
h

ELECTRONIC PUBLISHING, VOL . 2(2), 65–90 (DECEMBER 1989)

The implementation of the Amsterdam SGML
Parser

JOS WARMER AND SYLVIA VAN EGMOND

Faculteit Wiskunde en Informatica
Department of Mathematics and Computer Science
Vrije Universiteit
Amsterdam
The Netherlands

SUMMARY

The Standard Generalized Markup Language (SGML), is an ISO Standard that specifies a
language for document representation. This paper gives a short introduction to SGML and
describes the Amsterdam SGML Parser and the problems we encountered in implementing
the Standard. These problems include interpretation of the Standard in the places where it is
ambiguous and the technical problems in parsing SGML documents.

KEY WORDS SGML Structured documents Document preparation Parser generators

INTRODUCTION

When a complex document is to be printed on a typesetter or laserprinter, the usual
method is to use a formatter to process the document. The input to such a formatter
consists of the text of the document interspersed with formatting commands. These
formatting commands are called mark-up . In powerful formatters such as TEX [1] or
troff [2] the user usually specifies the formatting commands. Using troff, for example,
each line starting with a dot (‘.’) is interpreted as a formatting command. The start of
this paper might be marked up as shown in Figure 1. Notice that the formatting
commands are often cryptic and of a very low-level nature.

The mark-up provided by TEX or troff is called procedural mark-up which involves
specifying the processing instructions within the text. The user is mainly concerned with
the application that is going to process the document (in this case the formatter) and
thinks in terms of ‘insert a blank line’ and ‘start a new page’ rather than ‘start a new
paragraph’ and ‘start a new section’. Changing to another formatter, or using the
document in some other application (e.g. in a database), may make it necessary to change
all the mark-up.

To overcome this problem many formatters provide a macro facility. A macro
package identifies the different structural elements of a document and for each element a
macro is defined which contains the low level formatting commands. A well known
macro package for troff is ms[3], and, using the ms macros TL, AU, AI, AB and AE, the
previous mark-up could be simplified to something along the lines shown in Figure 2.

The use of high-level macros simplifies the mark-up process, but several problems
still remain. For instance, there is no way to determine whether the macros are used

0894–3982/89/020065–26$13.00 Received 15 July 1988
 1989 by John Wiley & Sons, Ltd. Revised 3 April 1989

© 1998 by University of Nottingham.



h

66 JOS WARMER AND S. VAN EGMOND

.bp \" start a new page

.ps 12 \" pointsize is set to 12

.ft B \" fontstyle is bold

.ce \" centre one line
The Implementation of the Amsterdam SGML Parser
.sp 1 \" insert a blank line
.ps 10
.ft I \" fontstyle is italic
.ce
JOS WARMER AND SYLVIA VAN EGMOND
.ft R \" fontstyle is roman
.sp 0.5
.ce 4
Faculteit Wiskunde en Informatica
Department of Mathematics and Computer Science
Vrije Universiteit
Amsterdam
The Netherlands
e-mail: jos@cs.vu.nl
.sp 3
.ft I
.ce
SUMMARY
.sp 2
.ft R
.ti 0.5 \" temporary indent for next text line
The Standard Generalized Markup Language (SGML), is an ISO
standard that specifies a language for document
representation. This paper gives a ....

Figure 1. Document marked up with troff code

.TL \" title
The Implementation of the Amsterdam SGML Parser
.AU \" authors
JOS WARMER AND SYLVIA VAN EGMOND
.AI \" affiliation
Faculteit Wiskunde en Informatica
Department of Mathematics and Computer Science
Vrije Universiteit
Amsterdam
The Netherlands
e-mail: jos@cs.vu.nl
.AB \" start abstract
The Standard Generalized Markup Language (SGML), is an
ISO standard that specifies a language for document
representation. This paper gives a ....
.AE \" end abstract

Figure 2. Document marked up with ms macros



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 67

consistently; the TL macro can be used anywhere in the document, and not just for the
title page; the AE macro, which denotes the end of the abstract, can be forgotten or can
occur when no abstract has been started. The user can still use low-level formatting
commands in the text, and these can interfere with the correct operation of the macro
package.

To overcome these problems, a new, more rigorous, approach is needed which will
enforce the consistency of mark-up. Such an approach is taken by SGML. SGML
(Standardized Generalized Markup Language) is an ISO Standard, issued in October
1986 [4, 5] and, as its name suggests, it specifies how mark-up can be incorporated into a
document. An introductory survey of SGML is given in [6] and a more elaborate
description in [7].

This paper discusses some of the problems we encountered while implementing the
Amsterdam SGML Parser. The first section, below, gives a short introduction to SGML
and describes the task of an SGML parser in processing a document marked up using
SGML. The second section discusses some special features of SGML, the errors or
deficiencies in the Standard concerning these features and the design decisions we had to
make. This section also describes the ‘back end’ of the Amsterdam SGML Parser, which
can be used to convert SGML documents to troff or TEX documents. The third section is
more technical and describes the most important implementation problems and how we
solved them. In the final section some conclusions are drawn, concerning SGML, the
SGML Standard, and our implementation.

Introduction to SGML

SGML is a language which is used on two levels. At the first level, it is used to write a
document type definition (DTD) which defines the structure of a document. An example
of a DTD is given in Figure 3.

<!doctype memo [
<!element memo - O (sender, receiver, contents)>
<!element sender O O (person) >
<!element receiver O O (person)+>
<!element person O O (nickname | (forename?, surname))>
<!element (forename,

nickname,
surname) O O (#PCDATA)>

<!element contents O O (#PCDATA)>
]>

Figure 3. A simple document type definition

The first line specifies that this DTD describes a document type called memo. The
second line says that a memo consists of a sequence-group of three consecutive elements:
sender, receiver and contents. The sender consists of one person, and a
receiver of one or more persons. A person is an or-grouping of a nickname and
an optional forename followed by a surname. All other elements are defined as
PCDATA, which means they consist of data characters. A line starting with
<!element is called an element declaration. Note that a DTD describes the logical



h

68 JOS WARMER AND S. VAN EGMOND

structure of a document, using a formal grammar, and that it serves to name the structural
elements and their relationships. It cannot say anything about the layout of the document
or the meaning of the elements.

At a second level SGML can be used to describe a document because, as we shall see,
the document’s structure is indicated by suitable start-tags and end-tags. This actual
structure must satisfy the formal structure given in the DTD; as an example of this,
Figure 4 shows a document which conforms to the DTD shown in Figure 3.

<memo>
<sender>
<person>
<forename>Jos</forename>
<surname>Warmer</surname>

</person>
</sender>
<receiver>
<person>
<forename>Sylvia</forename>
<surname>van Egmond</surname>

</person>
</receiver>
<contents>
Tomorrow’s meeting will be postponed.

</contents>
</memo>

Figure 4. A document marked up with SGML

The start and end of an element are denoted as follows: any text between ‘<’ and ‘>’
is called the start-tag, and text between ‘</’ and ‘>’ is an end-tag . The indentation in
Figure 4 is not mandatory, but is used to make the structure clear.

In the SGML scheme a document type definition describes a class of documents, and
any particular document conforming to that DTD is an instance of such a class.

Typing a document with all these start- and end-tags can be very tedious and SGML
overcomes this problem by defining several rules for omitting tags. The main idea
behind these rules is that if only one type of tag is possible in a given context, then that
tag may be omitted. However, the fact that a tag might be omitted has to be stated when
declaring an element; for example, in the declaration of memo (Figure 3), the ‘-’ denotes
that the start-tag may not be omitted, while the ‘O’ denotes that the end-tag may be
omitted. In SGML this is called the OMITTAG feature (see next section). For all other
elements the start-tag as well as the end-tag may be omitted. Figure 5 shows the same
memo as Figure 4, but now with more of the tags omitted. This is a far more readable
version and is much easier for humans to type.

There are a number of other features in SGML which can also be used to ease the
typing of a document, or to add additional information to an element. These include
ways of defining abbreviations of tags (called the SHORTTAG feature) and plain text.
The more important of these features are described in the next section. Despite the
undoubted usefulness of these abbreviations the long form of mark-up is the easier form
to use whenever a document is to be processed by a computer program because the



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 69

<memo>
<forename>Jos
<surname>Warmer

<receiver>
<forename>Sylvia
<surname>van Egmond

<contents>
Tomorrow’s meeting will be postponed.

</memo>

Figure 5. The same document as in Figure 4 but with tag omission

start and end of each element are then clearly marked. This greatly reduces the
complexity of processing the document.

Because a DTD is a formal description, the process of verifying the structure of a
document can be done automatically. A program that checks whether a document
conforms to a DTD is called an SGML parser and such a parser is a necessary tool if the
full advantage is to be gained from SGML’s rigorous approach.

Structure of the parser

This section describes the rôle of an SGML parser in processing documents that are
marked up using SGML. An SGML parser takes a DTD and a document as its inputs and
delivers a ‘complete’ document as output. The rôle of the parser in this is twofold.
Firstly the parser must check whether the DTD is correct: that is, the DTD must obey all
rules and restrictions that are specified in the Standard. Secondly, the parser checks
whether the document conforms to the DTD and, if it does, the parser then provides all
the tags in the document that the user omitted. For example, the document of Figure 5
would be transformed to the ‘complete’ document of Figure 4 by this process.

The general structure of an SGML parser is shown in Figure 6.

document type
definition

document

SGML
Parser

correct and
complete
document

Figure 6. Structure of an SGML parser

Alternatively, because checking the DTD and checking the document are two separate
processes, an SGML parser can be divided in two parts. The first part, called the dtd-
parser , checks the DTD, and generates a parser for the corresponding class of
documents. This generated parser, called the document parser , checks a document
according to the document class, and delivers the complete document. This second
approach is shown in Figure 7.



h

70 JOS WARMER AND S. VAN EGMOND

document type
definition

dtd-parser

document
parser

document
correct and
complete
document

Figure 7. An SGML parser divided in two parts.

Both of these alternatives have their advantages and disadvantages. The first
approach is more appropriate in an environment where DTD’s change rapidly or where
each user writes his own DTD. The disadvantage is that processing a document takes a
relatively long time, because processing of each document will include processing of the
DTD.

The second approach is more appropriate in an environment where a number of
standard DTD’s are used. If an executable binary version of each document parser is the
only publicly available software then the users will not be able to use a different DTD,
which will guarantee the actual use of standard document classes. Another advantage is
that the document parser can be optimized for the particular class of documents, which
can make it much faster. If many documents are to be processed this advantage becomes
greater.

Implementation of the parser

Another advantage of the second approach is the possibility of making more use of
existing parser-generators. In the first approach, the DTD is scanned and stored in some
internal tables or other data structures. While parsing the document these tables have to
be examined to see whether or not an element is allowed at some particular place in the
document.

In the second approach the dtd-parser can generate input for an existing parser-
generator which will then produce the actual document parser. As will be shown later,
the DTD-grammar in SGML must conform to a notion of unambiguity which closely
resembles the LL(1) conditions [8, 9]. This led us to the conclusion that it should be
possible to use an existing LL(1) parser-generator and this is the main reason why we
have chosen the approach of Figure 7. We believe that this approach saves a lot of work
and creates efficient document parsers.

The parser-generator we use is LLgen[10], an extended LL(1) recursive descent
parser-generator, developed at the Vrije Universiteit, which is known to produce efficient
parsers. LLgen takes as input an extended LL(1) grammar, with semantic rules in the C
language [11], and produces a C program as output. LLgen is part of ACK — the
Amsterdam Compiler Kit [12] — and parsers for Pascal, C, Modula2 and Occam have
been written in LLgen.

The element declarations in a DTD are written in a form which closely resembles the
form of an LLgen rule. On the face of things it only requires a simple syntax change to
convert the DTD to LLgen. For example, the DTD from Figure 3, when rephrased in
LLgen, becomes:



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 71

%start memo, memo;

memo : sender receiver contents ;
sender : person ;
receiver : person+ ;
person : [nickname | [forename? surname]] ;
forename : PCDATA ;
nickname : PCDATA ;
surname : PCDATA ;
contents : PCDATA ;
PCDATA : datahcharacter* ;

However, we shall show that it generally takes rather more than just a syntax change to
rewrite the element declarations into LLgen rules.

The complete structure of the Amsterdam SGML Parser, including the intermediate
steps, is shown in Figure 8. As one can see from the figure, LLgen is not only used in the
generation of the document parser but also in the implementation of the dtd-parser. The
rules in the Standard which describe what a document type definition looks like are in the
same form as the LLgen rules. It took very little effort to make these rules LL(1), and
implementing them in LLgen was easy. In this way the dtd-parser itself is generated
from the SGML-rules defined in the Standard.

Rules from the Standard
in LLgen form

+ C code for DTD

LLgen
C Compiler

dtd-parser

document type
definition

dtd-parser

DTD in LLgen form
C code for document

LLgen
C Compiler

document
parser

document

document
parser

correct and
complete
document

Figure 8. Structure of the Amsterdam SGML Parser

SPECIFICATION OF THE AMSTERDAM SGML PARSER

The functionality of an SGML parser is defined in the SGML declaration. This
declaration may precede the DTD. In an SGML declaration all possible features are



h

72 JOS WARMER AND S. VAN EGMOND

given by their name followed by the keyword, YES or NO, to indicate whether the
feature is supported or not. Examples of features are tag omission (see section 1) and tag
minimization denoted by OMITTAG and SHORTTAG respectively.

The SGML declaration also specifies numerical limits, such as the maximum number
of declared elements and the character sets used. If an SGML declaration uses the
reference capacity set for the numerical limits, the reference concrete syntax for the used
character sets, and supports only the OMITTAG and SHORTTAG features, it is said to
support basic SGML. The Amsterdam SGML Parser is a conforming parser for basic
SGML.

In our opinion basic SGML contains the most useful features. The other features in
SGML are exotic and seldom used. For instance, the feature SUBDOC specifies that
within a document a subdocument may occur. This subdocument is marked up according
to its own DTD. The DTD of the subdocument and the DTD of the main document can
differ. This feature may be of use in special cases, but in general it will not be used. The
Association of American Publishers has developed three standard DTD’s using basic
SGML [13, 14]. These three DTD’s define a book, an article and a serial. This shows
that basic SGML is powerful enough for standard applications.

In later sections we describe several characteristics of basic SGML, especially those
characteristics that are ambiguously or incompletely described in the Standard, and the
subsequent design decisions made by us. We then go on to describe the kind of error
checking performed in the Amsterdam SGML Parser, and the difficulties encountered in
the Standard when implementing basic SGML. Finally, the output of a document parser
is described.

Validation services

The DTD and the document are both checked for errors. The DTD is also checked for
inconsistencies, such as doubly-declared elements. The Standard, in Section 15.6.2,
specifies so-called validation services which formally define the checks performed by an
SGML parser. The following is a list of validation services, each with a short
explanation. YES indicates that the validation service is provided by the Amsterdam
SGML Parser, NO that it is not.

GENERAL (YES):
All syntax errors in the DTD and the document are reported. However, as a result of
one error several other errors may occur. The parser tries to resume parsing after an
error has occurred by adding or deleting input until a token is found which fits the
grammatical constraints [15]. All semantic checks described throughout the
Standard are performed and an error message is generated when an error is
encountered. Examples of semantic errors might be a reference to an undeclared
element or to a doubly-declared element. Exceeding a numerical restriction on
some aspect of the mark-up language, such as the length of a name, results in a
warning message.

MODEL (YES):
The element declarations define the structure of a document in a so-called content
model. This structure may not be ambiguous (an explanation of the ambiguities
which are recognized is given in a later section). The Amsterdam SGML Parser
checks the structure for ambiguities and reports them.



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 73

EXCLUDE (NO):
Exclusions that change the structure of a document are not reported. Owing to a
limited amount of time and the fact that exclusions are rare, we have chosen not to
implement these checks, yet. Note, however that the parser does handle exclusions
and inclusions.

CAPACITY (YES):
There are some numerical limits (capacities) on the complexity of the DTD and the
document. These capacities are expressed as a number of capacity points. The
Amsterdam SGML Parser collects these points and gives an error message when
some value is exceeded. For instance, each declared element generates a constant
number of points (8 for basic SGML) which are counted and the total number of
points may not exceed ELEMCAP (35 000 in basic SGML). Each capacity derived
from a specific DTD may not exceed its maximum value. Also the grand total of all
the capacities may not exceed TOTALCAP (35 000 in basic SGML).

SGML (YES):
Every DTD may start with an SGML declaration. If none is present, the basic
SGML declaration is taken. The SGML declaration is checked for syntax errors
and it is checked whether the SGML declaration conforms to basic SGML.

NONSGML (YES):
The occurrence of NONSGML characters will be reported. NONSGML
characters are those that are marked UNUSED in the SGML character set
description.

FORMAL (NO):
A public identifier denotes where public information, such as public character sets,
can be found. If a public identifier conforms to the syntactic requirements as
specified in the Standard (section 10.2), it is said to be FORMAL. All public
identifiers must be formal public identifiers when the feature FORMAL is provided
in the SGML declaration. Since this feature is not provided in basic SGML, a public
identifier need not be FORMAL. This implies that the syntax of a public identifier is
not restricted and no checking is done.

Entities

Entities can be regarded as a substitution mechanism and an entity declaration associates
a name with a text. The text is substituted on encountering the entity name in the
document. Take for example the following entity declaration:

<!entity asp "the Amsterdam SGML Parser" >

The word ‘asp’ can still be used in the document in the usual way. It is only
substituted when the word is preceded by ‘&’ and followed by ‘;’. For example the
sentence: ‘This is &asp;.’ resolves to ‘This is the Amsterdam SGML Parser.’ The string
&asp; is called an entity reference.

It is possible to define an entity whose substituting text is not specified in the entity
declaration itself: such entities are called external entities. External entities have two
associated identifiers, ‘SYSTEM’ and ‘PUBLIC’, which indicate where the text can be
found in the system. SGML does not specify the correspondence between the identifiers
and the text they represent. In the Amsterdam SGML Parser we have decided that one of



h

74 JOS WARMER AND S. VAN EGMOND

the identifiers must represent a file name and the contents of the named file are included
in the document when the entity reference is encountered.

Short references

A short reference delimiter is a shorthand notation for an entity reference. If the above
defined entity reference were associated with the short reference delimiter #, it would be
sufficient to type # instead of the string &asp;.

There are 32 short reference delimiters defined in basic SGML. Every short reference
delimiter can be associated with an entity. Short reference delimiters are for instance ‘#’
and ‘TAB’. For every element of a DTD a short reference map may be associated. This
map defines which short reference delimiters are applicable within an element and, for
every applicable delimiter, it specifies the associated entity. At the start of an element,
the associated map becomes active and the short references defined in this map become
applicable.

When a short reference delimiter is encountered, the text of the associated entity is
substituted. According to the Standard, the longest replacement takes precedence in the
case where there is a conflict (i.e., two or more short references are possible) but it also
states that the most specific delimiter is to take precedence. The Standard does not
describe what to do in the case of a further conflict between these two rules. For
example:

A blank is a tab or a space character, so a blank sequence consists of spaces and tabs.
TAB, SPACE and blank sequence are valid short reference delimiters in basic SGML.
The sequence ‘tab space’ will be recognized as the blank sequence short reference
delimiter, if the longest replacement takes precedence. But the same sequence will be
recognized as a TAB followed by a SPACE delimiter if the most specific replacement is
to be preferred. To solve this problem we have chosen that the longest replacement will
always take precedence.

Capacity points

The capacities restrict the complexity of the DTD and the document. These capacities
must be calculated and checked to ensure that they do not exceed the maximum value.
However, the Standard gives no explanation about how the capacities should be
calculated.

For instance, the capacity ELEMCAP is used to count the number of defined elements,
and the capacity ATTCAP counts the number of the defined attributes. When the DTD is
read, ELEMCAP and ATTCAP can be calculated. There is however one problem.

<!element (a, b, c) - - (#PCDATA) >
number of elements equals 3

<!attlist (a, b, c) name NAME "jos" >
number of attributes equals 1

Figure 9. Counting capacity points for a DTD

Does Figure 9 define three elements and three attributes, or just one element and one
attribute? The Standard gives no explanation, but the example in Annex E does (Annex



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 75

E, however, is not an integral part of the Standard). Annex E makes it clear that in Figure
9 three elements are defined but only one attribute. This is not very logical because if, in
Figure 9, all the attributes and elements are declared separately (Figure 10), the number
of attributes is then 3 instead of 1, while the number of elements will remain the same.

<!element a - - (#PCDATA) > number of elements equals 3
<!element b - - (#PCDATA) >
<!element c - - (#PCDATA) >

<!attlist a name NAME "jos" > number of attributes equals 3
<!attlist b name NAME "jos" >
<!attlist c name NAME "jos" >

Figure 10. Counting capacity points for an extended DTD

However, when counting the capacity points for all the attributes as though they
where declared separately, the maximum is very quickly exceeded. We therefore have
chosen to do the same as in Annex E and count the attributes and elements differently
when several elements and attributes are defined in one declaration.

Data characters

In SGML there are three different types of data characters: CDATA (character data),
RCDATA (replaceable character data) and PCDATA (parsable character data). When
an element is declared as CDATA all the characters after the start-tag of the element are
data characters. No mark-up is recognized, except for end-tags. When an element is
declared as RCDATA, entity references and character references (decimal character
codes) are also recognized. For example see Figure 11.

DTD:
<!element a - - CDATA>
<!element b - - RCDATA>
<!entity asp "the Amsterdam SGML Parser">

Input text: text after parsing
<a> <a>
This is &asp; This is &asp;
</a> </a>

<b> <b>
This is &asp; This is the Amsterdam SGML

Parser
</b> </b>

Figure 11. The difference between CDATA and RCDATA

The third type of character data is PCDATA. CDATA and RCDATA are terminated
by an end-tag but the Standard does not specify when PCDATA terminates. The
Standard only makes clear that all characters which are not recognized as mark-up



h

76 JOS WARMER AND S. VAN EGMOND

delimiters are part of PCDATA. But characters that are recognized as mark-up delimiters
present a problem. The following are the three different ways to interpret the Standard in
the case where PCDATA contains a mark-up character.

(1) A mark-up character terminates PCDATA because, according to the definition,
PCDATA contains zero or more characters that are not recognized as mark-up.

(2) A mark-up character that resolves to data characters (for instance entity references
and short reference delimiters) is part of PCDATA. Other mark-up characters that
do not resolve to data characters terminate PCDATA.

(3) All characters between two successive tags are part of PCDATA.

In Figure 12 a processing instruction is used to make the difference clear. A
processing instruction contains system-specific information about how the document is to
be processed.

DTD:
<!element a - - (#PCDATA, q) >
<!element q - - (#PCDATA) >
<!entity ent "entity-text">

document:
<a>
This is &ent; <?processing instruction>followed by

text.

Figure 12. Interpretation of PCDATA

Figure 12 contains the element declaration of a, whose contents consists of parsable
data characters followed by element q. The following are the three different
interpretations of input handling.

(1) Only the text: This is is part of PCDATA because the entity reference &ent;
terminates PCDATA. The entity reference resolves to the text entity-text
which becomes part of element q. If the start-tag of q may not be omitted, or if
data characters are not a valid content of q, then an error occurs.

(2) Only the text This is entity-text is part of PCDATA. The processing
instruction terminates the PCDATA. The processing instruction is not part of the
data but is situated between PCDATA and element q which means that followed
by text forms the start of element q. If the start-tag of q may not be omitted, or
if data characters are not valid as the content of q, then an error occurs.

(3) All the text after the start-tag of element a, including the processing instruction, is
part of PCDATA. Element q is not started yet because PCDATA is not terminated.
Only the start of element q terminates PCDATA.

The first interpretation is not easy to use, because then it is impossible to use entity
references within data text. The second interpretation also has a disadvantage. When the
user uses a processing instruction, PCDATA terminates and following data characters
are not part of PCDATA. If this behaviour is not desired, the above element declaration
of a has to be changed into Figure 13.



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 77

DTD: <!element a - - ( (#PCDATA)*, q) >

Figure 13. Solving the disadvantage of the second interpretation

A disadvantage of the element declaration in Figure 13 is that text which logically
forms one piece is divided into two pieces, separated by a processing instruction. (In the
above example, there are two blocks of text: This is entity-text and
followed by text. ). We have therefore chosen the third interpretation, in which
all characters between two successive tags are part of PCDATA.

Complete document

Figure 7 shows that the output of the document parser is a complete document. The
complete document differs from the input document in the following way:

g all short reference delimiters are expanded to the associated entity references;
g all entity references are expanded, including those introduced by a short reference

delimiter;
g all use-map declarations in the document are parsed and are not part of the complete

document. A use-map declaration in the DTD associates a short reference map with
an element. In the document, a use-map declaration activates the named map, i.e.,
all short reference delimiters defined in this map become applicable. The previous
map, if there was one, cannot be used any more in the element containing the use-
map declaration;

g all entity declarations at the beginning of the document are parsed and are not part
of the complete document. All entities declared in the DTD are applicable in the
document. Because the DTD is the same for many documents, it is sometimes
convenient to define additional entities in the document, for instance often used long
phrases, to reduce typing and typing errors. These additional entities will differ
from one document to another and can be defined at the beginning of the document
and can be used throughout the document;

g all omitted end-tags are added;
g all omitted start-tags are added;
g all abbreviated tags are expanded;
g all spaces, tabs, new lines and comments between consecutive tags are removed.

Comments, new lines etc. may be placed between consecutive tags. These
comments, etc. are not part of the content of any of the elements. It only makes
typing and reading the document easier. For example:

DTD: <!element a - - (b) >
document: <a><!-- this is a comment --><b>
resolves to: <a><b>

g all marked sections are expanded. A marked section is a part of the document that
has been marked for a special purpose, such as ignoring mark-up within it;

g all attributes with their values are set in the corresponding start-tag. Every element
can have an attribute list attached. The attributes in this list give additional
information about the element. IMPLIED attributes, (i.e., attributes whose value



h

78 JOS WARMER AND S. VAN EGMOND

the system will insert) will not be generated unless the user specifies an alternative
value for them;

g all character references are expanded. A character reference consists of a number
which denotes the decimal character code in the character set used. For example
&#97; denotes the letter ‘a’ in the ASCII character set;

g all processing instructions, i.e., system-specific processing information, are kept. If
necessary, each processing instruction is truncated to PILEN (240) characters.

Changing SGML constructs to other formats

As described in previous sections the output of an SGML parser is a ‘complete’
document. However, most people using SGML would not consider this to be the final
stage and would normally print the document, or store it in a database, so that it could be
processed further. With this in mind, we decided that the parser would not be complete
without a back-end whereby the SGML document could be converted into some other
coding scheme.

The back-end of the Amsterdam SGML Parser is simple, yet powerful enough to
create typeset documents from SGML documents. The user can specify a mapping from
each start-tag with its attributes to a replacement text, and a mapping from each end-tag
to a replacement text. For example the mapping:

<title> ".TL"
<head> ".NH [level]"

denotes that the start-tag of the element title will be replaced by the string .TL, which
is the ms-macro for a title. The start-tag of head will be replaced by the string .NH
followed by the value of the attribute level. Of course level must be a valid attribute
of the element head, otherwise an error message is given. The replacement text stands
between double quotes and an attribute value is referred to by placing the attribute name
between brackets (i.e., [ and ] ). The document parser can be called with a user
specified replacement file, which contains the mapping for the tags in the DTD. If a
replacement file is specified, the tags in the output are replaced according to the mapping
in the replacement file. Otherwise the ‘complete’ document will be output.

It is possible to specify that the replacement text must appear on a separate line by
enclosing it between two + characters. This is needed, for instance, by troff, since each
troff command must start with a . at the beginning of a line. Provisions are made to
make it possible to put any character (including non-printable ones) into the replacement
text. This is done by an escape mechanism similar to that of the C programming
language. If, for example, the replacement file looks like:

<title> + ".TL" +
<authors> + ".AU" +
<affil> + ".AI" +
<abstract> + ".AB" +
</abstract> + ".AE" +

the document in Figure 14 will be converted to the troff document in Figure 2. Tags that
are not mentioned in the replacement file are mapped to the empty string and they do not
appear in the output.



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 79

<front><title>
The Implementation of the Amsterdam SGML Parser
<authors>Jos Warmer, Sylvia van Egmond
<affil> Faculteit Wiskunde en Informatica
Department of Mathematics and Computer Science
Vrije Universiteit Amsterdam
e-mail: jos@cs.vu.nl
<abstract>
The Standard Generalized Markup Language (SGML), is an
ISO Standard that specifies a language for document
representation. This paper gives a ...
</abstract></front>

Figure 14. SGML input document

Our experience has been that it is easy to convert an SGML document to troff or TEX,
or some other similar type of formatter, to produce a typeset document on paper.

IMPLEMENTATION OF THE AMSTERDAM SGML PARSER

This section describes several implementation details, and is divided into subsections
which discuss respectively, ‘the lexical analyser’, ambiguities, tag omission, the
exception mechanism and the generation of LLgen code.

Recognition modes in the lexical analysis

In SGML there is a set of predefined delimiters that identify mark-up. Recognition of
delimiters is done in several modes. These modes are called recognition modes. In each
mode a specified subset of all delimiters is recognized. For example, inside a processing
instruction only the delimiter pic, which denotes the end of the processing instruction, is
recognized.

The Standard defines nine different modes and specifies which subset of delimiters is
recognized for each mode.

This concept of modes is common in programming languages. There is always a
comment-mode, in which only the end of the comment is recognized, and, often, a
string-mode, in which only the end of the string is recognized. The main difference
between modes in programming languages, and those in SGML, is that SGML makes the
concept very explicit, providing many more modes than a programming language would
do, and, furthermore, that modes in SGML can be nested.

However, there is one big problem with modes, namely that their definition in the
Standard is incomplete. For example, there is no separate mode for a comment, so
delimiters other than end-comment could potentially be recognized inside a comment.
This problem is circumvented by a special note that goes with the definition of comment.
It says:

‘‘No mark-up is recognized in a comment, other than the com delimiter that
terminates it’’.



h

80 JOS WARMER AND S. VAN EGMOND

This note, of course, implicitly defines a comment-mode. The Standard suggests,
while talking about the different recognition modes, that these modes will solve the
problem of delimiter recognition, but in fact they do not solve this problem at all. Within
the Standard there are several places where notes like the quotation above are used to
identify special cases. If all these notes were incorporated in the general discussion
about the recognition modes, the Standard would be far more readable and consistent.

Altogether, we need nineteen modes to incorporate all the notes about special cases,
which is more than twice the number of modes that the Standard defines (nine).

Ambiguities in SGML

At the end of the first section it was mentioned that a DTD in SGML must be
unambiguous. In section 11.2.4.3 of the Standard it says:

‘‘A content model cannot be ambiguous; that is, an element or character string that
occurs in the document instance must be able to satisfy only one primitive content
token.’’

There is also a reference to Annex H of the Standard and there it says:

‘‘... by prohibiting models that are ambiguous or require ‘look-ahead’; that is, a
model group is restricted so that, in any given context, an element (or character
string) in the document can correspond to one and only one primitive content token
(see 11.2.4.3). In effect, the allowable set of regular expressions is reduced to those
whose corresponding NFA can be traversed deterministically, ...’’

These definitions can be compared to the definition of an LL(1) grammar in [9] on page
61:

‘‘If the analyser can choose its target by simply looking at one character, the
grammar is said to be LL(1).’’

These definitions are very similar but in the next two subsections we give a little more
detail about the differences between the LL(1) grammar conditions and the unambiguity
requirement for SGML grammars.

Note that the LL(1) property is defined for Context Free (CF) grammars and that the
SGML grammar (see later) is written in a slightly non-standard notation. However, this
does not affect the checks that need to be performed on it.

It is beyond the scope of this paper to explain the LL(1) conditions in depth, and we
shall assume that the reader is familiar with the idea of first- and follow-sets, as defined
in the literature, to check whether a grammar is LL(1). Readers not familiar with these
concepts are advised to read pages 209 – 215 of [8] to obtain the requisite background
knowledge.

LL(1) grammars

We define three functions called MayBeEmpty, First and Follow for each non-terminal.
The function MayBeEmpty is often called Empty or Nullable. Intuitively the meanings
of the functions are as follows.



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 81

g MayBeEmpty(n ) for any non-terminal is true if and only if n can produce empty.
g First(n ) for any non-terminal n is the set of all tokens that can start n .
g Follow(n ) for any non-terminal n is the set of all tokens that can follow n directly.

With these functions we can find out whether a grammar is LL(1). A grammar is
LL(1) if the following two conditions hold for each non-terminal in the grammar:

(A1) For all productions in the grammar of the form n 1 | n 2 | . . . | nk : First(n 1) ∩
First(n 2) ∩ ... ∩ First(nk ) = ∅. That is, each alternative of a production rule starts
with a unique set of tokens.
For example, the next rule does not conform to A1, because both alternatives start
with token a.

<!element a1 - - ( (a, b) | (a, c) )>

a ∈ First( (a, b) )
a ∈ First( (a, c) )

a ∈ First( (a, b) ) ∩ First( (a, c) ) ≠ ∅

When an a is encountered, it is impossible to decide which alternative should be
chosen. Only when we look ahead to the next token, can we decide which
alternative must be chosen, i.e. if the next token is a b then the first alternative is
taken but if it is a c then we take the second. However, this look-ahead to the next
input token is forbidden in LL(1) grammars.

(A2) For all non-terminals with MayBeEmpty(n ) = true : First(n ) ∩ Follow(n ) = ∅.
That is, any token which can start a non-terminal that could, potentially, be empty
may not also be the start of anything directly following that token.
The a? in the following example may be empty.

<!element a2 - - (a?, a, b) >

a ∈ First ( a? )
a ∈ Follow( a? )

a ∈ First ( a? ) ∩ Follow( a? ) ≠ ∅

When an a is encountered in the input, it is impossible to decide whether the first
alternative, of a?, or the second, of a, should be chosen. Only when we look ahead
to the next input token, we can decide which one to choose, i.e. if the next token is
an a, then the a? alternative should be chosen, but if the next token is a b, then the
a? should be taken as empty and the a option should be chosen. Once again,
however, this look-ahead to the next input token (forbidden in LL(1) grammars) has
had to be used in making our choice.

SGML grammars

To discuss the difference between LL(1) and unambiguity in SGML we need to
understand the notions of element token, content token and content model. A content



h

82 JOS WARMER AND S. VAN EGMOND

model or model group is the right hand side of an element declaration (e.g. (a?, a,
b) in the previous example). The occurrence of an element name in a content model is
called a primitive content token or an element token. A content token is either an element
token or a model group. A model group can be a sequence-group, an or-group or an
and-group, depending on the type of connector in it (‘,’, ‘|’ and ‘&’ respectively). This
situation is shown in the rules below (which are slightly simplified versions of the actual
SGML rules).

contenthmodel : modelhgroup
modelhgroup : "(" contenthtoken

[connector contenthtoken]* ")"
occurrencehindicator?

contenthtoken : primitivehcontenthtoken
| modelhgroup

primitivehcontenthtoken : elementhtoken
elementhtoken : name occurrencehindicator?
connector : ","

| "|"
| "&"

occurrencehindicator : "?"
| "+"
| "*"

Differences between LL(1) and SGML grammars

The difference between the LL(1) property and the unambiguity requirement for SGML
is that there is one construct which is ambiguous for LL(1), but unambiguous for SGML.
Consider the element declaration:

<!element a - - (b)* >

where b can produce empty.
This rule is ambiguous according to LL(1): if the input token is b, it is impossible to

determine whether b, or the empty production for b, should be chosen first, which leads
to more than one possible choice. In general a non-terminal n that can be empty (i.e
MayBeEmpty(n ) = true) may never have a ‘*’ or ‘+’ occurrence indicator. When such
an occurrence indicator is present, the non-terminal can always be followed by itself, so
First(n ) ⊂ Follow(n ) and condition A2 is never satisfied.

However, in SGML, the above mentioned element declaration is not ambiguous.
There is a disambiguating rule which specifies that empty productions don’t matter as
long as there is only one element token in the declaration that can match the input. In the
above example, it does not matter whether the empty production for b is chosen first,
because the matched b is always the same element token.

We have to look very carefully at the LL(1)-type ambiguities that may arise because
of a ‘*’ or ‘+’ occurrence indicator, since some of them lead to ambiguities in SGML too.
Take for example the element declaration:



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 83

<!element a - - (b, c, b?)*>

This expression is not LL(1): an ambiguity is encountered when the input matches the
b? after the c. If b? is chosen to be the empty rule, then the first b matches the input.
These are different element tokens in the declaration so the disambiguating rule for
SGML does not apply and the element declaration is ambiguous in SGML also.

Minimization of start-tags and end-tags

In the following two sections we discuss the minimization of start-tags and end-tags by
discussing the circumstances under which they may be omitted.

Omission of start-tags

Intuitively a start-tag may be omitted if omission does not create an ambiguity when
trying to map the document onto the DTD and if the start-tag is marked for omission
(with an O) in the element’s declaration. However, the precise rule is somewhat more
complicated.

A content token is called inherently optional if it is followed by a ‘?’ or a ‘*’. If a
content token is followed by a ‘+’, it is transformed to a sequence-group, (i.e., a sequence
of content tokens separated by commas), consisting of the content token followed by the
content token with a following ‘*’. For example, ‘a+’ is transformed into ‘a, a*’. This
transformation does not change the semantics and is convenient in implementing start-tag
omission.

To consider omission of an element token’s start-tag, the following conditions must
hold:

g the start-tag must be marked O in the element’s declaration;
g the element token must not be inherently optional;
g the element token must be part of a sequence-group. If the sequence-group itself is

inherently optional then in order to omit the element token’s start-tag, one of the
content tokens preceding the element token in this sequence-group, must have
occurred;

g the element token must not have a declared content of CDATA, RCDATA or
EMPTY; and

g the omission of the element token’s start-tag must not create an ambiguity.

These rules are illustrated in Figure 15.

<!element a O - (b, (c, d)?, e+, f*) >
<!element (b,c,d,e,f) O - (g) >
<!element g O - CDATA >

Figure 15. A DTD with start-tag omission turned on

In Figure 15 the start-tag of element tokens b and d and the start-tag of the first
occurrence of element e may be omitted. The start-tag of element token c may not be
omitted because the sequence-group is inherently optional and there is no content token



h

84 JOS WARMER AND S. VAN EGMOND

of this group preceding element c. The start-tag of element token g may not be omitted
because element g is declared as CDATA.

DTD:
<!element a O - (b?, c) >
<!element b - - CDATA >
<!element c O - (d) >
<!element d O - (b?) >

doc: <a><b>element b</b></a> may denote either (1) or (2).

(1) <a> <b>element b</b> <c><d></d></c> </a>
(2) <a> <c><d><b>element b</b></d></c> </a>

Figure 16. Ambiguity with start-tag omission

In Figure 16, the start-tag of element token c and d may both be omitted according to
all the conditions given above — except for the last of those conditions. To understand
why an ambiguity would be created we note that, when the start-tag of element token b is
encountered it is not clear whether this is the beginning of optional element token b, and
that element token d is empty (case 1 in Figure 16) or that the optional element token b is
skipped and b belongs to d (case 2 in Figure 16). The ambiguity is resolved if either of
the start-tags for element tokens c or d is not omitted. The problem is to determine which
start-tag may not be omitted.

We have implemented start-tag omission statically. Every element’s content model is
examined in the dtd-parser. Every start-tag may be omitted as long as the conditions
mentioned before are satisfied, and as long as it does not create an ambiguity. The
content model of element a in Figure 16 is examined before the content model of
element c so the start-tag of the element token d is not considered for omission yet. Next
the dtd-parser examines the content model of element c but now the omission of the
start-tag of element token d is not allowed, because that would introduce an ambiguity.
If the content model of element c were examined before the content model of element a,
then the start-tag of element token d could have been omitted and not the start-tag of
element token c.

Start-tag omission is very restrictive. In some cases start-tag omission is not allowed
according to the Standard although it does not create a parsing conflict. Take for instance
Figure 17.

<!element a O - (b?, c) >
<!element b O - (d) >
<!element (c,d) O - CDATA >

Figure 17. Restrictive start-tag omission

The start-tag of element b may not be omitted, but omission does not create a parsing
conflict. Either the parser encounters the start-tag of element d, in which case the start-
tag of element b was omitted, or the parser encounters the start-tag of element c in which
case element b was skipped, and no look-ahead is required.



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 85

End-tag omission

To consider the omission of an element’s end-tag, the end-tag must be marked O in the
element declaration. According to the Standard, a marked end-tag can be omitted only if
the end-tag is followed by either:

(1) the end-tag of another open element or
(2) the start-tag of another element or by an SGML character, both of which are not

allowed in the element’s content model.

An element is an open element when the element’s start-tag has occurred either
explicitly, or implicitly through omission, and the element’s end-tag has not occurred yet.
The above definition makes clear that end-tag omission cannot be corrected during
parsing of the DTD — it can only be corrected during parsing of the document. To retain
information about the content model of the declared elements in the document parser,
information is generated about the content models by the dtd-parser.

To implement end-tag omission, all omittable end-tags could be marked optional in
the generated LLgen code, but doing so creates a lot of ambiguities within LLgen. To
prevent these ambiguities, we have implemented end-tag omission by using the user-
definable error routine of LLgen. We mark all the end-tags required in the LLgen code.
Thereafter, any omission of an end-tag in the document causes an error and the error
routine of LLgen is called.

To correct an error, LLgen first invokes the user-definable error routine. If this error
routine succeeds in removing the error then LLgen resumes parsing, otherwise the
standard LLgen error routine [15] takes over.

Our user-definable error routine first checks whether the token required by LLgen is
an end-tag. If not, end-tag omission is not the cause of the error and the error routine of
LLgen must correct the error. Otherwise, our error routine checks whether the wrong
token (the one causing the error) is an end-tag of an open element so that (1) applies: if
so the missing end-tag is inserted into the input and LLgen resumes parsing. If (1) is not
applicable, our error routine checks whether the wrong token is an element’s start-tag, or
an SGML character that is not allowed in the content model of the most recent open
element. In this case (2) applies, the missing end-tag is inserted and parsing is resumed,
otherwise the user has omitted an end-tag in the document where that was not permitted.

Exclusions and inclusions

This section describes our way of handling exceptions. An exception is an exclusion or
an inclusion. The exceptions are indicated in the DTD. The exception’s scope is the
element in which the exception is declared and all elements that are opened within this
element.

Exclusions

An exclusion specifies that the excluded elements are not allowed in the content of the
element in which they are declared, even though an excluded element may be part of the
content model. For example:



h

86 JOS WARMER AND S. VAN EGMOND

DTD:
<!element a - - (b, c) -(d) >
<!element b - - (c | d)>
<!element (c,d) - - CDATA >

documents:
(1) <a> <b><d>content</d></b> <c>content</c> </a>
(2) <a> <b><c>content</c></b> <c>content</c> </a>

The content model of element a consists of two elements, and element d is excluded
from a according to the DTD. In SGML-terms, element d is then recursively excluded
from all elements occurring within a. So, the first document in this example is not
correct according to the DTD, since element d is excluded from the occurrence of b in a.
The second document, however, is correct.

Exclusions are not difficult to implement. An excluded element that is part of a
content model must always be an inherently optional element or a member of an or-
group. Therefore the element is always optional. By maintaining a stack of excluded
elements the parser can easily check whether an occurring element is excluded or not.

Inclusions

An inclusion is an element that may appear everywhere in the content of the element in
which the inclusion is declared. Figure 18 presents a DTD with element d as an
inclusion. Following the DTD are three documents, which are all correct according to the
DTD.

DTD:
<!element a - - (b, c) +(d) >
<!element b - - (c | d)>
<!element (c,d) - - CDATA >

documents:
(1) <a> <b><d>cont.</d></b> <c>cont.</c> </a>
(2) <a> <b><c>cont.</c></b> <d>cont.</d> <c>cont.</c> </a>
(3) <a> <b><c>cont.</c> <d>cont.</d></b> <c>cont.</c>

<d>cont.</d> </a>

Figure 18. DTD and documents with inclusions

In the Standard, inclusions are defined in the following way. Let ‘Q’ be a generic
identifier or group in a content model and ‘x’ the occurrence indicator, i.e., ‘x’ is ‘*’, ‘?’,
‘+’ or empty. If ‘R 1’ through ‘Rn ’ are applicable inclusions, then a token Qx is treated as
though it were :

(R 1 | . . . | Rn )*, (Q, (R 1 | . . . | Rn )*)x

This definition is not practical for an implementation. If it were used within LLgen, it
would produce a large overhead and introduce many ambiguities. The Amsterdam
SGML Parser uses the user-definable error routine of LLgen to handle an inclusion.



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 87

When a start-tag is encountered that does not fit in the production-rule being parsed, our
error-routine is automatically called by LLgen. The error routine checks whether the
start-tag is the start-tag of an applicable inclusion and if so the inclusion is parsed by
recursively calling LLgen. To obtain a parser for the inclusion, we have to indicate in the
LLgen-grammar that the included element is a possible start symbol. After the inclusion
is parsed, the document parser resumes, with the rest of the input, in the state the parser
was before the inclusion occurred. There is no restriction on the number of times an
inclusion may appear.

Generation of LLgen-code

LLgen is a parser-generator. Its input is a grammar that consists of tokens (terminal
symbols) and production-rules (non-terminals). Almost every element declaration can be
translated directly into an LLgen production-rule. There is, however, one exception. To
translate an and-group, an SGML construct, into LLgen, extra production rules are
necessary because this construct is not known in LLgen: it must be simulated.

The and-group a & b means that elements a and b may occur in any order, i.e., a
followed by b or b followed by a. A possible LLgen-rule for the content model a & b
might be: and-group : [ a b ] | [ b a ] ;. Such a rule does not create
an ambiguity when there are only two members. However, as the number of members
becomes three or more, an ambiguity does appear. To get round this problem we
generate several rules.

When the parser encounters the start-tag of a, it finds that this tag is allowed as the
start of and1 and so this rule is taken. After that the rule for and2_3 will be entered.
Every alternative, except the last one in the or-group, is preceded by a so-called conflict

DTD:
<!and-group - - (a & b & c) >

ambiguous:
and-group : [a b c] | [a c b] | [b a c] | [b c a] |

[c a b] | [c b a];

unambiguous:
and-group : [%if (token is start of and1) [ and1 and2_3] |

[%if (token is start of and2) [and2 and1_3] |
[and3 and1_2]]

];
and1_2 : [%if (token is start of and1) [and1 and2] |

[and2 and1]];
and1_3 : [%if (token is start of and1) [and1 and3] |

[and3 and1]];
and2_3 : [%if (token is start of and2) [and2 and3] |

[and3 and2]];
and1 : starttag_a a ;
and2 : starttag_b b ;
and3 : starttag_c c ;

Figure 19. Generated LLgen code for an and-group



h

88 JOS WARMER AND S. VAN EGMOND

resolver , which ensures that an alternative is chosen only if its start-tag is actually
encountered. This is needed because several of the alternatives may produce empty.

SUMMARY AND CONCLUSIONS

In this paper we have given an introduction to SGML and described the design and
implementation of the Amsterdam SGML Parser. This takes, as its input, a document
type definition and generates a document parser. The document parser recognizes
documents constructed according to the DTD and adds missing tags, expands short
references and so on.

The parser is written in the programming language C and uses only standard C
constructs [11]. It was developed under SUN/Unix 4.2 BSD and also runs under
VAX/Unix 4.1 BSD and VAX/VMS system 4.5. The source code is 333 Kb with an
extra 141 Kb source code for LLgen. The object code for the dtd-parser is 131 Kb on a
SUN with a 2 Mb run-time overhead (for the AAP BK-1, which is a rather large DTD)
mainly used for ambiguity checking and start-tag omission. The object code of the
document parser for the AAP BK-1 [13] amounts to 352 Kb on a SUN, with no
significant run-time overhead. At present the parser is used by the Dutch publishing
company Elsevier Science Publishers and will shortly be used by another Dutch
publisher, Wolters Kluwer.

To parse the DTD’s and documents, we have chosen to use an existing parser
generator instead of building one ourselves. The advantage of building one ourselves
would be that the parser could be specialized for parsing SGML documents, and could
therefore be optimized. The drawback is that adding good error-recovery is extremely
difficult and a lot of work would have to be expended in this area. Therefore we decided
to use LLgen, which has a very good error-recovery facility. Using LLgen for parsing
DTDs was straightforward. It was, however, more work than we expected to convert the
SGML content model to a grammar suitable for LLgen, but still the advantages of using
LLgen outweighed the disadvantages.

While implementing the Standard, we found that it contained a lot of special cases,
ambiguities and errors, some of which have been discussed in previous sections. The
special cases, mostly expressed in notes, make the Standard difficult to understand. For
almost every rule there is at least one exception, and owing to the lack of an index, the
Standard is not easy to use as a reference manual. A separate index has been published
[16], and there is a clear need for it. The annexes contain explanations of the Standard,
but they were not very helpful. We found that only the simple and straightforward
concepts are explained; the more difficult concepts remain vague. The annexes also
contain information on topics (e.g. ID-attributes) which are not discussed in the Standard
itself.

After finishing the parser we decided to use it ourselves to discover the pros and cons
of SGML and our parser. We wrote the technical documentation for our parser, as well
as the draft version of this paper, using SGML. For the documentation we wrote a simple
DTD but for the draft paper we wrote a DTD that formalizes the troff ms package. As a
result of our experiences we have reached the following conclusions about SGML.

g The complete checks on ambiguity of the content model are absolutely necessary
when one is writing a document type definition. That is, the MODEL validation
service of SGML is needed.



h

THE IMPLEMENTATION OF THE AMSTERDAM SGML PARSER 89

g Also necessary is the GENERAL validation service. This means that SGML errors
and/or mark-up errors are reported. Without these one easily creates incorrect
documents and/or DTD’s.

g The other validation services are not needed very often and one can easily do
without them. At least we did not miss them.

g Tag omission and short references are an absolute must, if you write a document in
SGML. Otherwise specifying mark-up in the document becomes very tedious.

g Converting an SGML document into troff or TEX is very easy, using the back-end
provided.

g Having a formal document type definition, against which your document is
checked, is very helpful. The error reports from the parser make it easier to create
correct output because mark-up errors are found and reported. Strange looking
output, caused by errors in the mark-up, is less frequent than when using bare troff
macros. In fact, using SGML can save a lot of time in this case.

ACKNOWLEDGEMENTS

We would like to thank Frans Heeman for volunteering to test the parser. Because this
involved reading and understanding the Standard, it was not an easy job. He never
stopped bothering us with questions such as ‘is this a bug or a feature?’. This helped in
our understanding of the Standard and made the parser into a stable product. We would
also like to thank Hans van Vliet for his numerous remarks while we were writing this
paper, Greg Sharp for correcting the English and Ceriel Jacobs for his help with LLgen.

REFERENCES

1. D. E. Knuth, TEX and METAFONT: New Directions in Typesetting, Digital Press, Bedford,
1979.

2. J. F. Ossanna, ‘NROFF/TROFF User’s Manual’, UNIX Programmers Manual, 2A, 203–263
(1979).

3. M. E. Lesk, Typing Documents on UNIX and GCOS: The -ms Macros for Troff, 1977.
4. ISO, Information processing — Text and office systems — Standard Generalized Markup

Language (SGML), First edition 1986-10-15, . Ref. No. ISO 8879-1986 (E)
5. ISO, Information Processing — Text and office systems — SGML Amendment 1 (Final Text

with Ballot Commends Resolved), Ref. No. ISO 8879-1986 (E) Amendment 1
6. D. W. Barron, ‘Why use SGML?’, Electronic Publishing — Origination, Dissemination and

Design, 2 (1), 3–24 (1988).
7. Martin Bryan, SGML: An Author’s Guide to the Standard Generalized Markup Language,

Addison-Wesley, Wokingham, 1988.
8. J. Lewi, K. De Vlaminck, J. Huens, and M. Huybrechts, ‘The ELL(1) Parser Generator and the

Error Recovery Mechanism’, Acta Informatica (10), 209–228 (1978).
9. M. Griffiths, ‘LL(1) Grammars and Analysers’, in Compiler Construction, An Advanced

Course, ed. J. Eickel, Springer-Verlag, New York, (1974).
10. C. J. H. Jacobs and D. Grune, ‘A Programmer — friendly LL(1) Parser Generator’, Software —

Practice and Experience, 18 (1), 29–38 (1988).
11. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall,

New Jersey, 1978.
12. A. S. Tanenbaum, H. van Staveren, E. G. Keizer, and J. W. Stevenson, ‘A Practical Toolkit for

making Portable Compilers’, Communications of the ACM, 26 (9), 654–660 (1983).
13. Association of American Publishers, Standard for Electronic Manuscript Preparation and

Markup, February 21, 1986.



h

90 JOS WARMER AND S. VAN EGMOND

14. Association of American Publishers, Reference Manual on Electronic Manuscript
Preparation and Markup, May 1986.

15. J. R
..
ohrich, ‘Methods for the Automatic Construction of Error Correcting Parsers’, Acta

Informatica, 13, 115–139 (1980).
16. R. Stutely and J. Smith, SGML: The User’s Guide to ISO 8879, Ellis Horwood Ltd, Chichester,

1988.


	SUMMARY
	INTRODUCTION
	Introduction to SGML
	Structure of the parser
	Implementation of the parser

	SPECIFICATION OF THE AMSTERDAM SGML PARSER
	Validation services 
	Entities
	Short references
	Capacity points
	Data characters
	Complete document
	Changing SGML constructs to other formats

	IMPLEMENTATION OF THE AMSTERDAM SGML PARSER
	Recognition modes in the lexical analysis
	Ambiguities in SGML
	Minimization of start-tags and end-tags
	Exclusion and inclusions
	Generation of LLgen-code

	SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

