
h

ELECTRONIC PUBLISHING, VOL . 5(2), 53–54 (JUNE 1992)

Editorial

Software engineering and document manipulation have strong resemblances and both of
them are concerned with generating commercial products (software programs or books
and magazines). Document manipulation environments are now adopting, after a 10 year
delay, the very techniques that were originated for programming language design and
manipulation. In the same way, the techniques used for teaching about document
manipulation ought to parallel those used for teaching about programming languages.
Indeed, we do find that teaching techniques developed for programming languages are
now being adapted to teach document manipulation, but again with a 10 year delay and
unfortunately repeating the same errors that were made 10 years ago.

When the first lessons were given on computer programming, the focus was only on
the computer’s machine language and not on broader computer science principles. Obvi-
ously, the vision of early teachers was limited by the low level of these highly specific
machine codes. Similarly, the first phototypesetters were driven through highly exotic
codes and their use was taught in the same way as for machine language on computers.

When languages such as FORTRAN or Cobol became commonplace then most pro-
gramming courses became ‘FORTRAN oriented’ or ‘Cobol oriented’. However an
understanding of a programming language without an accompanying understanding of
the underlying principles of programming leads to the delusion that you are a program-
mer. For example, after a three-day seminar on programming a student might be given
some positive integer number, greater than one, that is known to be a perfect square and
might be asked to compute its square root. One way to proceed is to take each positive
integer in sequence (2, 3, etc.) and multiply it by itself. If the result turns out to be the the
given number, then a solution has been discovered. But this is not the way a professional
programmer would proceed.

In a similar fashion there are, today, many Desktop Publishing courses which are
‘Framemaker oriented’ or ‘Word-n oriented’. These Electronic Publishing courses are
typically designed to teach students only how to use a particular system. After a few
day-long seminars on Word 4.0, the student can write a style-sheet and compose a page
with 10 different lovely fonts. But this is not the way a professional designer would
proceed.

Even though the final goal of programming is a program, to be an effective program-
mer a student must learn how programs are built. Similarly, even if the final goal of EP is
paper sheets or screen images, a student must learn how the how the papers sheets or
screen images were conceived. Program specification languages along with the funda-
mental principles of programming form the basis for teaching computer programming.
Before we can teach electronic publishing effectively we must design page specification
languages that are more accessible than DSSSL and more formal than the anecdotal
know-how of designers. However we must not forget to study the traditional principles of
publishing. Electronic Publishing has a lot to learn, in terms of education, from computer
science history.

CCC 0894–3982/92/020053–02 Received 1 October 1992
 1992 by John Wiley & Sons, Ltd.

© 1998 by University of Nottingham.



h

54 JACQUES ANDRÉ

Even though documents and programs have much in common, a key difference must
be noted; a program is intended to be executed by a computer while a document is
intended to be read by a human reader. The document’s visual aspects require not only
the involvement of software engineers (as in programming language environments) but
also the involvement of type designers, editors, etc.

Another problem is that Electronic Publishing, Desktop Publishing and other con-
cepts, are not well defined. Until recently, there were three different fundamental ‘roads’
leading to today’s publishing technology. The first road originates with the chancel-
leries’ cursive hand-writing which was then replaced with typewriting and today with
word-processing. The second road — the Royal Road typographers say — comes from
hot metal, phototypesetters and now lasertypesetters. Today the first road is joining the
second one as evidenced by the title of a recent book, The Mac is not a typewriter. The
third road, based on the structure of the document rather than its appearance, started with
phototypesetters and then lead to structured documents, SGML, and even hypertext. This
path is also converging with the others but the result is not yet well-defined. Clearly the
result must be defined before it can be taught to students.

To help form this definition, we held the TEP’92 (Teaching Electronic Publishing)
workshop in the spring of 1992 in conjunction with the EP92 conference at Lausanne,
Switzerland. The papers in this special issue of EP-odd are selected from those presented
at that workshop.

I would like to thank the authors for agreeing to permit republication of their papers
and Richard Furuta for his important work as editor, especially on those papers that were
not written by native English speakers.

JACQUES ANDRÉ, GUEST EDITOR


