preparing the manuscript. Bob Griffith, Jeff Barber, and Ken Briskey
provided valuable assistance in our work with Saberel. This work was supported in part
by a grant from the Advanced Workstations Division of IBM Corporation, Austin, Texas,
under Research Agreement 194.

REFERENCES

1. ACM Transactions on Office Information Systems, 7(1) (1989).
2. Communications of the ACM, 31(7) (1988).
3. Proceedings of the Hypertext ’87 Conference, Chapel Hill, NC, ACM Press, (November, 1987).
4. Proceedings of the Hypertext ’89 Conference, Pittsburgh, PA, ACM Press, (November, 1989).
5. Proceedings of the Hypertext ’91 Conference, San Antonio, TX, ACM Press, (December, 1991).
6. J. Conklin, ‘Hypertext: An introduction and survey’, IEEE Computer, 20(9), 17–41 (1987).
7. A. Rizk, N. Streitz, and J. Andre, eds, Hypertext: Concepts, Systems, and Applications. Proceed-

ings of the EuropeanConferenceon Hypertext, France, Cambridge University Press, Cambridge,
UK, (November, 1990).

8. J. E. B. Moss, ‘Design of the Mneme persistent object store’, ACM Transactions on Office
Information Systems, 8(2), 103–139 (1990).

9. J. L. Schnase,J. J. Leggett, D. L. Hicks, and R. L. Szabo, ‘Semantic data modeling of hypermedia
associations’, ACM Transactions on Information Systems, 11(1), 27–50 (1993).

10. R. G. G. Cattell, Object Data Management: Object-oriented and Extended Relational Systems,
Addison-Wesley, Reading, MA, 1991.

11. R. Hull and R. King, ‘Semantic database modeling: Survey, applications, and research issues’,
ACM Computing Surveys, 19(3), 201–260 (1987).

12. J. Peckham and F. Maryanski, ‘Semantic data models’, ACM Computing Surveys, 20(3), 153–189
(1988).

13. J. L. Schnase, J. J. Leggett, and D. L. Hicks, ‘HB1: Initial design and implementation of
a hyperbase management system’, Department of Computer Science Technical Report No.
TAMU-HRL 91-003, Texas A&M University, College Station, TX (1991).

14. J. E. Drufke, J. J. Leggett, D. L. Hicks, and J. L. Schnase, ‘The derivation of a hypertext widget
class from the Athena text widget’, Department of Computer Science Technical Report No.
TAMU 91-002, Texas A&M University, College Station, TX (1991).

15. R. Scheifler, J. Gettys, and R. Newman, X Window System, Digital Press, Bedford, MA, 1988.
16. M. Palaniappan, N. Yankelovich, and M. Sawtelle, ‘Linking active anchors: A stage in the

evolution of hypermedia’, Hypermedia, 2(1), 47–66 (1990).
17. N. Yankelovich, B. Haan, N. Meyrowitz, and S. Drucker, ‘Intermedia: The concept and the

construction of a seamless information environment’, IEEE Computer, 21(1), 81–96 (1988).
18. F. Halasz and M. Schwartz, ‘The Dexter hypertext reference model’, in Proceedings of the NIST

Hypertext Standardization Workshop, NIST, Gaithersburg, MD, pp. 95–133, (1990).
19. D. Lange, ‘A formal model for hypertext’, in Proceedingsof the NIST HypertextStandardization

Workshop, NIST, Gaithersburg, MD, pp. 145–166, (1990).
20. F. Afrati and C. Koutras, ‘A hypertext model supporting query mechanisms’, in Hypertext:

Concepts, Systems, and Applications. Proceedings of the European Conference on Hypertext,

HB1 HYPERBASE MANAGEMENT SYSTEM 61

France, ed. A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp.
52–66, (November, 1990).

21. H. A. Schütt and N. A. Streitz, ‘Hyperbase: A hypermedia engine based on a relational database
management system’, in Hypertext: Concepts, Systems, and Applications. Proceedings of the
European Conference on Hypertext, France, ed. A. Rizk, N. Streitz, and J. Andre, Cambridge
University Press, Cambridge, UK, pp. 95–108, (November, 1990).

22. U. K. Wiil, ‘Design and implementation of a hyperbase’, Institute for Electronic Systems Tech-
nical Report No. IR 90-03, Department of Mathematics and Computer Science, The University
of Aalborg, Aalborg, Denmark (1990).

23. F. Halasz, ‘Reflections on NoteCards: Seven issues for the next generation of hypermedia
systems’, Communications of the ACM, 31(7), 836–852 (1988).

24. B. Campbell and J. Goodman, ‘HAM: A general-purpose hypertext abstract machine’, Commu-
nications of the ACM, 31(7), 856–861 (1988).

25. N. Delisle and M. Schwartz, ‘Neptune: A hypertext system for CAD applications’, in Proceed-
ings of the ACM International Conferenceon the Managementof Data (SIGMOD), pp. 132–143,
(1986).

26. J. J. Puttress and N. M. Guimaraes, ‘The toolkit approach to hypermedia’, in Hypertext: Concepts,
Systems and Applications, Proceedings of the European Conference on Hypertext France, ed.
A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp. 25–37,
(November, 1990).

27. J. B. Smith and F. D. Smith, ‘ABC: A hypermedia system for artifact-based collaboration’, in
Proceedings of the Third ACM Conference on Hypertext (Hypertext ’91), San Antonio, TX, pp.
179–192, (December, 1991).

28. U. K. Wiil and J. J. Leggett, ‘Hyperform: using extensibility to develop dynamic, open and
distributed hypertext systems’, in Proceedingsof the EuropeanConferenceon Hypertext (ECHT
’92), Milan, Italy, pp. 251–261, (1992).

29. J. Zobel, R. Wilkinson, J. Thom, E. Mackie, R. Sacks-Davis, A. Kent, and M. Fuller, ‘An
architecture for hyperbase systems’, in Proceedings of the First Australian Multi-Media Com-
munications, Applications and Technology Workshop, pp. 152–161, (1991).

30. K. Smith and S. Zdonik, ‘Intermedia: A case study of the differences between relational and
object-oriented database systems’, in Proceedings of the ACM OOPSLA ’87 Conference, ACM,
New York, pp. 452–465, (1987).

31. F. M. Shipman, R. J. Chaney, and G. A. Gorry, ‘Distributed hypertext for collaborative research:
The Virtual Notebook System’, in Proceedings of the Second ACM Conference on Hypertext
(Hypertext ’89), Pittsburgh, PA, pp. 129–136, (November, 1989).

32. R. Akscyn, D. McCracken, and E. Yoder, ‘KMS: A distributed hypermedia system for managing
knowledge in organizations’, Communications of the ACM, 31(7), 820–835 (1988).

33. C. J. Kacmar and J. J. Leggett, ‘PROXHY: A process-oriented extensible hypertext architecture’,
ACM Trans. Inf. Syst, 9(4), 399–419 (1991).

34. A. Pearl, ‘Sun’s link service: A protocol for open linking’, in Proceedings of the Second ACM
Conference on Hypertext (Hypertext ’89), Pittsburgh, PA, pp. 137–146, (November, 1989).

35. J. Noll and W. Scacchi, ‘Integrating diverse information repositories: A distributed hypertext
approach’, IEEE Computer, 24(12), 38–45 (1991).

36. R. Furuta and P. D. Stotts, ‘The Trellis hypertext reference model’, in Proceedings of the
Hypertext Standardization Workshop, Gaithersburg, MD, pp. 83–93, (1990).

37. P. K. Garg, ‘Abstraction mechanisms in hypertext’, Communications of the ACM, 31(7), 862–870
(1988).

38. F. W. Tompa, ‘A data model for flexible hypertext database systems’, ACM Transactions on
Office Information Systems, 7(1), 85–100 (1989).

39. P. D. Bruza, ‘Hyperindices: A novel aid for searching in hypermedia’, in Hypertext: Concepts,
Systems, and Applications. Proceedings of the European Conference on Hypertext, France, ed.
A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp. 109–122,
(November, 1990).

40. W. B. Croft and H. Turtle, ‘A retrieval model incorporating hypertext links’, in Proceedings of
the Hypertext ’89 Conference, Pittsburgh, PA, pp. 213–224, (November, 1989).

41. D. B. Crouch, C. J. Crouch, and G. Andreas, ‘The use of cluster hierarchies in hypertext

62 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SÁNCHEZ

information retrieval’, in Proceedings of the Hypertext ’89 Conference, Pittsburgh, PA, pp.
225–237, (November, 1989).

42. M. Frisse, ‘Searching for information in a hypertext medical handbook’,Communications of the
ACM, 31(7), 880–886 (1988).

43. M. E. Frisse and S. B. Cousins, ‘Information retrieval from hypertext: Update on the dynamic
medical handbook project’, in Proceedings of the Hypertext ’89 Conference, Pittsburgh, PA, pp.
199–212, (November, 1989).

44. D. Lucarella, ‘A model for hypertext-based information retrieval’, in Hypertext: Concepts,
Systems, and Applications. Proceedings of the European Conference on Hypertext, France, ed.
A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp. 81–94,
(November, 1990).

45. C. Beeri and Y. Kornatzky, ‘A logical query language for hypertext systems’, in Hypertext:
Concepts, Systems, and Applications. Proceedings of the European Conference on Hypertext,
France, ed. A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp.
67–80, (November, 1990).

46. M. P. Consens and A. O. Mendelzon, ‘Expressing structural hypertext queries in GraphLog’, in
Proceedings of the Hypertext ’89 Conference, Pittsburgh, PA, pp. 269–292, (November, 1989).

47. C. Clifton and H. Garcia-Molina, ‘Indexing in a hypertext database’, in Proceedings of the 16th
Conference on Very Large Data Bases, Brisbane, Australia, pp. 36–49, (August, 1990).

48. L. Gallagher, R. Furuta, and P. David Stotts, ‘Increasing the power of hypertext search with
relational queries’, Hypermedia, 2(1), 1–14 (1990).

49. C. Watters and M. A. Shepherd, ‘A transient hypergraph-based model for data access’, ACM
Transactions on Information Systems, 8(2), 77–102 (1990).

50. P. Butterworth, A. Otis, and J. Stein, ‘The GemStone object database management system’,
Communications of the ACM, 34(10), 64–77 (1991).

51. W. Kim, N. Ballou, H. Chou, J. F. Garza, and D. Woelk, ‘Features of the ORION object-oriented
database system’, in Object-Oriented Concepts, Databases, and Applications, ed. W. Kim and
F. H. Lochovsky, Addison-Wesley Publishing Co., Reading, MA, pp. 251–282, (1989).

52. T. Andrews, C. Harris, and K. Sinkel, ‘ONTOS: A persistent database for C++’, in Object-
Oriented Databases with Applications to CASE, Networks, and VLSI CAD, ed. R. Gupta and E.
Horowitz, Prentice-Hall, Englewood Cliffs, NJ, pp. 387–406, (1991).

53. D. Fishman, D. Beech, H. Cate, E. Chow, T. Connors, J. Davis, N. Derrett, C. Hoch, W. Kent, P.
Lyngbaek, B. Mahbod, M. Neimat, T. Ryan, and M. Shan, ‘IRIS: An object-oriented database
management system’, ACM Transactions on Office Information Systems, 5(1), 48–69 (1987).

54. Communications of the ACM, 34(10) (1991).
55. R. Gupta and E. Horowitz, Object-Oriented Databases with Applications to CASE, Networks,

and VLSI CAD, Prentice-Hall, Englewood Cliffs, NJ, 1991.
56. W. Kim and F. Lochovsky, Object-Oriented Concepts, Databases, and Applications. ACM

Press/Addison-Wesley, Inc., New York, NY, 1989.
57. A. J. Berre, ‘SOOM and Tornado-∗: Experience with database support for object-oriented

applications’, in Advances in Object-Oriented Database Systems: Proceedings of the 2nd In-
ternational Conference on Object-Oriented Database Systems, ed. K. Dittrich, Springer-Verlag,
New York, pp. 104–109, (1988).

58. K. R. Dittrich, W. Gotthard, and P. C. Lockemann, ‘DAMOKLES—A database system for
software engineering environments’, in Proceedings of the IFIP Workshop on Advanced Pro-
gramming Environments, Trondheim, Norway, ed. R. Conradi, R. M. Didriksen, and D. H.
Wanvik, Springer-Verlag, New York, pp. 353–371, (June, 1986).

59. S. E. Hudson and R. King, ‘Cactis: A self-adaptive, concurrent implementation of an object-
oriented database management system’, ACM Transactions on Database Systems, 14(3), 291–
321 (1989).

60. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling
and System Design, Prentice-Hall, Englewood Cliffs, NJ, 1990.

61. M. Stonebraker and G. Kemnitz, ‘The POSTGRES next-generation database management sys-
tem’, Communications of the ACM, 34(2), 78–92 (1991).

62. M. Caplinger, ‘An information system based on distributed objects’, in Proceedings of the
OOPSLA ’87 Conference, pp. 126–137, (October, 1987).

HB1 HYPERBASE MANAGEMENT SYSTEM 63

63. S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria, ‘Multimedia document
presentation, information extraction, and document formation in MINOS: A model and a system’,
ACM Transactions on Office Information Systems, 4(4), 345–383 (1986).

64. D. Woelk and W. Kim, ‘Multimedia information management in an object-oriented database
system’, Proceedings of the Thirteenth International Conference on Very Large Data Bases,
Brighton, England, pp. 319–329, (1987).

65. D. Batory and W. Kim, ‘Modeling concepts for VLSI CAD objects’, ACM Transactions on
Database Systems, 10(3), 322–346 (1985).

66. R. H. Katz, ‘Toward a unified framework for version modeling in engineering databases’,ACM
Computing Surveys, 22(4), 375–408 (1990).

67. D. Maier, J. Stein, A. Otis, and A. Purdy, ‘Development of an object-oriented DBMS’, in
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pp. 472–482, (September, 1986).

68. D. S. Batory, J. R. Barnett, F. F. Garza, K. P. Smith, K. Tsukauda,B. D. Twichell, and T. E. Wise,
‘GENESIS: A reconfigurable database management system’, IEEE Transactions on Software
Engineering, 1258–1272 (1990).

69. M. Carey, D. DeWitt, J. Richardson, and E. Shekita, ‘Object and file management in the EXODUS
extensible database system’, in Proceedings of the Twelfth International Conference on Very
Large Data Bases, Kyoto, Japan, pp. 91–100, (August, 1986).

70. C. A. Ellis and S. J. Gibbs, ‘Active objects: Realities and possibilities,’ in Object-Oriented
Concepts, Databases, and Applications, ed. W. Kim and F. H. Lochovsky, Addison-Wesley
Publishing Co., Reading, MA, pp. 561–572, (1989).

71. G. Wiederhold, ‘Mediators in the architecture of future information systems’, IEEE Computer,
25(3), 38–49 (1992).

72. ACM Computing Surveys, 22(3) 1990.
73. IEEE Computer, 24(10) (1991).

	SUMMARY
	INTRODUCTION
	HYPERMEDIA CONCEPTS
	CONCEPTUAL MODEL UNDERLYING HB1
	HB1 DESIGN AND IMPLEMENTATION
	Storage Manager (SM)
	Semantic database models
	Saberel

	Object Manager (OM)
	OM data model
	Semantic modeling of OM data

	Association Set Manager (ASM)
	ASM data model
	Semantic modeling of ASM data
	Semantic modeling of ASM data

	HB1/penalty exhyphenpenalty SP1 operation
	Implementation

	DISCUSSION
	HB1 data model
	HB1 architecture
	Experiences

	RELATED WORK
	Related work in hypermedia
	Related work in database

	RESEARCH ISSUES AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

