ELECTRONIC PUBLISHING, VOL. 6(1), 35-63 (JUNE 1993)

Design and implementation of the HB1 hyper base
management system

JOHN L. SCHNASE JOHN J. LEGGETT, DAVID L. HICKS,)
PETER J. NUERNBERG, AND J. ALFREDO SANCHEZ
Advanced Technology Group Hypermedia Research Laboratory
School of Medicine Library and Biomedical Department of Computer Science
Communications Center Texas A&M University

Washington University School of Medicine College Station, Texas 77843, USA
660 South Euclid Avenue (Box 8132)
. Louis, Missouri 63110, USA

SUMMARY

Hypermedia systems manage inter connected infor mation residing within a potentially wide
range of data types, including text, graphics, animations, and digitized sound and images.
Effectivedatabasesupportfor hyper media-based computing environmentsisessential.|n order
to be effective, this support must provide a variety of capabilities that are not offered by
the current generation of database management systems. We report on a prototypic system
called HB1 that has been designed to meet the storage needs of advanced hyper media system
architectures. HB1isreferred to asa hyperbase management system (HBM S) becauseit stores
and manipulatesinformation and the connectivity data that link information together to form
hyper media.

HB1iscomposed of three subsystems: the Object Manager (OM), Association Set Manager
(ASM), and Storage Manager (SM). OM and ASM are both server processes accessible to
distributed client processesvia IPC interfaces. OM is an object server. ASM manages str uc-
tural data applicable to the objects within OM’s repository that are involved in hyper media
connections. Physical storageis managed by SM which, in this implementation, is a semantic
networ k database management system. HB1 instantiates a conceptual model of hyper media
that is distinctly computational, has a strong notion of anchor and link, and abstracts infor-
mation, behavior, and structurefrom hyper media. It hasbeen used as a back-end for an open,
object-based hyper media system that implementsdistributed, inter-application linking. HB1is
proving to be an effective vehiclefor research on HBM S or ganization.

KEY WORDS Hyperbase management system Hypermedia Hypertext Open hypermediasystem
architecture Inter-application linking Semantic object-oriented database management system

INTRODUCTION

The sophistication and effectiveness of hypermedia-based computing environments has
steadily increased over the past severd years. Given the anticipated improvements in
hardware and software technologies, it is likely that this trend will continue. We expect
the next generation of hypermedia system architectures to be network- and object-based.
They will accommodate multiple media types on high-performance hardware and reflect
an open and extensible design philosophy. Advanced hypermedia environmentswill allow
multiple users to work cooperatively with extremely large volumes of richly textured,

CCC 0894-3982/93/010035-29 Received 23 February 1993
[J1993 by John Wiley & Sons, Ltd. Revised 16 March 1993

© 1998 by University of Nottingham.

36 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

complex, dynamic, and arbitrarily structured information. Hypermedia will undoubtedly
play an important role in a variety of information-intensive settings, such as electronic
publishing, personal knowledge management, and digital libraries.

For thisfutureto be realized, however, effective database support for advanced hyper-
mediaenvironmentsisessential. In order to be effective, thissupport must provideavariety
of capabilities that are not offered by the current generation of database management sys-
tems. In addition to the usua requirement for permanence of data, controlled sharing, and
backup and recovery, data management facilities must be capable of modeling complex
interrelationships and providing direct support for novel data types. They must also be
able to handle lengthy transactions, transactions that are unique to hypermedia, massive
distribution of functionality, extensibility, and versioning of both the data and structure of
hypermedia.

HB1 isaprototypedatabase management system (DBM S) designed to meet the storage
needs of advanced hypermedia system architectures. We refer to HB1 as a hyperbase
management system (HBMS) because it supports not only the storage and manipulation
of information, but the storage and manipulation of connectivity data as well. HB1 was
designed with a very specific goal in mind. It is intended to support an open, object-
based system architecture for distributed, inter-application linking. A hypermedia system,
called System Prototype 1 (SP1), based on such an architecture has been developed in the
Hypermedia Research Laboratory at Texas A&M University, and HB1 isits back-end.

As shown in Figure 1, HB1 is composed of three subsystems: the Object Manager
(OM), the Association Set Manager (ASM), and the Storage Manager (SM). OM manages

1 1]

IPC Interface IPC Interface

Object Manager Association Set Managel
(OM) (ASM)

Saberel Interface Saberel Interface

Storage Manager
(SM)

The HB1 Hyperbase Management System

Figure 1. HB1 hyperbasesystem architecture

HB1 HYPERBASE MANAGEMENT SY STEM 37

ashared object repository and ASM manages hypermediaconnectionsthat exist among OM

objects. SM maps HB1's data model into physical storage. In the current implementation,
SM is a semantic network database management system. Heterogeneous distribution of
OM and ASM functionality isachieved by aclient/server model using X Window System'’s
interprocess communication facilities. In this paper, we report on the design and imple-
mentation of the HB1 hyperbase management system and describe its operation withinthe
SP1 framework. We aso summarize our experiences using these systems and identify the
important issues that must be addressed by future research in this emerging area.

HYPERMEDIA CONCEPTS

The concepts underlying hypermedia have been described in several places [1-7]. Simply
put, hypermedia systems allow networks of linked information to be created and manipu-
lated. For example, in Figure 2, a portion of the digitized image of abird in a multimedia
document has been linked to a paragraph of related information in atext object. A typical
system would providethe necessary mechanismsto display and edit images and text, author
links, and highlight information that islinked. Subsequent access to connected information
is then obtained through an active process of navigation. With theaid of a high-resolution,
bitmapped display and a pointing device, users move through hypermedia by traversing
links, or browsing, in addition to traditional query mechanisms. It is this ability to au-
thor and browse arbitrary connections among information that distinguishes hypermedia
systems from other types of multimediainformation systems.

Beyond these basic notions, the abstractions, interfaces, functionality, and terminology
presented by the current generation of hypermediasystems differ widely. Despitethevaria
tionin existing hypermediasystems, most have onecritical architectural featurein common:
they are monoalithic, stand-al one applications. The behaviorsthat make them distinctiveare
encapsulated within each system. The hypermedia structures that they manipulate cannot
be shared, and the information they manage is relatively isolated from other applications.

N

Parental investmenimay be definedfas any investment by th

(3) How much additioi\al food was required to raise young?

v

parent of an individual offspring that increases the offsprings . . - o .

chance of surviving at the cost of tile parent’s ability to investjn gzué?'n%dig{gg}:?tio eremicr:e;‘:g zfis7,5/° (Ricklefs, 1974), e

other offspring (Trivers, 1972). Altjough it is difficult to distill & p p geis:

single_metric to represent the timg¢, energy, and risk associgted H' (d) = (16)

with a rough pstimate can be obtained b p

considering the combined qualitative and energetic contributigns

of parents to the reproductive efforf (Biedenweg, 1983). o %‘5%9 ol D85-59 E 0.75 + 1440 KJEhinL
+19.1 égﬁ% 1419.1% E’(Q’lp

In Cassin’s Sparrow, territorial
defense is the responsibility of
the male and primarily involves : Table 10 presents results of simulating the nestling model for| 3
the allocation ~of energy chick over the nesting phase’s 9-day duration. Assuming g
resources with little associated# average clutch size of 2.2 (13 fledglingss 6 males), a
risk. Egg production, requiring additional 716 kJ (325 kJ X 2.2) was required for nestling
energy, and incubation, %, -) development. This translates into an arthropod requirement
requiring time, are done . of 158 g. Over the same 9-day period, a female would requ
entirely by the female. Feeding ., = .4 a total of 117 g of arthropods for her own energetic need|
of offspring demands time and \ Therefore, if females were entirely responsible for feedin
epefgyd at"'d %PP%?VS ftO Fe&‘ Ei i young, it was necessary for them to augment their foraging g
skewe owar e female s : average of 135% ((117 + 158} 117), considerably more thal
during both the nestling and fo'?;‘g’i‘;é'iffsﬁ."oifypam”;’g'g[.'ﬁ;’gﬂ’;z the 87% increase observed in Savannah Sparrow where b
fledgling care phases. (prosopis glandulosa sexes participate in the feeding effort (Williams, 1987).

S E =

Figure 2. A simple linking example

38 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

In short, most existing hypermedia systems lack the architectural framework required for
integration into computing environments of the future.

CONCEPTUAL MODEL UNDERLYING HB1

Our work focuses on software architectures to support advanced hypermediafunctionaity.
In particular, we are interested in approaches that accommodate openness, extensihility,
distribution, and inter-application linking. Over the past severa years, a perspective on
hypermedia has evolved that fulfillsthese requirements.

Figure 3 shows the conceptua model of hypermedia upon which HB1 is based. The
model consists of six principal elements, the first three of which are: applications, compo-
nents, and persi stent sel ections. Applicationsare simply programs. Componentsare thedata
or information manipul ated by applications. For example, text editor applicationstypically
manipulate ASCI | components. Persistent sel ections are sel ectionswithincomponentsthat,
in contrast to the usual implementation of selection, persist between application sessions
and can be accessed at alater time. Applicationsimplement thisfunctiondity by maintain-
ing persistent selection data structures for components (Figure 4). Within this conceptual
framework, applications, components, and persistent selections embody the information

Link

Anchor Anchor

Link Services Subsystem

Participating Applications

Application Application

Persistent Selection Persistent Selection

Component Component

Figure 3. Conceptual model of hypermedia underlying HB1

HB1 HYPERBASE MANAGEMENT SY STEM 39

PS PS Anchor Link

ID Value Bit Bit
00000000 0021:0003 0 0
00000001 0000:0013 1 1 1
00000002 014A:0013 , 1 1
00000003 RasterSelect(figl,x,y,001B) I 1 1
00000004 12FA:008C / 1 0
n 0000:0000 / 0 0

rimay be defined as “any invegtny
an individual offspring that increases the offspring’s
the cost of the parent’s ability to invest in other/offs|

ent by the parent of
hance of surviving at
ring (Trivers, 1972).
epresent the time,

i i Ja rough estimate
can be obtained by considering litative and energeti

In Cassin’'s Sparrow, territorial
defense is the responsibility of

the allocation of energy g

resources with little associated 3

energy, and incubation, requiring \5{\\%

time, are done entirely by the

female. Feeding of offspring

appears to be skewed toward thesigure 1. Cassin’s Sparrow fledgling
female during both the nestling foraging in a Honey mesquite trer¢sopis

the male and primarily involves

risk. Egg production, requiring
demands time and energy and-- X
and fledgling care phases. glandulosg.

Figure 4. Component and persistent selection data structure (in this case, a persistent selection
table)

managed by a system, and the network structure of hypermedia results from the connec-
tionsforged among persistent selections.

The remaining three components of the model, anchors, links, and associations, are
essential for hypermedia functionality. Anchors and links are processes in the operating
systems sense of theword. They are programs or program componentsthat can be indepen-
dently scheduled by the underlying operating system in order to accomplish some task. In
this case, they implement the behaviors that characterize hypermedia, such as customized
views or various traversal behaviors. As shown in Figure 3, anchors are associated with
persistent sel ections, and linksare associ ated with anchors, thereby compl eting connections
among persistent selections. The rel ationshi ps between these elements, depicted as arcsin
Figure 3, are associations. Associations, in contrast to anchors and links, do not implement
behavior. They are structura entities—collectionsof identifiersthat tie el ements together.

A generd hypermedia system architecture implemented along these lines allows the
integration of diverse applications, anchors, and linksunder acommon hypermediamodel.
Specifically, non-monoalithic, inter-application linking can be realized by moving hyper-
media connectivity data (associations) and hypermedia functionality (anchors and links)
into a distinct “link services” subsystem of a computing environment (Figure 3). Hyper-

40 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

media services can then be provided to participating applications through interprocess
communication (1PC).

Inter-application linking is a powerful means of achieving application-level extensi-
bility within a hypermedia system. However, HB1's data model accommodates exten-
sibility in other ways as well. New hypermedia functionality—that is, new anchor and
link processes—can be incorporated at any time without affecting the underlying structure
of hypermedia. In addition, massive distribution of functionality is accommodated since
application, anchor, and link processes, as well as processes affecting associations, can
conceptually reside anywhere within the |PC domain of the architecture.

It should be noted that many of the centra concepts found in current monolithic hy-
permedia systems do not carry over to anon-monoalithic, link services world. For example,
the concept of node essentially goes away, and the semantics of authoring and browsing
become the shared responsibility of applications and the link services subsystem. Con-
nections, in a sense, exist only from information to information. The traditional notion of
anchor corresponds most closdly to our persistent selection, which is managed entirely by
applicationsrather than link services.

HB1 DESIGN AND IMPLEMENTATION

As indicated earlier, the overdl goa for HB1 is to provide effective data management
support for advanced hypermedia environments. In attaining this goal, HB1 follows the
approach of providing alightweight, broadly applicable hyperbase service within an open,
distributed architectura setting [8]. Thebasic assumptionisthat carefully defined generality
at the hyperbase level can facilitate flexibility, tailorability, and extensibility system-wide.
HB1's conceptual design and its prototypic implementation are an attempt to produce a
framework that allows thishypothesisto be examined.

HB1's architecture is specifically tuned to the conceptual modd for hypermedia de-
scribed in the previous section. Thismodel |eadsrather directly to afunctional decomposi-
tion that di stingui shesbetween structure and obj ect management and between management
at an abstract, or logical, level and management at a physical level. In order to support
these distinctions, HB1 is organized around three domains: an abstract object domain, an
abstract structure domain, and a physical domain. It is the responsihility of the object
domain and the structure domain to implement HB1's data model; the physical domain is
responsible for managing physical storage. Clients interface directly with the object and
structure domains, while these two domains interface internally with the physical domain.

This philosophical organization is embodied in the HB1 system architecture shown
in Figure 1. HB1 is a centralized, single-user HBMS consisting of three subsystems: the
Object Manager (OM), Association Set Manager (ASM), and the Storage Manager (SM).
OM implements the notion of a large, shared repository of simple, unstructured objects.
ASM providespersistent and sharabl e storagefor the connectivity datathat link information
together to form hypermedia. Together OM and ASM implement HB1'sdatamodel, which
abstractsinter-object connectivity, behaviors, and information from hypermedia. SM maps
HB1'sdatamode into physical storage. Distributionof OM and ASM functionality acrossa
range of platformsis achieved by a client/server model using interprocess communication
facilities. We begin a more detailed discussion of HB1's architecture by looking at the
Storage Manager.

HB1 HYPERBASE MANAGEMENT SY STEM 41

Storage Manager (SM)

HB1's Storage Manager is a prototypic semantic network database management system
called Saberell, now under development by IBM. Saberel was chosen because it alows
unstructured objects to be stored, manipulated, and accessed by way of conveniently
defined inter-object relationships. Traditionally, Saberel has been used for CAD and VLS
design applications. We have extended and modified this storage system to better support
distribution, largeobject size, and hypermedi atransactions. Weel aborate on our experiences
with the semantic modding of hypermedia associationsin [9]. Before describing Saberel
further, we quickly review themajor distinctionsbetween semantic and traditional database
approaches.

Semantic database models

Traditional database management approaches tend to emphasi ze information structuresthat
promoteefficient storageand retrieval of fixed-sizeinformation. For example, therelationa,
hierarchical, and network modes use a ssimple record-based format. These approaches
generaly lack direct support for relationships, data abstraction, inheritance, constraints,
and unstructured objects [10]. In the past severa years, however, greater consideration
has been given to the user’'s perception of data rather than its physical representation.
This has resulted in a requirement for richer, more expressive data structuring capabilities
and has led to a renewed interest in semantic data models. Semantic models attempt to
provide more powerful abstractions for structuring complex objects than are supported by
traditional models. Although a detailed consideration of semantic modeling is beyond the
scope of this paper, excellent surveys can befound in[11,12].

Saberel

The Saberel semantic network database management system is representative of afamily
of “binary” semantic models, al of which represent data using two primary constructions:
entity sets and binary relationships. As we will show, schemas of these models generally
consist of labeled nodesfor entity setsand label ed arcs corresponding to binary rel ationships
between them.

Saberel supports atomic objects, caled subjects. Subjects can carry a printable name
and astring of data of arbitrary size, referred to asauser managed string or UMS. Virtually
all of Saberd’shigher-level abstractionsare derived from subjects. For example, entity sets,
or categories, are themselves subjects, as are rel ationship names. As aresult, the semantic
distinction between objects, types, and attributes is not directly enforced by Saberd’s
modeling primitives. Each binary relation is viewed as an inverse pair of single-valued
functions. Saberel subjects are stored in a repository and partitioned among any number
of lockable areas. Repositories and areas are implemented as UNIX files, and, while they
assist the user in organizing a Saberel database, they do not participate as abstractions in
Saberel’s semantic model.

Saberel does not support type constructors, 1SA relationships, or derived schema com-
ponents and enforces few combining restrictionsor integrity constraints. The philosophical

1 sabarel isnot aproduct.

42 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

approach of Saberel, and similar models, isto provide a small, universal set of constructs
that can be used to build more powerful structures. These models tend to be “minimalist”
in the sense that they require the database designer to understand fewer constructs. One
apparent benefit of such an approach is the relative ease with which additional behavioral
layers can be applied to a structural database of information.

Saberdl hastwo programming interfaces: alow-level procedura interfaceto thelibrary
routinesthat implement aSaberel database and adeclarative, high-level languagethat can be
precompiled into C applications. Existing Saberd applications have required little sharing
of data. Consequently, the system has not supported di stribution or transacti on management
at the databaselevel . One of our objectiveswasto extend Saberel functionality by creating a
network-accessible server interface to the system. HB1's Object Manager and Association
Set Manager subsystems are the first two such interfaces we have devel oped.

Object Manager (OM)

HB1's Object Manager is a server process that provides persistent and sharable storage
for applications. As shown in Figure 1, OM is built on top of HB1's Storage Manager
and provides an IPC interface to clients. OM, in effect, manages a Saberel repository of
unstructured objects.

OM data model

HB1 objects are smple. They are arbitrary-size byte strings having unique identity and
optiona type and name attributes. We avoided implementing objects with execution se-
manti cs because we wanted the server to be lightweight and general [8]. HB1 objects have
no class structure, methods, or inheritance, athough these mechanisms could readily be
built on top of OM. This simple view of object is one that is shared by a class of data
managers referred to as persistent object stores [10]. As described later, persistent object
stores are sometimes used for storage management within more complete object-oriented
database systems and, in many respects, can be thought of as extensions of virtual memory.

Each object in the database has a unique 32-bit identifier (OID). OIDs are sequentially
allocated by the server upon request from clients creating objects. The OIDs of deleted
objectsare not reused sincereferences to the objects may remain inthedatabase. SinceHB1
isacentralized server, many of the naming problemsthat arise in decentralized distributed
systems are avoided. As described below, most client interactions with OM are based on
OIDs. OM dlows clients to have direct access to OIDs. The OIDs presented to clients
are the same OIDs used internally by OM and persist across sessions; they are not specia
“handles’ that cannot be examined further or stored outside the database. This makes it
possible to extend OM'’s policies and mechanisms through additional layers interspersed
between HB1 and the client space.

Applicationsuse objects by copying them from the server intothe virtual memory space
of their own processes where they are manipulated locally and written back to the server.
OM implements the following basic back-end operations. Create, Delete, Retrieve, and
Sore. The Create operation generates a new OID. Delete, Retrieve, and Store operations
are based on input OIDs. OM d so implements attribute operations such as Name and Type
and a Resol ve operation that all ows searches of an OM repository based on object attributes.

HB1 HYPERBASE MANAGEMENT SY STEM 43

Semantic modeling of OM data

Figure 5 shows how Object Manager data are modeled by the Storage Manager. Three
subject categories are explicitly represented in the database: OBJECT, NAME, and TY PE.
The chunks of memory that constitute objects in our system are members of the OBJECT
category. Ovals in Figure 5 represent Saberel subjects, and, in this instance schema, we
show the binary relationships that exist between example subjectsin each category.

HasMember
IsMemberOf

HasName
IsNameOf

00000001 /\

HasType

IsTypeOf
00000002
00000003
00000004 Executable

Figure 5. An instance schema showing how Object Manager objects are modeled by HB1's Storage
Manager

Association Set Manager (ASM)

The Association Set Manager is a server process that provides persistent and sharable
storage for associations and manages their run-time representation in support of a link
services subsystem. To clarify what is meant by this, we must first explain ASM’s data
model. ASM manages the structural or connectivity data applicableto those objectswithin
OM'’s repository that are involved in hypermedia associations. In a sense, it manages the
static, backing store representation of hypermedia. ASM is built on top of HB1's Storage
Manager and provides its own IPC interface to clients (Figure 1). For more details, see
[13].

44 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

ASM data model

In Figure 6, we present asimpleexample of an association. Here, ahypermediaconnection
exists between persistent selectionsin two different components, each of whichis handled
by a different application. The persistent selections, components, applications, anchors,
and links al have unique IDs. PSIDs are generated and managed by applications, and the
scope of their uniqueness extends only to the componentsin which they reside. ComplDs,
ApplDs, AnchorlDs, and LinkIDs correspond to the OIDs for these objects on backing
store. These identifiers are generated and maintained by HB1's Object Manager, and the
objects are stored in the Storage Manager’s repository. As a result, these identifiers are
unique across the world served by HB1.

Association

LinkiD 6

AnchorID 5 AnchorlD 5

Side Side

AppID 2 AppID 3

Bridge Hnb Bridge
PSID3 PSID 28
CompID 1 ComplD 4

Figure 6. Smple example of an association showing ASM'’s three major abstractions

To represent the structural informationinvolvedin such aconnection, ASM’sdatamodel
defines three collections of IDs: Bridges, Sides, and Associations (see Figure 6). A Bridge
consists of a PSID, ComplD, ApplID triple and imparts global uniquenessto a PSID. We
use the term bridge because the triple spans the distinct address domains managed by HB1
and individual applications. An Anchorl D associated with one or more Bridgetriplesforms
aSde. Finaly, the connectionis completed by aLinklD being associated with two or more
Sides. Thisis caled an Association. The set of associations available at a given moment
defines acontext. Notethat thisdefinition allowsconnectionsto occur at thelevel of anchors
and at the leve of links. For example, Figure 7 shows a more complex association having
three sides, two of which contain multiple bridges. It is in the definition of ASM’s data
model that structure (Bridges, Sides, and Associations) is abstracted from the behavioral
elements (Anchors and Links) and information (Persistent Selections, Components, and
Applications) of hypermedia.

With respect to structure manipulation, the major abstractions presented to clients by

HB1 HYPERBASE MANAGEMENT SY STEM 45

LinkID 10
AnchorlD 8
AnchorID 8
AppID 1 AnchorID 9
PSID A
- AppID 4
PSID B PP
CompID 5

AppID 3

PSID A

AppID 2 CompID 7

PSID A

ComplD 6

PSIDC

CompID 5

Figure 7. Complex example of an association

ASM are sides and associations. The semantics of structure manipulation are provided
through a set of basic operations that include: AttachAnchor, AttachLink, DetachAnchor,
DetachLink, and FollowAssociation. Attach- and DetachAnchor alow sidesto be created
and deleted. Likewise, Attach- and DetachLink allow associationsto be created and del eted.
FollowAssociation is a query that returns the IDs of elements (PSID, ComplD, ApplD
triples, AnchorIDs, LinkIDs) reachable in an association given one or more input 1Ds.
Thisoperationisprimarily in support of browsing semantics and would generally compute
reachability based on an input PSID, ComplD, ApplD triple that had been selected at the
application level as the starting point of a navigation operation.

Semantic modeling of ASM data

Figure 8 is a semantic schema showing how Association Set Manager dataare modeled by
the Storage Manager. It is important to understand that the OM and ASM operate on the
same Saberd repository, although OM objectsreside in a different area than ASM’s data.
Figure 8 is a complete instance schema for the ssmple association example of Figure 6.

46 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

ASSOCIATION

HasLink
IsLinkOf

HasAssociation
IsAssociationOf

HasAnchor
IsAnchorOf

HasSide
IsSideOf

BRIDGE

o

HasPSID
IsPSIDOf

Figure 8. An instance schema showing Association Set Manager data modeled by HB1's Storage
Manager. The schema correspondsto the simple association examplein Figure6.

HB1 HYPERBASE MANAGEMENT SY STEM 47

The shaded area in Figure 8 corresponds to the OM schema in Figure 5, and the subjects
and relations lying outside the shaded region are the part of the schema manipulated by
ASM. Thisexample showsgraphically how information, structure, and behavior have been
separated in HB1.

Semantic modeling of ASM data

The OBJECT category in Figure 8 contains applications, components, linksand anchors as
wdll asother objectshandled by OM. In addition, ASM usesthecategories PSID, BRIDGE,
SIDE, and ASSOCIATION. ASM stores any PSIDs involved in connections in the PSID
category. Subjectsinthe BRIDGE category tietogether objectsidentified by PsID, ComplD,
ApplD triples. Subjectsin the SIDE category reference BRIDGES that have been grouped
together by anchor attachment, and ASSOCIATION subjects join SIDEs that have been
grouped by link attachment. It is important to notice that the Storage Manager, by virtue
of its underlying semantic database, directly represents associations among linked objects
in our system. Or, said another way, the collection of IDsthat define BRIDGE, SIDE, and
ASSOCIATION entitiesneed not be repeated in the database because these Saberel subjects
have relationshipsthat point directly to the objectsinvolved. The connectivity information
maintained by the Association Set Manager, in effect, overlays the objects maintained by
the Object Manager.

HB1/SP1 operation

As indicated earlier, HB1 provides data management support for a hypermedia system
called System Prototype 1 (SP1). SP1 implements an object-based system architecture for
distributed, inter-application linking. Basically, the system all ows hypermedia connections
to be forged among applications that are able to participate in a distributed link services
protocol. The functional capabilities of the system are realized by client/server relation-
ships among several software components: Participating Applications, the Link Services
Manager, and HB1's Object Manager and Association Set Manager servers. The overall
architectural organization of SP1 isshowninFigure9. The Link Services Manager (LSM)
isaserver processthat providesrun-timesupport for inter-applicationlinking. LSM coordi-
nates the interprocess communication required to implement the hypermedia functionality
of Participating Applications. These activities include the attachment and detachment of
anchors and links, conveying requests to the applications that they display anchored or
linked persistent selections, and browsing operations. LSM services, in asense, instantiate
the dynamic, real-time manifestation of hypermedia with which a user or user processes
(proxies) may interact.

Since inter-application linking is mediated by the LSM, applications that wish to par-
ticipate in link services must be able to interact with this manager. Such applications are
referred to as Participating Applications (Apps) in Figure 9. Participation requires that
Appsbe ableto handle persistent sel ection and respond appropriatel y to messages from the
LSM. For example, Apps are responsible for providing mechanisms to create, delete, and
display persistent selections and manipulate persistent selection data structures. It is aso
assumed that the Apps’ interfaceswill allow usersto reference persistent selectionsin such
away that their identitiescan be determined by the applications. To date, text, graphics, and
bitmap editors have been developed as participating applications in the architecture. The

48 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

Participating Link Services Manager
Applications (LSM)
XIt Toolkit Xt Toolkit
Liaison Functions Liaison Functions
N A

Xt Toolkit Liaison Functions Xt Toolkit Liaison Functions
Object Manager Association Set Managet
(OM) (ASM)

Saberel Bindings Saberel Bindings

Storage Manager
(SM)

The HB1 Hyperbase Management System

UNIX Operating System

Figure 9. Systemarchitecturefor the SP1 hyper media system prototype

Athena Text Widget has also been modified in order to make X Window System’s Xedit a
participating application [14].

Thedetailsof SP1'soverall behavior isbeyond the scope of thispaper. The basic notion,
however, isthat hypermediaconnections can be authored and browsed through coordinated
events between Participating Applications and the Link Services Manager. As shown in
Figure 9, Participating Applications communicate with HB1's Object Manager and the
LSM, and the LSM communicates with HB1's OM and ASM servers. The messages
that pass among the various components of the architecture essentialy consist of type
information and IDs (Table 1).

Implementation

The software componentsin HB1 and SP1 are written in C and port to UNIX variantson a
range of platforms. LSM isadecentraized server and can be allocated to any physical pro-
cessor inour LAN, as can Participating Application processes. HB1's Object Manager and

HB1 HYPERBASE MANAGEMENT SY STEM 49

Table 1. Message protocol for the HB1 hyperbase management system

Server Request M essage (Par ameter s) Server ResponseM essage (Parameter s)

Object Manager Messages

Create Object (Data, Name, Type, Size) CO Ack (OID, RC)*

Delete Object (OID) DO Ack (RC)

Retrieve Object (OID) RO Ack (Data, Name, Type, Size, RC)
Store Object (OID, Data, Name, Type, Size) SO Ack (RC)

Get Name (OID) GN Ack (Name, RC)

Set Name (OID, Name) SN Ack (RC)

Get Type (OID) GT Ack (Type, RC)

Set Type (OID, Type) ST Ack (RC)

Resolve Attribute (Name, Type) RA Ack (OIDs, RC)

Association Set Manager Messages

Attach Anchor (n{PSID,CompID,AppID})T AA Ack (RC)
Attach Link AL Ack (RC)

Detach Anchor (n{PSID,CompID,AppID})Jr DA Ack (RC)

Detach Link (n{PSID,CompID,AppID})T DL Ack (RC)
Follow Association ({PSID, CompID, AppID}) FA Ack (m[LinkID, n[AnchorID,

o{PSID, AppID, CompID}]], RC)¥

* RC = return code.
t n>0.
i m>0;n> 00> 0.

Storage Manager areimplemented asindependent processes; however, they are centralized
to a dedicated node on which the Storage Manager’s Saberel repository resides.

In order to achieve heterogeneous distribution across awide range of platforms, asuite
of message-passing |PC protocol swere implemented using X Window System inter-client
communicationfacilities. Itispossiblefor client processes on other networked workstations
to access LSM and HB1 servers by using these protocols. All messaging is bidirectional.
To facilitate construction of the various client and server modules, we developed the X
Link Services (XIt) Toolkit. As shownin Figure9, processes that wish to communicate with
one another bind liaison procedures from the XIt Toolkit into their virtual memory space.
Clients then call on these routines in order to communicate with servers, and servers, in
turn, use XIt routines to reply. These liaison procedures provide functional interfaces that
abstract from details of the underlying communication protocol. The OM and ASM servers
also bind to the libraries that implement the Saberd system.

Communication between the HB1 servers and client applications follows a mailbox
model in which “in” and “out” mailboxes are owned by each client and shared by the
servers. A client process sends a request message to the server by way of its out mailbox.
Reply messages from the server are deposited into a client’s in mailbox and subsequently
read by the receiving client. While this pattern of message passing easily accommodates
asynchronous communication, in this implementation clients wait for al server replies;
hence, at the application level, dl operations appear synchronous.

When an application-level processregistersfor either OM or ASM services, it provides

50 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

the server with the window ID of some (possibly invisible) X window which it owns. X
propertiesthat function as mailboxes for the communication protocols are then associated
with the application’swindow. X properties are a mechanism for interprocess communica-
tion within the X Window System [15]. The basic ideais that an X application can create
and delete properties that are conceptually associated with specific application windows.
They can then receive notification about and respond to events aff ecting those properties. In
the HB1 prototype, the event of interest to servers and applications dike is the movement
of datainto and out of an X property.

Figure 10 shows conceptually how X properties have been associated with applica-
tion windows in order for OM and ASM data to be served to the applications. In this
case, the propertiesare named _XLT _APP_OM and XLT_APP_ASM (the client’s out
mailboxes)and XLT _OM_APPand XLT_ASM_APP (theclient’sinmailbox). OM and
ASM serverssolicit property notifyeventsonthe XLT _APP_OM and _XLT_APP_ASM
propertieson each client application’swindow. An X event loop withinthe server processes
models the Ready and Active states of the server. When an X event affecting these prop-
erties is detected by the servers, the state transition from Ready to Active occurs. In the
Active state, servers perform operationsthat implement their functionality and then return
totheir Ready states.

The XIt Toolkit client liaison routines called by an application cause messages to be
written to the application’s X properties. These writes are detected by HB1's servers as

ROOT WINDOW

APPLICATION 1 LSM MENU

_XLT_APP_OM Attach anchor _XLT_APP_OM
Attach link

Detach anchor

Detach link

Turn off browsing
Turn on link markers
Turn off link markers
Turn on anchor markers
Turn off anchor markers __XLT_APP_ASM
Open context

Close context

Create context
Delele Sontent:
Merge contexts
Lock context

Unlock context

Quit

APPLICATION 2

_XLT_APP_OM
_XLT_OM_APP

Figure 10. An example window layout showing X Properties used for Application/HB1 inter-client
communication

HB1 HYPERBASE MANAGEMENT SY STEM 51

property notify events. The servers respond by reading a property’s data, thereby causing
the client’s message to be “sent” to the server. Server replies are written to an application’s
_XLT_OM_APP or XLT_ASM_APP property from which it is similarly read by the
application. The main X event loop in the servers handle client requests in FCFS order.
Since servers respond completely to each client request in the Active state before returning
to the Ready state, atomicity and freedom from deadlock or starvation is assured on these
operations.

DISCUSSION

HB1 and SP1 represent significant departures from the way most existing hypermedia
systems are conceived and implemented. In this section, we take a closer ook at some of
the features that make our approach distinctive.

HB1 data model

HB1's data model can be distinguished from current hypermedia models by three inter-
related characteristics: (1) it defines a distinctly computational view of hypermedia, (2) it
has a strong notion of both anchor and link, and (3) it abstracts information, behavior, and
structure from hypermedia. We comment on anchorsfirst.

Only afew existing systems incorporate anotion of anchor, and Intermediatypifiesthe
most commonly held view [16,17]. In Intermedia, anchors are essentially data structures
that specify the endpoint of alink. While these endpoints can be many things, including a
span of text, coordinate locations, a series of animation or video frames, or even bytesin
a sound buffer, anchors in Intermedia are essentially addresses—what we would refer to
as structural entities. Several recently proposed data models include a similar concept of
anchor. The Dexter hypertext reference model citecitel8 and the datamodels of Lange[19]
and Afrati and Koutras [20] propose anchors very much like those found in Intermedia
Anchors, as perceived by most people today, correspond closely to persistent selectionsin
HB1'smodd.

In contrast, anchors in our model embody behavioral rather than structural character-
istics. “Attaching an anchor” means that a behavior is associated with a given persistent
selection. The rationale for a strong, computational view of anchor is smple: we believe
anchors are an appropriate locus for several classes of behaviors that are only indirectly
related to traversal. Anchors can cooperate with application processes to customize views,
filter information, coordinate searches, or even monitor events that may happen in the
future. Since they are arbitrary processes, anchors can do simple tasks or be as complex
as needed. They can, for example, be interfaces to an information retrieval system, expert
system, or database management system. In fact, anchors could actually be systems such
asthese.

Links in our model are also behavioral entities. In this case, however, we see links
being primarily responsiblefor behaviorsreated to thetraversal of associations. Links, for
example, can cooperate with anchor processes to create “destination” processes, disam-
biguate multiplealternative “destinations’, or perform other activities generally associated
with navigation.

HB1'sdatamode abstracts structure, information, and behavior from hypermedia. Un-
til now, advanced hypermedia system designs have tended to focus on abstracting only

52 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

structure and information. They have done so in order to achieve architectural advantages
such as the ability to implement contexts. Since these designs have typicaly been trans-
lated into monolithic applications, behaviora abstraction has largely been ignored, and
the behaviors that characterize a given system become encapsulated within the systems
themselves. Intermedia, for example, separates connectivity data from information, but
traversal behaviors are implemented within Intermedia’s applications. Among emerging
data models, those of the Dexter group [18], Lange [19], Afrati and Koutras [20], Schiitt
and Streitz [21], and [22] all abstract structure from information but do not explicitly
abstract behavior.

There is an important rationale for removing addressing data from the behavioral
characteristics of anchors and links: doing so promotes extensibility of hypermedia func-
tionality through an open systems approach. In addition, it supportsthemassive distribution
of hypermedia functionality required of network-optimized computing environments. The
abstractions provided by most existing hypermedia data models all too often predispose
system designers toward monolithic implementations. As a consequence, the global struc-
ture of hypermediatendsto berelatively inaccessible and behaviorsare not easily modified
or extended [9]. Our data modéd isintended to encourage implementati on approaches that
avoid encapsulating structura information with structure-independent behaviors. It also
facilitates the implementation of operationsthat are essentially structural, and a number of
these operations—such as computing virtual structures, constructing graphica overviews,
and performing structural searches—are recognized to be crucial next-generation features
[23].

Finally, acomment on our computationa bias. When anchorsand linksbecomearbitrary
processes in a hypermedia system architecture the potential of these systemsisenormously
increased. It moves hypermediasystems from theclass of “interesting” applicationstoward
operating systems and other software in the class of systems support. In fact, we see
computation as ultimately allowing hypermedia systemsto achieve their potential as anew
operating paradigm for computing.

HB1 architecture

HB1's overadl architecture advances the notion of a tailored hyperbase service. Owing
largely to its underlying model, HB1'sinternal organization is partitioned into object and
structure domains. Such partitioning allows each subsystem to be specifically optimized to
provide effective services over information and behavioral objects as well as the structural
elements of hypermedia.

An important design issue in this project was determining the appropriate place to
draw the line between application functionality and HBMS functionality. In our view,
applications are best suited to manipulate the abstractions they implement. This includes
“internal” abstractions such as persistent selection. In HB1, functionality was partitioned
in away that promotes system-leve integration of back-end functionality at the expense
of being able to perform certain types of operations at the hyperbase level. We see this
approach as being more generd.

HB1's simple notion of object, immutable and externally accessible object identifiers,
and a simple client/server interface make the HBMS lightweight and broadly applicable.
For example, it would be relatively easy to incorporate new policies and mechanisms
as layers that are conceptually applied on top of HB1's basic services. Extensibility at

HB1 HYPERBASE MANAGEMENT SY STEM 53

the hyperbase level isfacilitated by HB1's modular organization and simple inter-module
interfaces. The use of the X Window System for IPC enables access to HB1 from avariety
of physical platforms and operating systems. Few approaches to distribution encompass a
wider range of possibilitiesthan X.

Perhaps most important, HB1'soverall architectureis scalable. New forms of physical
storage can be incorporated into the Storage Manager component of the architecture at
any time, and algorithms for handling widely distributed, heterogeneous data repositories
can beincorporated into the Object Manager and Association Set Manager servers. HB1's
process structure could even be tailored for use on specialized multiprocessor database—
or hyperbase—computers. In summary, HB1's architecture is designed to assimilate the
emerging software and hardware innovationsthat will ultimately allow HBM Ssto manage
the data capacities envisioned for future hypermedia systems.

Experiences

Some of our most important experiencesrel ate to the devel opment of Participating Applica
tionsand use of the XIt Toolkit. Asindicated earlier, three SP1 Apps have been devel oped.
V and PSText Widget aretext editor applications, and HyperDraw is agraphics and bitmap
editor.

V is an X Windows-based text editor modeled after vi. Like the other Participating
Applications, V implements a persistent sel ection capability, isable to participatein SP1's
link servicesarchitecture, usesobjectsserved by HB1's Object Manager, and was devel oped
using the XIt Toolkit. V consists of approximately 6000 lines of C code. HyperDraw isan
object-oriented, X Windows-based graphics and bitmap editor. This application provided
an important opportunity to work with large objects. HyperDraw was also developed from
scratch and consistsof approximately 3500 linesof C code. The PSText Widgetisamodified
Athena Text Widget.

The Athena Widget was provided in the MIT distribution of X11, Release 4 and is
composed of around 11000 lines of code. The Widget was modified to incorporate the
inter-application linking capabilities of the XIt Toolkit. We felt this aspect of the project
was particularly important since several X-based text editor applications, such as Xedit,
inherit their functionality from this Widget. PSText Widget demonstrates the ease with
which link services functionality can be incorporated into a suite of applications[14].

We were surprised to learn that only about ten percent of the source code for al
three applications is devoted to link services. In these simple cases, tailoring new and
existing appli cationsto support persi stent sel ection and parti cipati on appearsto berel atively
uncomplicated. Use of the XIt Toolkit clearly facilitated the devel opment process.

The primary goal in implementing SP1 and HB1, however, was to provide a proof
of principle for the systems’ underlying model of hypermedia. The prototypes are, in a
sense, afeasibility study to explore the overal behavior of the HBMS architecture. While
performance has not been a major concern to us during thisinitial phase of research, pre-
liminary resultssuggest that reasonabl e response times are achievabl e. To date, information
spaces consisting of a few hundred objects have been manipulated. Real-time responses
fromthe ASM server are entirely acceptable withinamoderately |oaded network of adozen
workstations. However, responsetimesfrom the OM server for large object fetches are pro-
hibitively low. We believe that this problem can be overcome with intelligent prefetching
of objectsintolocal caches.

54 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

Saberd’s lack of constructed types and overall ssimplicity proved to be a problem.
For example, BRIDGEs in Figure 8 would have been more accurately modeled as an
aggregation type, and SIDEs and ASSOCIATIONS should really be groupings. Besides
giving the semantics of object identity greater precision, the presence of constructed types
would have simplified the language mechani sms required to mani pul ate the database. Since
Saberel does not directly enforceintegrity constraintsat the database level, it was necessary
to explicitly include these constraints in many operations. Our impression is that a more
complex semantic model would have significantly reduced the coding effort by providing
simpler, higher-level abstractions[9].

RELATED WORK

Thereisincreasing interest in providing effective database support for hypermedia. In this
section, we comment briefly on related research appearing in the hypermedia and database
literature.

Related work in hypermedia

The hypermedia literature addresses data management issues in several arenas. There is
an emerging body of work on hyperbases per se. In addition, much can be learned by
examining the back-end functionality of monolithic and non-monolithic systems. Work on
formal modeling isa so contributing to hyperbase research, as are the areas of performance
evaluation, information retrieval, and techniques for hypermedia search and query.

It is probably fair to say that work on hyperbases began with Tektronix’ Hypertext
Abstract Machine (HAM). HAM isagenera -purpose, transacti on-based, multi-user server
for ahypermediastorage system [24]. It has been used as aback-end to the Neptune system
which supports hypermedia-based CAD and CASE applications. HAM, however, isalow-
level storage engine that is intended to provide sufficient generality for use with other
applications[25]. HAM was designed to support monolithic applications, and, as a result,
itsdatamodel correspondsto the hypermedia abstractions envisioned in these applications.
Its monoalithic orientation strongly influences the way functionality is partitioned between
applicationsand the database server. Some of the operationsimplemented in HAM require
that its server know about application-level abstractions.

In addition to HAM, there are two prominent hyperbase projects whose systems carry
identical names. The University of Adborg's HyperBase is similar to HAM, athough
it instantiates a ssimpler data model [22]. Like HB1, it takes a client/server approach to
distribution, and its architecture isintended to be a genera foundation upon which awide
variety of hypermedia applications can be built. A specia emphasis in this HyperBase
project has been database support for collaborative work.

GMD-IPSI's HyperBase is built on top of the Sybase relational DBMS and has been
used extensively to support authoring tools such as SEPIA [21]. Object-oriented modeling
techni queswereused to implement thisHyperBase, and thereare plansto eventually replace
Sybase with an object-oriented DBMS. Application independence has been an important
design goal for both HyperBase projects.

Puttress and Guimaraes have devel oped atool kit approach to the construction of hyper-
media systems that includes explicit support for storage management [26]. Their storage
system, Eggs, isasimplified version of theHAM. Although Eggswas modeled after HAM,

HB1 HYPERBASE MANAGEMENT SY STEM 55

there are several important differences. Eggs does not interpret application-level abstrac-
tions, implements a simple version management system, and manages objects that can
reference filesin theunderlying operating system. This alowsusersto cross back and forth
between the hypermedia environment and the underlying computing environment.

The University of North Carolina’s Distributed Graph Service (DGS) is a hyperme-
dia storage service that is being developed to support the Artifact-Based Collaboration
(ABC) environment [27]. Like the systems described above, DGS is intended to be suffi-
ciently genera and flexibleto support other applications. However, unlike other hyperbase
management systems, DGS's design is strongly influenced by distributed file systems ar-
chitecturesrather than DBMS architectures. Two key design goas for DGS are scalability
and an open systems policy for application programs.

The latest hyperbase to emerge from the University of Aaborg’swork provides severa
interesting extensions to their origina HyperBase. The new system, called Hyperform,
is a centralized hyperbase server implemented around the Elk (Extension Language Kit)
Interpreter, a Scheme dialect [28]. At the heart of the system is an object-oriented data
modeling facility. The novel aspect of Hyperform's design is that the concept of exten-
sibility has been introduced at the hyperbase level. New data objects and operations can
be added dynamically, thereby alowing the hyperbase to be arbitrarily customized. This
feature enables client/server architectures that support extensibility at both the back-end
and application levels. This approach also supports multiple, simultaneous data models,
and isthefirst heterogeneous, multihyperbase system to be prototyped.

Finally, the University of Mebourneisimplementing ahyperbase system called Hype-
rion[29]. An interesting feature of Hyperion isthat itslayered architecture alows abstract
“nodes’” and “links’ to be described independent of storage organization and physical
representation.

HBM Sresearch isalso being influenced by experiences with monolithic systems. Most
existing hypermedia systems implement back-end functionality themselves using the file
system provided by the underlying operating system. There are exceptions to this rule,
however. Two such systems are Intermediaand the Virtual Notebook System.

Early versionsof Intermediawereimpl emented ontop of theINGRESré ationa DBMS.
In fact, one of the important contributions of Brown University’s IRIS (Institute for Re-
search in Information and Scholarship) project has been an anaysis of the applicability of
relational and object-oriented (OO) methodsto hypermediadatabases [30]. They concluded
that an OO approach would provide a better facility for modeling complex structures. As
part of this work, an OO database schema for Intermedia was developed. However, the
transition to an OO DBMS never occurred. Intermedia remains an essentially monolithic
application, with functional extensibility provided through traditional object-oriented pro-
gramming techniques. The classes that implement Intermedia functionality are now called
IRIS Hypermedia Services, and one of its componentsisthe Link Server. The Link Server
isanetwork accessible back-end to Intermedia. Persistent storageis currently provided by
the commercially available C-Tree system.

The Virtual Notebook System (VNS) is being designed to facilitate information ac-
quisition, sharing, and management in collaborative scientific and medical research [31].
A principal goa of the VNS project has been to distribute VNS within a heterogeneous
computing environment. VNS's design envisionsanumber of work group servers (WGSs)
connected through a network. WGSs provide local information storage and management
by maintaining the group’shypermedia datain arelationa database on the group’sserver.

56 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

Through a special Gatekeeper computer, users of a WGS can share information with other
groups and access information stored in other information and database services.

This architecture makes VNS fairly distinctive. It is an essentially monolithic system
with aseparable back-end. However, the VNS back-endisatruly decentralized, distributed,
homogeneous, database management facility. Thisisin contrast to systems such as Knowl-
edge Management System (KMS) that accrue network accessibility and decentralization
by way of the underlying operating system’s distributed file system protocols[32].

Efforts to develop open architectures for hypermedia systems are influencing HBMS
development as well. Three important systems whose architectures are primarily oriented
toward an open systems approach are: PROXHY, Sun MicroSystem’s Link Service, and
the University of Southern California sDistributed Hypertext (DHT) architecture.

PROXHY isan architecturefor constructing hypermediasystemsthat isabletointegrate
diverse applications under a common hypermedia model [33]. It is unusua in that the
architecture integrates principles from hypermedia, process, and object-oriented modds
of software construction. The PROXHY architecture allows links to cross application
boundaries, thereby supporting a notion of inter-application linking. PROXHY’s back-end
layer can be organized in anumber of ways, however, in itsprototypicimplementation, the
system utilizes the functionality available in the underlying file system.

Sun MicroSystem’'s Link Serviceis a product that is shipped with Sun’s programming-
in-the-large software development environment called Network Software Environment
(NSE) [34]. NSE alows users to make and maintain explicit and persistent links be-
tween obj ects managed by autonomousfront-end applications. Its capacity to support inter-
application linking makes NSE’s notion of extensibility similar to that seen in PROXHY
and SP1. The NSE server is centralized and can be accessed over a network by multiple
applications.

USC’sDistributed Hypertext (DHT) architectureillustrates an interesting move toward
an open systemsarchitecture combined with di stributed, heterogeneous database techniques
[35]. DHT isbased on aclient/server model and includes four components. a common hy-
permediadatamodel, acommunication protocol, servers, and client applications. The heart
of thesystem isitscollection of database servers. Each server consistsof agateway process
and an informationrepository. The gateway process transforms hypermediaoperationsinto
local access operations and local information objectsinto DHT nodes or links. The infor-
mation repositories are databases, file systems, or special -purpose storage managers. From
the repository’s view, the gateway process appears as another local application accessing
the repository’sdata. In thisway, DHT can incorporate existing databases without having
to copy their data or modify their schemas.

Thereiscurrently widespread interest in devel oping formal reference model sfor hyper-
media, and thiswork iscontributingindirectly to HBM Sdesi gn. Among themost prominent
are those described in Afrati and Koutras [20], Delide and Schwartz [25],[36],[37], Ha
lasz and Schwartz [18], Kacmar and Leggett [33], Lange [19], Schiitt and Streitz [21],
and Tompa [38]. Not surprisingly, these models vary along many dimensions. A detailed
consideration of their meritsis beyond the scope of this paper. Unfortunately, some of the
more influential models to appear in the past few years, such as the Dexter model and that
of Afrati and Koutras, have not yet been fully implemented.

So far, it seems that the greatest amount of database-related work appearing in the
hypermedia literature pertains to the issue of data access. Several research projects are
extending information retrieval techniques to hypermedia[39-44]. Others are developing

HB1 HYPERBASE MANAGEMENT SY STEM 57

formalisms to support structural queries[20,45,46]. Findly, there is a contingent examin-
ing ways of combining traditional querying with the type of user-directed browsing that
characterizes data access in hypermedia systems [47—49].

Related work in database

In the database area, severd advancing fronts will undoubtedly shape the future design
of hyperbase systems. Research on object-oriented, semantic, structural object-oriented,
and extended relationa database systems is particularly relevant. One of the important
challenges to both the hyperbase and database communities is discovering how existing
database techniques can apply to the data management problems of hypermedia systems.

Many of the application domains requiring database support today, such as computer-
aided design (CAD), computer-ai ded software engineering (CA SE), multimediadatabases,
office information systems (OIS), and, of course, hypermedia, require objects that have
arbitrarily complex internal structures and behavioral components. There is aso the re-
quirement that they participate in long-duration transactions where humans interact with
information over an extended period of time. These factors have resulted in a search for
new and more effective database technol ogies.

The object-oriented database paradigm is currently of enormousinterest to the database
community. It isbased onthenotion of encapsul ating codeand datainto asingleunit referred
to asan object. Theinterface between an object and therest of the systemis defined by a set
of messages. Thisabstract datatype approach, where operations, or methods, are embedded
within types, derives from object-oriented programming language design. In thisview, an
object isin control of its own behavior, behavior that is invoked by the messages that are
sent to the object. Similar objects are grouped to form aclass, and each object isan instance
of itsclass from which it inheritskey characteristics and behaviors.

Object-oriented data management refers to a collection of run-time issues such as
naming, persistence, concurrency control, distribution, version control, and security. These
issues have been addressed for many years by traditional database methodol ogies. Recent
work on obj ect-oriented database systems has focused on transferring thistechnol ogy to the
problem of managing objects. Severa prominent object-oriented database systems are the
result, including GemStone from ServioLogic [50], ORION from MCC [51], Ontologic’s
ONTOS [52], and Iris from Hewlett-Packard Labs [53]. An overview of existing object-
oriented databases is presented in [10,54,55,56].

The concept of object varies widdly [10]. In particular, there is growing recognition
that the traditional notions of object derived from object-oriented programming are often
too narrowly construed. While dynamically invoked methods, inheritance hierarchies, and
encapsulation are desirable for many applications, the variability present in typing and
invocation mechanisms makes database support for a ssimpler notion of object appealing.
This has resulted in work on persistent object stores such as Mneme[8].

A Mneme object is a contiguous block of memory associated with an object identi-
fier. Execution semantics are not applied to Mneme objects, and they have no type, class,
associated methods, or inheritance. The notion is that such an approach maximizes appli-
cability and efficiency of the store and provides a flexible framework upon which other
mechanisms—including OO features—may be built. These ideas substantially originated
inwork on the Multics operating system and appear in avariety of storage systems[10].

Semantic database model sattempt to provide more powerful abstractionsfor specifying

58 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

database schemas than are supported by traditional models. They also tend to encourage a
navigational view of data. Semantic modeling was initialy introduced in the early 1970s
tofacilitate the design of database schemas. Since then, research hasresulted in the devel -
opment of powerful mechanisms for representing the structural aspects of data. A number
of full-fledged semantic database management systems now exist and offer a wide range
of datamodeling capabilities. For areview of existing semantic models see [11,12].

Object-oriented database systems provide behavioral abstractionswhile semantic data-
base systems provide structural abstractions. Another important trend in the design of
advanced database systems is the integration of behaviora and structural modeling tech-
niques. Sructural object-oriented database systems attempt such an integration [57—60].
The synergy between thetwo viewsisimpressive. Together they provide compatible ways
of encapsulating both the structural and behavioral aspects of complex objects. Work in
thisarea and work on persistent object stores has clearly influenced the design of HB1.

Some new systems are attempting to address the shortcomings of existing database
technology through extensionsto the relational moddl. POSTGRES, for example, provides
many of the same capabilitiesof object-oriented and semantic model s by adding extensions
to the relational model [61]. In this regard, POSTGRES could be viewed as an example
of astructural object-oriented database system. Philosophically, the goa isto make as few
changes as possible to the relational model since there is broad familiarity with relational
methods, they are efficient, and they are relatively simple to understand.

Therdationa modd underlying POSTGRES has been extended with abstract datatypes
including user-defined operators and procedures, rel ation attributes of type procedure, and
attribute and procedure inheritance. These mechanisms can be used to simulate a wide
variety of semantic and object-oriented data modeling constructs including aggregation
and generalization, complex objects with shared sub-objects, and attributes that reference
tuplesin other relations.

We close this section by commenting on severa areas of database research that are also
indirectly influencing work on hyperbase management systems. Of particular relevance is
work on the data modeling and access requirements of multimedia applications [62—64].
In addition, the problems posed by transaction management and version control in VLSI
CAD and CA SE environmentsappear to be similar to thosein hypermediasystems[65,67].
Database extensibility isanimportantissuethat iscurrently receiving considerabl eattention
[68,69]. The notion of mediators or agency in databases systems[59,70,71] has contributed
tothework doneon HB1, as has research on heterogeneous multidatabase systems|[72,73].

RESEARCH ISSUESAND FUTURE WORK

Research on hyperbase management systems is in an early, experimenta phase. As a
result, the field is in tremendous flux. Comprehensive and unifying solutions to the data
management problems posed by advanced hypermedia systems have yet to emerge. The
following, however, are among the major issues that must be addressed in future HBMS
research:

e Modelsand architectures. Issues of scalability, extensibility, interoperability, archi-
tectural openness, distribution, and platform heterogeneity are of critical importance.

HB1 HYPERBASE MANAGEMENT SY STEM 59

e Node, link, and structure management. (Hypermedia data and metadata manage-
ment.) Data management facilities for hypermedia must address issues relating to
object identity, naming, and constraintson object and structureintegrity. In addition,
support for object composition, contexts, and views is critical, and the management
of exotic data types, including spatial, tempora, image, sequence, graph, proba
bilistic, user-defined, and dynamic types is essentia. The effective management of
behavioral entitieswill be important in many settings.

e Browsing/search and query. Optimizing the synergy between hypermedia’s naviga-
tional approach to data access and traditional search and query must be addressed at
the HBMS level. Important issues include the introduction of multi-level storein-
dexing techniques, agency, hyperbase heterogeneity, extensibility, and optimization.

e \Ersion control. Effective support for versioning will require an understanding of
precisaly which entities need to be versioned and when version creation occurs. In
hypermedia, there are opportunitiesto version not only information, but structure as
wdll. It will also beimportant to understand how version control should be partitioned
between the HBM S and application levels.

e Concurrency control, transaction management, and notification. Thetypesof interac-
tivity and operationsthat characterize hypermedia applications create a requirement
for managing short, long, and very long hyperbase transactions. HBM S support for
collaboration and the sharing of information will be of critical importance.

Clearly, HB1lacks much of theabovefunctionality. Futurework will be directed toward
addressing the system’s current shortcomings. In particular, we will introduce transaction
management in order to transitionthe HBM Sinto a multi-user environment. In addition, we
are designing policies and mechanisms for version management and object composition.
The next implementation of the HBM Swill utilize the extended rel ational database system
POSTGRES as a Storage Manager.

CONCLUSION

The unique data management requirements of advanced hypermedia systems require capa-
bilitiesthat are not generally provided by the current generation of database management
systems. In this paper, we have described the design and prototypic implementation of a
hyperbase management system intended to address some of these needs. The prototype,
HB1, implements severa distinguishing features. For example, the HB1 system:

e meetsthe storage requirements of an open, extensibl e, object-based system architec-
ture for distributed, inter-application linking;

e abstracts structure, behavior, and information from hypermedia;

e iscomposed of two network-accessible server processes: one providing object man-
agement, the other managing hypermedia connectivity information;

e uses a semantic network database management system to manage physica storage;

e promotes atoolkit approach to client/hyperbase construction;

e ingtantiates an architectural framework that is scalable, flexible, and useful as a
vehicle for generd research on HBM'S organization.

HB1 has demonstrated its effectiveness in providing back-end services to an advanced
hypermedia system prototype. Experiences gained so far in this work have been used to
identify several important issues to be addressed in future HBMS research. These include

60 SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

devel oping techniques for transaction management, controlled sharing, and versioning that
will be effective in large-scale, multi-user, hypermedia-based information systems of the
future.

ACKNOWLEDGEMENTS

The authors would like to thank other members of the team that constructed the software
described in this paper: Ron Szabo, Doug Miller, Joe Drufke, Don Dylla, and Tim Roden.
Thanks also to Ed Cunnius for helpful advice on early drafts of the paper and to Cindy
Kunz for assistance in preparing the manuscript. Bob Griffith, Jeff Barber, and Ken Briskey
provided vauable assistance in our work with Saberel. This work was supported in part
by a grant from the Advanced Workstations Division of IBM Corporation, Austin, Texas,
under Research Agreement 194.

REFERENCES

ACM Transactionson Office Information Systems, 7(1) (1989).

Communications of the ACM, 31(7) (1988).

Proceedingsof the Hypertext’ 87 Conference, Chapel Hill, NC, ACM Press, (November, 1987).

Proceedingsof the Hypertext ' 89 Conference, Pittsburgh, PA, ACM Press, (November, 1989).

Proceedingsof the Hypertext’ 91 Conference, San Antonio, TX, ACM Press, (December, 1991).

J. Conklin, ‘Hypertext: An introduction and survey’, IEEE Computer, 20(9), 17-41 (1987).

A.Rizk, N. Streitz, and J. Andre, eds, Hypertext: Concepts, Systems, and Applications. Proceed-

ingsof the European Conferenceon Hypertext, France, Cambridge University Press, Cambridge,

UK, (November, 1990).

8. J E. B. Moss, ‘Design of the Mneme persistent object store’, ACM Transactions on Office
Information Systems, 8(2), 103139 (1990).

9. J.L.Schnase,J. J. Leggett, D. L. Hicks, and R. L. Szabo, ' Semantic datamodeling of hypermedia
associations’, ACM Transactions on Information Systems, 11(1), 27-50 (1993).

10. R. G. G. Cattell, Object Data Management: Object-oriented and Extended Relational Systems,
Addison-Wesley, Reading, MA, 1991.

11. R. Hull and R. King, ‘ Semantic database modeling: Survey, applications, and research issues’,
ACM Computing Surveys, 19(3), 201-260 (1987).

12. J.PeckhamandF. Maryanski, ‘ Semantic datamodels’, ACM Computing Surveys, 20(3), 153—189
(1988).

13. J. L. Schnase, J. J. Leggett, and D. L. Hicks, ‘HB1: Initial design and implementation of
a hyperbase management system’, Department of Computer Science Technical Report No.
TAMU-HRL 91-003, Texas A&M University, College Station, TX (1991).

14. J.E. Drufke, J. J. Leggett, D. L. Hicks, and J. L. Schnase, ‘ The derivation of a hypertext widget
class from the Athena text widget’, Department of Computer Science Technical Report No.
TAMU 91-002, Texas A&M University, College Station, TX (1991).

15. R. Scheifler, J. Gettys, and R. Newman, X Window System, Digital Press, Bedford, MA, 1988.

16. M. Palaniappan, N. Yankelovich, and M. Sawtelle, ‘Linking active anchors. A stage in the
evolution of hypermedia’, Hypermedia, 2(1), 47—66 (1990).

17. N. Yankelovich, B. Haan, N. Meyrowitz, and S. Drucker, ‘Intermedia: The concept and the
construction of a seamlessinformation environment’, IEEE Computer, 21(1), 8196 (1988).

18. F. Halaszand M. Schwartz, ‘ The Dexter hypertext referencemodel’, in Proceedingsof the NIST
Hypertext Sandardization Workshop, NIST, Gaithersburg, MD, pp. 95-133, (1990).

19. D.Lange,‘A formal model for hypertext’, in Proceedingsof the NI ST Hypertext Sandardization
Workshop, NIST, Gaithersburg, MD, pp. 145-166, (1990).

20. F. Afrati and C. Koutras, ‘A hypertext model supporting query mechanisms’, in Hypertext:

Concepts, Systems, and Applications. Proceedings of the European Conference on Hypertext,

NougkwdpE

HB1 HYPERBASE MANAGEMENT SY STEM 61

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

France, ed. A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp.
52-66, (November, 1990).

H. A. Schittand N. A. Streitz, ‘Hyperbase: A hypermediaenginebased on arelational database
management systen'’, in Hypertext: Concepts, Systems, and Applications. Proceedings of the
European Conference on Hypertext, France, ed. A. Rizk, N. Streitz, and J. Andre, Cambridge
University Press, Cambridge, UK, pp. 95-108, (November, 1990).

U. K. Wiil, ‘Design and implementation of ahyperbase’, Institute for Electronic Systems Tech-
nical Report No. IR 90-03, Department of Mathematics and Computer Science, The University
of Aalborg, Aalborg, Denmark (1990).

F. Halasz, ‘Reflections on NoteCards: Seven issues for the next generation of hypermedia
systems’, Communications of the ACM, 31(7), 836-852 (1988).

B. Campbell and J. Goodman, ‘HAM: A general-purpose hypertext abstract machine', Commu-
nications of the ACM, 31(7), 856-861 (1988).

N. Delisle and M. Schwartz, ‘ Neptune: A hypertext system for CAD applications', in Proceed-
ings of the ACM International Conferenceon the Management of Data (S GMOD), pp. 132-143,
(1986).

J. J. Puttressand N. M. Guimaraes, ' Thetoolkit approach to hypermedia’, in Hypertext: Concepts,
Systems and Applications, Proceedings of the European Conference on Hypertext France, ed.
A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp. 25-37,
(November, 1990).

J. B. Smith and F. D. Smith, ‘ABC: A hypermedia system for artifact-based collaboration’, in
Proceedingsof the Third ACM Conference on Hypertext (Hypertext’91), San Antonio, TX, pp.
179-192, (December, 1991).

U. K. Wiil and J. J. Leggett, ‘Hyperform: using extensibility to develop dynamic, open and
distributed hypertext systems’, in Proceedingsof the European Conferenceon Hypertext (ECHT
'92), Milan, Italy, pp. 251-261, (1992).

J. Zobel, R. Wilkinson, J. Thom, E. Mackie, R. Sacks-Davis, A. Kent, and M. Fuller, ‘An
architecture for hyperbase systems', in Proceedings of the First Australian Multi-Media Com-
munications, Applications and Technology Workshop, pp. 152-161, (1991).

K. Smith and S. Zdonik, ‘Intermedia: A case study of the differences between relational and
object-oriented database systems', in Proceedingsof the ACM OOPSLA ' 87 Conference, ACM,
New York, pp. 452—465, (1987).

F. M. Shipman, R. J. Chaney, and G. A. Gorry, ‘ Distributed hypertext for collaborative research:
The Virtual Notebook Systent’, in Proceedings of the Second ACM Conference on Hypertext
(Hypertext ' 89), Pittsburgh, PA, pp. 129-136, (November, 1989).

R. Akscyn, D. McCracken, and E. Yoder, ‘KMS: A distributed hypermediasystem for managing
knowledgein organizations’, Communications of the ACM, 31(7), 820835 (1988).

C.J. Kacmarand J. J. Leggett, ‘PROXHY: A process-oriented extensiblehypertext architecture’,
ACM Trans. Inf. Syst, 9(4), 399-419 (1991).

A. Pearl, ‘Sun’s link service: A protocol for open linking’, in Proceedingsof the Second ACM
Conference on Hypertext (Hypertext ' 89), Pittsburgh, PA, pp. 137-146, (November, 1989).

J. Noll and W. Scacchi, ‘Integrating diverse information repositories: A distributed hypertext
approach’, IEEE Computer, 24(12), 38-45 (1991).

R. Furuta and P. D. Stotts, ‘The Trellis hypertext reference model’, in Proceedings of the
Hypertext Standardization Wor kshop, Gaithersburg, MD, pp. 83-93, (1990).

P.K. Garg, Abstraction mechanismsin hypertext’, Communications of the ACM, 31(7), 862—-870
(1988).

F. W. Tompa, ‘A data model for flexible hypertext database systems', ACM Transactions on
Office Information Systems, 7(1), 85-100 (1989).

P. D. Bruza, ‘Hyperindices: A novel aid for searching in hypermedia’, in Hypertext: Concepts,
Systems, and Applications. Proceedingsof the European Conference on Hypertext, France, ed.
A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp. 109-122,
(November, 1990).

W. B. Croft and H. Turtle, ‘A retrieval model incorporating hypertext links', in Proceedings of
the Hypertext ' 89 Conference, Pittsburgh, PA, pp. 213-224, (November, 1989).

D. B. Crouch, C. J. Crouch, and G. Andreas, ‘The use of cluster hierarchies in hypertext

62

SCHNASE, LEGGETT, HICKS, NUERNBERG, AND SANCHEZ

42.

43,

45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

information retrieval’, in Proceedings of the Hypertext '89 Conference, Pittsburgh, PA, pp.
225-237, (November, 1989).

M. Frisse, ‘ Searching for information in a hypertext medical handbook’, Communications of the
ACM, 31(7), 880886 (1988).

M. E. Frisse and S. B. Cousins, ‘Information retrieval from hypertext: Update on the dynamic
medical handbook project’, in Proceedingsof the Hypertext ' 89 Conference, Pittsburgh, PA, pp.
199-212, (November, 1989).

D. Lucarella, ‘A model for hypertext-based information retrieval’, in Hypertext: Concepts,
Systems, and Applications. Proceedingsof the European Conference on Hypertext, France, ed.
A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp. 81-94,
(November, 1990).

C. Beeri and Y. Kornatzky, ‘A logical query language for hypertext systems’, in Hypertext:
Concepts, Systems, and Applications. Proceedings of the European Conference on Hypertext,
France, ed. A. Rizk, N. Streitz, and J. Andre, Cambridge University Press, Cambridge, UK, pp.
67-80, (November, 1990).

M. P. Consensand A. O. Mendelzon, ‘ Expressing structural hypertext queriesin GraphLog', in
Proceedingsof the Hypertext ' 89 Conference, Pittsburgh, PA, pp. 269-292, (November, 1989).
C. Clifton and H. Garcia-Molina, ‘ Indexing in a hypertext database’, in Proceedings of the 16th
Conferenceon Very Large Data Bases, Brisbane, Australia, pp. 36—49, (August, 1990).

L. Gallagher, R. Furuta, and P. David Stotts, ‘Increasing the power of hypertext search with
relational queries', Hypermedia, 2(1), 1-14 (1990).

C. Watters and M. A. Shepherd, ‘A transient hypergraph-based model for data access’, ACM
Transactionson Information Systems, 8(2), 77-102 (1990).

P. Butterworth, A. Otis, and J. Stein, ‘The GemStone object database management system’,
Communications of the ACM, 34(10), 6477 (1991).

W. Kim, N. Ballou, H. Chou, J. F. Garza, and D. Woelk, ‘ Features of the ORION object-oriented
database system’, in Object-Oriented Concepts, Databases, and Applications, ed. W. Kim and
F. H. Lochovsky, Addison-Wesley Publishing Co., Reading, MA, pp. 251-282, (1989).

T. Andrews, C. Harris, and K. Sinkel, ‘ONTOS: A persistent database for C++', in Object-
Oriented Databaseswith Applicationsto CASE, Networks, and VLS CAD, ed. R. Guptaand E.
Horowitz, Prentice-Hall, Englewood Cliffs, NJ, pp. 387—406, (1991).

D. Fishman, D. Beech, H. Cate, E. Chow, T. Connors, J. Davis, N. Derrett, C. Hoch, W. Kent, P.
Lyngbaek, B. Mahbod, M. Neimat, T. Ryan, and M. Shan, ‘IRIS: An object-oriented database
management system’, ACM Transactions on Office Information Systems, 5(1), 48-69 (1987).
Communications of the ACM, 34(10) (1991).

R. Gupta and E. Horowitz, Object-Oriented Databases with Applications to CASE, Networks,
and VLS CAD, Prentice-Hall, Englewood Cliffs, NJ, 1991.

W. Kim and F. Lochovsky, Object-Oriented Concepts, Databases, and Applications. ACM
Press/Addison-Wesley, Inc., New York, NY, 1989.

A. J. Berre, ‘SOOM and Tornado-*: Experience with database support for object-oriented
applications’, in Advances in Object-Oriented Database Systems: Proceedings of the 2nd In-
ternational Conferenceon Object-Oriented Database Systems, ed. K. Dittrich, Springer-Verlag,
New York, pp. 104-1009, (1988).

K. R. Dittrich, W. Gotthard, and P. C. Lockemann, ‘DAMOKLES—A database system for
software engineering environments', in Proceedings of the IFIP Workshop on Advanced Pro-
gramming Environments, Trondheim, Norway, ed. R. Conradi, R. M. Didriksen, and D. H.
Wanvik, Springer-Verlag, New York, pp. 353-371, (June, 1986).

S. E. Hudson and R. King, ‘Cactis: A self-adaptive, concurrent implementation of an object-
oriented database management system’, ACM Transactions on Database Systems, 14(3), 291—
321 (1989).

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling
and System Design, Prentice-Hall, Englewood Cliffs, NJ, 1990.

M. Stonebraker and G. Kemnitz, ‘ The POST GRES next-generation database management sys-
tem’, Communications of the ACM, 34(2), 78-92 (1991).

M. Caplinger, ‘An information system based on distributed objects’, in Proceedings of the
OOPSLA 87 Conference, pp. 126-137, (October, 1987).

HB1 HYPERBASE MANAGEMENT SY STEM 63

63.

64.

65.
66.

67.

68.

69.

70.

71.

72.
73.

S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria, ‘Multimedia document
presentation, information extraction, and document formation in MINOS: A model andasystem’,
ACM Transactionson Office Information Systems, 4(4), 345-383 (1986).

D. Woelk and W. Kim, ‘Multimedia information management in an object-oriented database
system’, Proceedings of the Thirteenth International Conference on Very Large Data Bases,
Brighton, England, pp. 319-329, (1987).

D. Batory and W. Kim, ‘Modeling concepts for VLS| CAD objects’, ACM Transactions on
Database Systems, 10(3), 322—-346 (1985).

R. H. Katz, ‘Toward a unified framework for version modeling in engineering databases', ACM
Computing Surveys, 22(4), 375-408 (1990).

D. Maier, J. Stein, A. Otis, and A. Purdy, ‘Development of an object-oriented DBMS, in
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pp. 472—-482, (September, 1986).

D. S.Batory, J. R. Barnett, F. F. Garza, K. P. Smith, K. Tsukauda, B. D. Twichell, and T. E. Wise,
‘GENESIS: A reconfigurable database management system’, IEEE Transactions on Software
Engineering, 1258-1272 (1990).

M. Carey, D. DeWitt, J. Richardson, and E. Shekita, ‘ Object and file management inthe EXODUS
extensible database system’, in Proceedings of the Twelfth International Conference on Very
Large Data Bases, Kyoto, Japan, pp. 91-100, (August, 1986).

C. A. Ellis and S. J. Gibbs, ‘Active objects: Readlities and possibilities,” in Object-Oriented
Concepts, Databases, and Applications, ed. W. Kim and F. H. Lochovsky, Addison-Wesley
Publishing Co., Reading, MA, pp. 561-572, (1989).

G. Wiederhold, ‘Mediatorsin the architecture of future information systems’, IEEE Computer,
25(3), 38-49 (1992).

ACM Computing Surveys, 22(3) 1990.

IEEE Computer, 24(10) (1991).

	SUMMARY
	INTRODUCTION
	HYPERMEDIA CONCEPTS
	CONCEPTUAL MODEL UNDERLYING HB1
	HB1 DESIGN AND IMPLEMENTATION
	Storage Manager (SM)
	Semantic database models
	Saberel

	Object Manager (OM)
	OM data model
	Semantic modeling of OM data

	Association Set Manager (ASM)
	ASM data model
	Semantic modeling of ASM data
	Semantic modeling of ASM data

	HB1/penalty exhyphenpenalty SP1 operation
	Implementation

	DISCUSSION
	HB1 data model
	HB1 architecture
	Experiences

	RELATED WORK
	Related work in hypermedia
	Related work in database

	RESEARCH ISSUES AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

